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Abstract. We give a simple and very complete proof of the existence of
strong solutions to the nonhomogeneous problem (1.1) under the non-
homogeneous boundary conditions (1.5). See Theorem 1.2. See also the
pioneering paper [42] by V.A. Solonnikov and V.E. Ščadilov, and [6].

1. Introduction and main results

In the sequel we consider the system{
−ν∆u − µ∇(∇ · u) + ∇p = f(x),
λp + ∇ · u = g(x) in Ω,

(1.1)

under the nonhomogeneous slip-boundary condition (1.5), where β ≥ 0.
When β > 0, this condition is called a slip-boundary condition with linear
friction. The slip-boundary conditions are an appropriate model for flow
problems with free boundaries, for flows past chemically reacting walls, and
for many other important flows in the real world. See, for instance [28] and
[45]. For a study of the mathematical foundations of fluid mechanics, and
for a rigorous deduction of its main equations, we refer the reader to Serrin’s
classical article [35].

Here Ω is a bounded, connected, open set in R3, locally situated on one side
of its boundary Γ, a manifold of (at least) class C1,1 (Lipschitz-continuous
first derivatives). We denote by n the unit-outward normal to Γ. The con-
stants ν, µ, and λ satisfy the assumptions ν > 0, µ + ν > 0, and λ ≥ 0.
When µ = λ = 0 and g(x) = 0 we obtain the classical Stokes system. The
use of our results to study the incompressible Navier-Stokes equations can
be easily done by standard manipulations.
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A main concern here is the presentation of a self-contained paper. De-
tails are not skipped, even though this choice increases the length of the
exposition.

Our main interest is the basic L2-regularity result; i.e., if f ∈ L2(Ω), g ∈
H1(Ω), a ∈ H3/2(Ω), and b ∈ H1/2(Γ), then u ∈ H2(Ω) and p ∈ H1(Ω). From
this result we may easily get Hk regularity results, k > 2. See Theorem 1.2
below. However, the existence of weak solutions (as well as the justification
for its definition) will also be studied in great detail.

The existence of weak solutions to problem (1.1), (1.5) with β = 0 was
considered by Solonnikov and Scadilov (see reference [42]) in the case λ =
µ = 0 and g = 0. They also prove H2 regularity in the case that a = 0
and b = 0 in (1.5). In reference [6] existence and regularity of the solution
are proved in the general case (1.1), (1.5) when β = 0 and Ω = Rn

+ =
{x : xn > 0} , Γ = Rn−1. Here we will assume, just for convenience, that
n = 3. Actually, this assumption is used only in discussing the particular
case in which Ω has axial symmetry.

We remark that the assumption µ �= 0 is not significant here since it may
be eliminated by replacing the term ∇ · u in the first equation (1.1) by its
expression obtained from the second equation. In this way we even see that
µ can be assumed arbitrary. However, it is useful to consider the case µ �= 0
without using the above device, in order to be able to apply some of our
calculations to problems related to compressible fluids.
Remark. The independence of the main estimates on the nonnegative pa-
rameter λ is a central point in our proofs. Some very basic estimates are
proved for positive values of λ but then shown to be independent of λ. This
easily implies its validity also when λ = 0.

The introduction of the parameter λ is useful, for instance, in numer-
ical approximation. In fact, it sometimes seems convenient to relax the
divergence-free constraint by replacing it by λp + ∇ · u = 0, for a “suffi-
ciently small” value of λ (penalization method). Clearly, we have to prove
convergence as λ goes to zero and also error estimates. See [21], Chapter II,
B2.4 and [44], Chapter I, B6. Sharp estimates of this type were proved in
reference [4]. See [4], equations (1.6) and (1.7).

Another reason that leads us to introduce the parameter λ, in this case
as an auxiliary tool, is the following: Replacing the constraint ∇ · u = 0 by
λp +∇ · u = 0 allows us to localize the equations (flatten the boundary and
prove regularity) in a much simpler way than the usual ones. Then, the lack
of dependence on λ yields the extension to the limit case λ = 0.
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Finally, we point out that an alternative proof of our regularity results
could also be done by following the simple, and quite elegant, proof intro-
duced in reference [4]. In this last case the role of the parameter λ is crucial.

It is worth noting that the regularity result has a local character. It is
obvious from the proofs that when the boundary condition (1.5) is satisfied
only on a piece Γ0 of Γ then the regularity result holds up to the internal
points of Γ0. This is of interest, in particular, when solutions are subjected
to suitable boundary conditions on Γ− Γ0. In this last case the proof of the
existence of the solution could be much simpler. For instance, coerciveness
becomes trivial (moreover, the axially symmetric case is no longer distinct
from the generic case) if one has a Dirichlet boundary condition on one piece
of the boundary.

In the sequel we denote by T = −pI + ν(∇u+∇uT ) the stress tensor and
by t = T · n the stress vector. Hence, with obvious notation (see also [42]),

Tik = −δikp + ν
( ∂ui

∂xk
+

∂uk

∂xi

)
, (1.2)

ti =
3∑

k=1

Tiknk. (1.3)

We also define the linear operators uτ = u− (u · n)n (the tangential compo-
nent of u) and the tangential component of t

τ(u) = t − (t · n)n. (1.4)

Note that τ(u) is independent of the pressure p.
In the sequel we consider the slip-boundary condition{

(u · n)|Γ = a(x),
βuτ + τ(u)|Γ = b(x), (1.5)

where β ≥ 0 is a given constant, and a(x) and b(x) are, respectively, a given
scalar field and a given tangential vector field on Γ. For the study of problems
under these or under strongly related boundary conditions see, for β = 0, [6],
[24], [28], [42], and [45]; for β > 0, [12], [19], [23], [24], and [33]. See also the
remark at the end of this section. Related boundary conditions, including
free-boundary problems, are studied in references [2], [9], [25], [30], [34], [36],
and [39].

Coupled fluid-structure boundary-value problems are another source of
very interesting open problems. See, for instance, [5], [22], and references
therein. Other kinds of boundary conditions are studied in [3].

We do not refer here to the well known, extremely extensive literature
on the nonslip-boundary condition (see, for instance, [26], [18], [44], and
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references) except for [15], [16], [40], and [41], where the nonslip, nonhomo-
geneous boundary condition for the evolution problem is studied in a very
complete way.

Before stating our main results some remarks related to the geometry of
Ω are necessary. This point will be treated here in a quite complete and
carefully way.

Assume that Ω can be generated by revolution around a given axis l1 (or,
as a particular case, around two orthogonal axes l1 and l2). For convenience,
in these cases we say that Ω is (axially) symmetric. Assume, without loss of
generality, that the origin of the system of coordinates belongs to l1 (or to
l1 and l2 if there are two independent axes of symmetry). Further, denote
by li a unit vector in the li direction. Set γ

i
(x) = li ∧x, and define the (one-

or two-dimensional) linear space

Z = f{z : z = kγ
1
} or Z = {z : z = k1γ1

+ k2γ2
}, (1.6)

according to the case under consideration (we could set Z = {0} in the
generic case).

By definition, we call a special case that in which Ω is symmetric and
β = 0. Otherwise we call it the generic case. In fact, eight distinct situations
occur, according to the fact that Ω is, or is not, symmetric, λ vanishes
or does not vanish, and similarly for β. However, in order to simplify the
presentation, we distinguish only between the special and the generic case.

In the generic case one shows that there is a unique solution (u, p) to our
problem if λ > 0. If λ = 0, the solution exists if and only if the compatibility
condition ∫

Ω
g dx =

∫
Γ

a dΓ (1.7)

holds. Moreover, u is unique and p is unique up to a constant. If λ > 0
and (1.7) holds, we will see that the results are a little stronger than those
without the assumption (1.7).

In the “special case” there are nonzero solutions to the homogeneous prob-
lem. More precisely, the kernel of the linear problem is just Z. In fact, vector
fields z ∈ Z (together to p = 0) solve the homogeneous problem (1.1), (1.5)
since ∆z = 0,∇ · z = 0, (z · n)|Γ = 0, and τ(z)|Γ = 0. Conversely, if (u, p) is
a weak solution to the above homogeneous problem, then necessarily u ∈ Z
and p = 0 (or an arbitrary constant, if λ = 0). See Appendix I for the proofs.
Hence, in the special case, any solution (u0, p) to the problem (1.1), (1.5)
can be decomposed into the form u0 = u + z, where (u, p) is the particular
solution of the nonhomogeneous problem (1.1), (1.5) for which u is orthogo-
nal to Z in L2, and z is an arbitrary element of Z. Moreover, these solutions
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(u0, p) do exist (and the particular solution u is unique) if and only if the
compatibility condition (see also [42])∫

Ω
f · γ

i
dx = −ν

∫
Γ

b · γ
i
dΓ (1.8)

is satisfied. As for the generic case, if λ = 0 we have to assume the compat-
ibility condition (1.7). Moreover, the pressure is unique up to a constant.

Before stating the main results we introduce some notation. The symbol
‖ · ‖ denotes the canonical norm in L2(Ω). We denote by Hk(Ω), k a positive
integer, the usual Sobolev space of order k, by H1

0 (Ω) the closure in H1(Ω)
of C∞

0 (Ω), and by H−1(Ω) the strong dual of H1
0 (Ω). The canonical norms in

these spaces are denoted by ‖·‖k. L2
# (respectively H1

#)denotes the subspace
of L2 (respectively H1) consisting of functions with mean value equal to 0.
We denote the trace spaces of H2(Ω) and H1(Ω) by H3/2(Γ) and H3/2(Γ),
respectively. See [31].

In notation concerning duality pairings and norms, we will not distinguish
between scalar and vector fields. Very often we also omit from the notation
the symbols indicating the domains Ω or Γ, provided that the meaning re-
mains clear. As a rule, integer norms, as well as integer Sobolev spaces, al-
ways relate to Ω, and fractional norms and fractional Sobolev spaces always
concern the boundary Γ. For instance, ‖·‖1/2= ‖·‖1/2,Γ, and H1/2 = H1/2(Γ).

If X is a Banach space we denote by X ′ its strong dual space. The symbol
〈· , ·〉 denotes a generic duality pairing, in particular the scalar product in
L2. We set L2 = [L2(Ω)]3, Hs = [Hs(Ω)]3, and Hs(Γ) = [Hs(Γ)]3, and define

H1
z =

{
v ∈ H1 : 〈v, z〉 = 0, ∀z ∈ Z

}
,

H1
τ =

{
v ∈ H1 : (v · n)|Γ = 0

}
, H1

z,τ = H1
τ ∩ H1

z.

Clearly, H1
τ = H1

z,τ ⊕ Z. In the generic case H1
z = H1, since Z = {0} .

We remark that ‖∇v‖ is a norm in H1
τ , which is equivalent to the canonical

H1 norm ‖v‖1.
For convenience, we denote by the symbol V1 the space H1

z and by the
symbol V1

τ the space H1
z,τ . Hence, V1

τ = V1 ∩ H1
τ . Note that, in the generic

case, V1
τ = H1

τ .
We denote by c, c, c1, c2, etc., positive constants that depend, at most,

on Ω, ν, µ, and β (but not on λ). After Section 3 these constants may also
depend on Γ. The same symbol c may denote different constants, even in
the same equation. Finally, given a scalar function p we set

p = p − |Ω|−1

∫
Ω

p dx. (1.9)
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The main results are the following.
Existence of a weak solution (see also [42]).

Theorem 1.1. Assume that

f ∈ (H1
τ )

′, g ∈ L2, a ∈ H1/2, b ∈ H−1/2, (1.10)

where b is tangential to Γ. In the special case (i.e., if Ω is symmetric and
if β = 0) assume, in addition, that the (necessary) compatibility condition
(1.8) holds. One has the following results:

(a) If λ > 0 the problem (1.1), (1.5) has a unique weak solution (u, p) in
V1 × L2. Moreover,

‖u‖2
1 + λ‖p‖2 + ‖p‖2 ≤ c([f ]2−1 + ‖a‖2

1/2 + ‖b‖2
−1/2) + cλ−1(‖g‖2 + ‖a‖2

1/2).
(1.11)

(b) If λ ≥ 0 and (1.7) holds, the problem (1.1), (1.5) has a unique weak
solution (u, p) ∈ V1×L2

#. If λ = 0 the pressure p is unique up to a constant.
Moreover,

‖u‖2
1 + λ‖p‖2 + ‖p‖2 ≤ c([f ]2−1 + ‖g‖2 + ‖a‖2

1/2 + ‖b‖2
−1/2). (1.12)

(c) In the special case (hence Z �= {0}) the general solution is given by
(u + z, p), where (u, p) is the particular solution described in points (a) or
(b) (hence u is orthogonal to Z) and z is an arbitrary element of Z.

For the proof see Section 2. In equations (1.11) and (1.12) the symbol
[f ]−1 denotes the norm of f as an element of (H1

τ )
′.

Remark. It is worth noting that if λ > 0, as well as if λ = 0, g = 0, and
a = 0, the existence of the weak solution (without ‖p‖2 on the left-hand
side of (1.11) or (1.12)) can be proved without resorting to Proposition 1.1
below, as shown in Section 6.

Concerning the existence of a strong solution we prove the following reg-
ularity result.

Theorem 1.2. Assume that Γ is of class C2,1. Let λ and the data f, g,
a, and b satisfy the conditions assumed in one of the cases considered in
Theorem 1.1, and let (u, p) be the corresponding weak solution. Assume
moreover that

f ∈ L2(Ω), g ∈ H1(Ω), a ∈ H3/2(Γ), b ∈ H1/2(Γ). (1.13)

Then (u, p) belong to H2 × H1. Moreover, in case (b),

‖u‖2
2 + (1 + λ)‖p‖2

1 ≤ c(‖f‖2 + ‖g‖2
1 + ‖a‖2

3/2 + ‖b‖2
1/2), (1.14)
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where c is independent of λ. In case (a), the above estimate is satisfied by
replacing c by c(λ), where c(λ) tends to infinity as λ goes to zero.

In the special case, the above estimates are satisfied by the particular so-
lution u ∈ V1

τ , i.e., by the solution u for which 〈u, z〉 = 0. Clearly, the
solutions u0 = u + z are regular, as well.

It is not difficult to obtain (from our calculations) a precise expression for
the dependence of c and c(λ) on ν and µ and also of c(λ) on λ.

Concerning the proof, we do not use here potential theory results (in this
direction see, for instance, [1], [11], [17], [18], [20], [26], [37], and [38]). A
main tool will be Nirenberg’s translations method; see [32].

As remarked in [6], the current literature on Stokes and Navier-Stokes
systems (even in proving the existence of weak solutions to the homogeneous
Dirichlet boundary value problem; see, for instance, [13], [29], [44]) is based
on a set of special results which are now accepted as tools at one’s disposal.
Nevertheless, it is worth noting that the proofs of these results are not at all
trivial. In this regard we note that in our approach the only such “special
result” to be used is Proposition 1.1 below.

Finally, we mention here a different method, introduced in reference [4],
to study the nonhomogeneous Dirichlet boundary-value problem for system
(1.1) in an open subset Ω ⊂ Rn. In [4] the H2 a-priori estimate for solu-
tions to the Dirichlet problem is proved in a straightforward way. Then,
the effective existence of strong solutions is shown by a very simple (and
particularly elegant) new method to which we direct the reader’s attention.
See [4], Section 4 (for a more classical, and very complete, proof, we refer
the reader to [13]).

The following proposition is one of the main tools in this paper.

Proposition 1.1. Let p be a scalar field in L2. There is a constant c such
that

‖p‖ ≤ c‖∇p‖−1, (1.15)
where p is defined by (1.9).

Classical proofs are given in [14] and [43]. See also the appendix in ref-
erence [6]. An alternative, simpler, and very complete proof, is given in
Appendix II. We may also obtain the above proposition, for any integrabil-
ity exponent p, by applying a duality argument to the result stated in [10],
Theorem 2′. We refer the reader to the very interesting proof of this last
result; see [10].
Remark (added in proof). More recently, we have studied the stationary [7]
and the evolution [8] Navier-Stokes equations with shear dependent viscosity,
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namely {
∂u
∂t + u · ∇u −∇ · T (u, π) = f,
∇ · u = 0,

(1.16)

under slip, or nonslip, boundary conditions. T denotes the stress tensor

T = −πI + νT (u)Du, (1.17)

where Du = ∇u + ∇uT , νT (u) = ν0 + ν1|Du|p−2, and ν0 and ν1 are strictly
positive constants. For convenience, we denote here the pressure by the
symbol π. Roughly speaking, for the initial-boundary-value problem in the
case n = 3, and for sufficiently regular data, we show in particular that u ∈
L2(0, T ; W 2,p′), for p ∈ (2+ 2

5 , 4), and u ∈ L4−p(0, T ; W 2,l), for p ∈ (2+ 2
5 , 3),

where l = 3(4−p)
5−p .

2. Proof of Theorem 1.1

We start this section by introducing the formal calculations that led to
the definition of weak solution. Let φ be any vector field in Ω such that

(φ · n)|Γ = 0. (2.1)

In the following, vector fields denoted by φ are assumed to verify (2.1). In
our functional framework this means that φ ∈ H1

τ .
From (1.4) it follows that τ(u) · φ = t · φ, for all φ satisfying (2.1); hence,

τ(u) · φ = ν

3∑
i,k=1

( ∂ui

∂xk
+

∂uk

∂xi

)
nkφi, (2.2)

for all φ as above. Next we define the bilinear form

B(u, φ) :=
∫

Ω

[ν

2
(∇u + ∇uT ) · (∇φ + ∇φT ) + (µ − ν)(∇ · u)(∇ · φ)

]
dx.

(2.3)
We remark that

B(u, z) = 0, ∀z ∈ Z. (2.4)
By integrations by parts, and by taking (2.2) into account, one easily shows
that

B(u, φ) = −
∫

Ω
[ν∆u + µ∇(∇ · u)] · φ dx +

∫
Γ

τ(u) · φ dΓ, (2.5)

for all φ satisfying (2.1). It readily follows that a sufficiently regular couple
(u, p) is a solution of (1.1)1, (1.5)2 if and only if

B(u, φ) −
∫

Ω
p∇ · φ dx =

∫
Ω

f · φ dx +
∫

Γ
(b − βu) · φdΓ, (2.6)
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for all φ satisfying (2.1).
Next we introduce the constraint (1.5)1. It will be convenient to reduce

this nonhomogeneous boundary condition to the homogeneous one,

(v · n)|Γ = 0. (2.7)

To accomplish this we consider a vector field w such that

(w · n)|Γ = a(x), ‖w‖1 ≤ c‖a‖1/2. (2.8)

More precisely, since a ∈ H1/2, we fix a linear, continuous map a �→ w, from
H1/2(Γ) into H1(Ω), such that (2.8) holds. Note that at this point there
are no assumptions on ∇ · w. However, when we assume that (1.7) holds
(a necessary condition if λ = 0), w must satisfy the compatibility condition
∇ · w = g. Hence, when we assume that (1.7) holds, we replace (2.8) by{

∇ · w = g,
(w · n)|Γ = a(x), ‖w‖1 ≤ c(‖a‖1/2 + ‖g‖). (2.9)

A more complete result is stated and proved in Section 8, Corollary 8.2.
Moreover, in the special case we assume, in addition, that w ∈ H1

z. This
is done merely by replacing the above w by the projection w −

∑
i〈w, γ

i
〉γ

i
(note that (2.9) is also satisfied by the new w since (z ·n)|Γ = 0 and ∇·z = 0,
for all z ∈ Z). We set

u = w + v, (2.10)
where w is fixed as above and the new unknown v is subject to the constraint
(2.7).

Under the change of variables (2.10), the equation (2.6) for u is equivalent
to the following equation for v:

B(v, φ) − 〈p,∇ · φ〉 + β

∫
Γ

v · φ dΓ

= −B(w, φ) + 〈f, φ〉 − β

∫
Γ

w · φ dΓ + 〈b, φ〉Γ, (2.11)

for all φ satisfying (2.1). Hence (u, p) is a solution of (1.1)1, (1.5) if and only
if v satisfies (2.7) and, moreover, (v, p) is a solution of (2.11). It follows that
(u, p) is a solution of the complete problem (1.1), (1.5) if and only if (v, p)
is a solution of

B(v, φ) − 〈p,∇ · φ〉 + β〈v, φ〉Γ + λ〈p, ψ〉 + 〈∇ · v, ψ〉 (2.12)

= −B(w, φ) + 〈f, φ〉 − β〈w, φ〉Γ + 〈b, φ〉Γ + 〈g, ψ〉 − 〈∇ · w, ψ〉,
for all φ satisfying (2.1) and all scalar fields ψ. This is the definition of a
weak solution.
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In terms of our functional framework, this means that we look for solutions
(v, p) of problem (2.12) in the space H1

τ × L2 for all test functions (φ, ψ) in
this same space. In fact, this is our definition of a weak solution.

In the special case, by setting φ = z and ψ = 0 in (2.12), and by us-
ing (2.4), one shows that (1.8) is a necessary condition for the existence of
solutions.

In the sequel we write (2.12) in the abbreviated form

aλ(V, Φ) = L(Φ), ∀Φ, (2.13)

where, by definition,{
aλ(V, Φ) = B(v, φ) − 〈p,∇ · φ〉 + β〈v, φ〉Γ + λ〈p, ψ〉 + 〈∇ · v, ψ〉
L(Φ) = −B(w, φ) + 〈f, φ〉 − β〈w, φ〉Γ + 〈b, φ〉Γ + 〈g, ψ〉 − 〈∇ · w, ψ〉.

(2.14)
Here, V = (v, p) and Φ = (φ, ψ). Note that

L(Φ) = −B(w, φ) + 〈f, φ〉 − β〈w, φ〉Γ + 〈b, φ〉Γ (2.15)

when (1.7) holds, since ∇ · w = g.
Clearly aλ is a bilinear form and L is a linear form. Recall that the test

functions φ satisfy (2.1) and the solution v should satisfy (2.7).
The above argument shows that (2.10), (2.13) is a natural weak formula-

tion of problem (1.1), (1.5). Hence we state the following definition.
Definition. Assume that (1.10) holds, and let w satisfy (2.8). We say that
a pair (u, p) is a weak solution of problem (1.1), (1.5) if it belongs to H1×L2,
and if u = w+v, where (v, p) ∈ H1

τ ×L2 satisfies (2.13) for each Φ ∈ H1
τ ×L2.

It is not difficult to show that the above definition does not depend on
the choice of the particular w in equations (2.8) or (2.9).

In the sequel we denote by ‖ · ‖2
Γ the L2(Γ) norm. Moreover, we set ν = ν

if µ ≥ 0 and set ν = ν + µ if −ν < µ < 0.
Next we establish two useful estimates for |L(Φ)|.

Lemma 2.1. Let L be as in definition (2.14). Then

|L(Φ)| ≤ c
(
‖a‖1/2 + [f ]−1 + ‖b‖−1/2

)
‖∇φ‖ + c‖a‖1/2‖ψ‖ + ‖g‖‖ψ‖ (2.16)

for each Φ ∈ H1
τ × L2. If, moreover, (1.7) holds, then one has

|L(Φ)| ≤ c
(
‖a‖1/2 + ‖g‖ + [f ]−1 + ‖b‖−1/2

)
‖∇φ‖. (2.17)

Proof. From (2.3) and (2.8) one gets |B(w, φ)| ≤ c(ν + |µ|)‖a‖1/2‖∇φ‖.
Hence, by definition (2.14), (2.16) follows. If (1.7) holds we may use (2.9)
instead of (2.8) to show that |B(w, φ)| ≤ c(ν+ |µ|)(‖a‖1/2+‖g‖)‖∇φ‖. From
(2.15) we get (2.17). �
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Next we establish a basic result in order to prove the coercivity of the
bilinear forms.

Lemma 2.2. Assume that v ∈ H1
τ . Then,

B(v, v) = ν‖∇v‖2 + µ‖∇ · v‖2 − ν

∫
Γ

3∑
i,k=1

∂nk

∂xi
vivk dΓ. (2.18)

In particular,
B(v, v) ≥ ν‖∇v‖2 − c0ν‖v‖2

Γ, (2.19)

where c0 depends only on Γ.

Proof. Since C∞
0 (Ω) ∩ H1

τ is dense in H1
τ , we may assume that v ∈ C∞

0 (Ω).
By integration by parts one easily shows that

B(v, v) = ν‖∇v‖2 + µ‖∇ · v‖2 + ν

∫
Γ

3∑
i,k=1

∂vk

∂xi
vink dΓ. (2.20)

Since the boundary Γ is of class C1,1 we may extend the normal vector
field n to a neighborhood of Γ, as a vector field of class C0,1. See [31]. As
(v ·n)|Γ = 0, its derivative with respect to the tangential direction v vanishes
on Γ. Hence,

3∑
i,k=1

∂vk

∂xi
vink = −

3∑
i,k=1

∂nk

∂xi
vivk,

and (2.18) follows. �

The following result shows, in particular, that in the generic case the
bilinear form B is coercive over H1

τ . In particular, it is coercive whenever
β > 0.

Lemma 2.3. There is a positive constant c1 (that depends only on ν, µ, and
Ω) such that

B(v, v) ≥ c1‖∇v‖2, (2.21)

for each v in V1
τ . Hence the bilinear form B is coercive over V1

τ . In particular,
the square root of B(v, v) is a norm in V1

τ , equivalent to the canonical H1

norm.

Proof. We start by showing (see also [42]) that given a positive ε there is
an N = N(ε) such that

‖v‖2
Γ ≤ ε‖∇v‖2 + NB(v, v), ∀v ∈ V1

τ . (2.22)
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If this statement is false, then there would be a positive ε such that to
each natural number n there corresponds an element vn ∈ V1

τ such that
‖vn‖2

Γ ≥ ε‖∇vn‖2 + nB(vn, vn).
By setting wn = vn/‖vn‖Γ it follows that ‖wn‖Γ = 1; moreover,

ε‖∇wn‖2 + nB(wn, wn) ≤ 1. (2.23)

In particular, there is a subsequence (still denoted by wn) such that wn

converges weakly in V1
τ (hence strongly in L2) to some w ∈ V1

τ . In particular,
wn converges to w in L2(Γ); hence, ‖w‖2

τ = 1.
On the other hand, from (2.19), it follows that

B(v, v) + c0ν‖v‖2
Γ ≥ ν‖∇v‖2. (2.24)

Hence, the square root of the left-hand side of (2.24) is a norm in V1
τ . Con-

sequently,

B(w, w) + c0ν‖w‖2
Γ ≤ lim inf{B(wn, wn) + c0ν‖wn‖2

Γ}.
By using (2.23), and by taking into account that wn converges strongly in
L2(Γ) to w, it follows that B(w, w) = 0. Since, in general,

ν

2

∑
i,j

(aij + aji)2 + (µ − ν)
∑

i

(aii)2 ≥ ν + µ

4

∑
i,j

(aij + aji)2 (2.25)

and ν + µ > 0 it follows that

bi,j :=
∂wi

∂xj
+

∂wj

∂xi
= 0. (2.26)

Below, we will show that w must vanish. Since this contradicts ‖w‖τ = 1,
(2.22) follows.

Let us see that w = 0. One easily shows that

2
∂2wi

∂xj∂xk
=

∂bi,k

∂xj
+

∂bi,j

∂xk
− ∂bj,k

∂xi
. (2.27)

Hence each wi is a polynomial of degree less than or equal to one, say

wi(x) = ai +
3∑

k=1

ci,kxk.

Since bi,k = 0 it follows that ci,k + ck,i = 0. It readily follows that w can be
written in the form w(x) = a + l ∧ x, where the components of the vector
field l are given by l1 = c3,2 = −c2,3, l2 = c1,3 = −c3,1, and l3 = c2,1 = −c1,2.

By solving the 3× 3 linear system b− l∧ b = a (the determinant of which
is given by 1 + |b|2), we write w in the form w(x) = b + l ∧ (x − b).
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If l = 0, then w = b. Hence w = 0 due to the assumption (w · n)|Γ = 0.
If l �= 0, the assumption (w · n)|Γ = 0 imposes that Γ has axial symmetry
with respect to the axis l, parallel to the vector l, and passing through the
“point” b. Hence Ω is axial symmetric, and we are in the special case. We
assume (without loss of generality, by a translation −b) that b = 0. Hence
w(x) = l ∧ x; moreover, l is an axis of symmetry. This shows that w ∈ Z.
Since w belongs to V1

τ , it must be that w = 0.
Finally, the estimate (2.21) follows easily from (2.24) together with (2.22),

by setting ε = ν/(2c0ν) in this last inequality. �

Proof of Theorem 1.1. Continuity of the bilinear form aλ and of the lin-
ear functional L over the whole of H1 × L2 are obvious. From definition
(2.14) and from (2.21) it follows that

aλ(V, V ) ≥ c1‖∇v‖2 + λ‖p‖2. (2.28)

This shows the coerciveness of the bilinear form aλ over V1
τ × L2, if λ > 0.

Hence, given λ > 0, the problem (2.13) (i.e., the problem (2.12)) has a unique
solution (v, p) in V1

τ × L2.
Next we want to prove the estimates (2.16) and (2.17). Let (v, p) be the

above weak solution, where λ > 0. From (2.12) with ψ = 0 and φ ∈ C∞
0 (Ω)

it follows that
(p,∇φ) = B(u, φ) − (f, φ). (2.29)

Hence, by (2.5),
∇p = f + ν∆u + µ∇(∇ · u) (2.30)

as elements of H−1. Note that f acts, by restriction to H1
0, as an element of

H−1. Moreover, ‖f‖−1 ≤ [f ]−1. In particular,

‖∇p‖−1 ≤ [f ]−1 + (ν + |µ|)(‖∇v‖ + ‖w‖1). (2.31)

Consequently, by Proposition 1.1 (recall that p ∈ L2),

‖p‖ ≤ c [[f ]−1 + (ν + |µ|)(‖∇v‖ + ‖w‖1)] . (2.32)

By using (2.13) with Φ = V together with (2.28) and (2.16), it readily follows
that

‖∇v‖2+λ‖p‖2 ≤ c
{

[f ]2−1 + ‖a‖2
1/2 + ‖b‖2

−1/2

}
+

c

λ

{
‖a‖2

1/2 + ‖g‖2
}

. (2.33)

Finally, by using (2.32), we get the complete estimate (1.11) under the as-
sumption λ > 0.

The existence and the uniqueness of the weak solution (u, p) when a �= 0,
as well as the estimate (1.11), follow immediately from the corresponding
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results just proved for the solution (v, p), since u = v +w and w satisfies the
estimate (2.8).

Next we consider the case in which (1.7) holds and λ ≥ 0, and we prove
(1.12).

As in the previous case, we start by assuming that λ > 0. We argue as
above, just replacing (2.16) by (2.17). This immediately shows that

‖∇v‖2 + λ‖p‖2 ≤ c
{

[f ]2−1 + ‖g‖2 + ‖a‖2
1/2 + ‖b‖2

−1/2

}
. (2.34)

The estimate (1.12) now follows by using (2.32). It is worth noting that now
p = p. In fact, by setting φ = 0 and ψ = 1 in equation (2.12) one gets

λ

∫
Ω

p dx =
∫

Ω
g dx −

∫
Γ

a dΓ = 0.

Next, we consider the case λ = 0. Since the estimate (1.12) is independent
of λ, it follows, with obvious notation, that the solutions Vλ = (vλ, pλ),
λ > 0, of problem (2.13) converge weakly in V1

τ × L2
#, as λ → 0, to some

V = (v, p) ∈ V1
τ × L2

#. Obviously (v, p) satisfies (1.12). By passing to the
limit, as λ → 0, in equation (2.12) it follows that (v, p) satisfies this same
equation with λ = 0; i.e.,

a0(V, Φ) = 〈L,Φ〉, ∀Φ.

This proves Theorem 1.1 also in the case λ = 0. Note that the above limit
(v, p) is unique since the weak solution to problem (2.12) with λ = 0 is
unique in the class V1

τ × L2
#. In fact, let (v, p) be the difference between

two such solutions; i.e., let (v, p) solve the homogeneous problem (2.12) with
λ = 0. By setting (φ, ψ) = (v, p) it follows that B(v, v) = 0, and hence v = 0.
It follows that 〈p,∇φ〉 = 0 for each φ in H1

0 . Hence ∇p = 0 in H−1, and
Proposition 1.1 shows that p = 0.

The results claimed for weak solutions (u, p) of problem (1.1), (1.5) when
a �= 0 follow immediately from that proved for the solution (v, p) when a = 0
since u = v + w and w satisfy the estimate (2.9). �

Remark. In fact the proof is not complete. We have shown that there is a
(unique) (v, p) in V1

τ ×L2 such that (2.12) holds for each (φ, ψ) in the space
V1

τ ×L2. However, in the special case, one has Z �= {0}; hence, V1
τ is smaller

than H1
τ . We have to show that (2.12) holds for each (φ, ψ) in the larger space

H1
τ ×L2. It remains to show (2.12) for test functions (φ, ψ) of the particular

form (z, 0) and this result holds since for these particular test functions the
left-hand side of (2.12) vanishes (recall (2.4)) and the right-hand side reduces
to 〈f, φ〉 + ν〈b, φ〉, which vanishes, by assumption (1.8). Hence the couple
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(v, p) is a weak solution in the sense of our definition. Finally, the fact that
v + z is also a solution is obvious.

3. Construction of global weak solutions
with an arbitrary support

In this section we show that if (v, p) is an arbitrary weak solution and θ is
an arbitrary C1,1(R3) scalar function, then (θv, θp) is as well a weak solution
in Ω, with modified data. The new data also have support contained in the
support of θ. Moreover, we prove suitable estimates for (θv, θp) directly in
terms of f, g, a, and b.

For the time being θ is as above and v and φ are arbitrary elements of H1.
Write the expression of B(θv, φ), just by substitution of v by θv in B(v, φ).

Then differentiate the products θv by the usual rule. On the other hand,
write a corresponding expression for B(v, θφ), by using the symmetry of the
bilinear form B. Straightforward calculations show that

B(θv, φ) = B(v, θφ) + ν

∫
Ω

uk
∂θ

∂xi

∂φk

∂xi
dx + ν

∫
Ω

ui
∂θ

∂xk

∂φk

∂xi
dx

− ν

∫
Ω

∂uk

∂xi

∂θ

∂xi
φk dx − ν

∫
Ω

∂ui

∂xk

∂θ

∂xi
φk dx − (µ − ν)

∫
Ω

∂θ

∂xi

∂vi

∂xk
φk dx

(3.1)

− (µ − ν)
∫

Ω

∂2θ

∂xi∂xk
viφk dx − (µ − ν)

∫
Ω

(∇ · u)(∇θ · φ) dx,

for arbitrary φ, v ∈ H1 and θ ∈ C1,1(R3). Next we rewrite equation (3.1)
in order to avoid terms containing partial derivatives of φ. Straightforward
integrations by parts show that

B(θv, φ) = B(v, θφ) +
∫

Ω
F (1)φ dx +

∫
Ω

F (2)φ dx

+ν

∫
Γ

(v · n)(∇θ · φ)dΓ + ν

∫
Γ

l(v) · φ dΓ,

(3.2)

for each φ, v ∈ H1, whereF 1
k [v] = −ν

(
∂θ
∂xi

∂vi
∂xk

+ 2 ∂θ
∂xi

∂vk
∂xi

+ ∂θ
∂xk

∂vi
∂xi

)
− (µ − ν)

(
∂θ
∂xi

∂vi
∂xk

+ ∂θ
∂xk

∂vi
∂xi

)
F 2

k [v] = −ν
(

∂2θ
∂xi∂xk

vi + ∂2θ
∂x2

i
vk

)
− (µ − ν) ∂2θ

∂xi∂xk
vi,

(3.3)
and

l(v) =
∂θ

∂n
v. (3.4)
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We wrote the expressions of the F i’s and l just for completeness. Their exact
form is not of interest here. The point is that they are linear, continuous
operators on H1, with values in L2 and H1/2(Γ) respectively. In fact,

||F i[v]‖ ≤ c‖θ‖C1,1(Ω)‖v‖1, ‖l(v)‖1/2 ≤ c‖θ‖C1,1(Ω)‖v‖1, (3.5)

for arbitrary vector fields v in H1. If v satisfies (2.7), it follows from (3.2)
that

B(θv, φ) = B(v, θφ) + 〈F 1, φ〉 + 〈F 2, φ〉 + ν〈l(v), φ〉Γ, (3.6)
for all v ∈ H1

τ and all φ ∈ H1. We could drop the term with l by using only
functions θ for which ∂θ

∂n = 0 on Γ.
Note that, in equation (3.6), l(v) is tangential to Γ since v is so.
Since the functions θ will be fixed and finite in number, from now on the

constants of type c may depend also on θ. On the other hand,

〈θp,∇ · φ〉 = 〈p,∇ · (θφ)〉 − 〈p∇θ, φ〉
and

〈∇ · (θv), ψ〉 = 〈θ∇ · v, ψ〉 + 〈v · ∇θ, ψ〉.
Hence, from (3.6) we obtain

B(θv, φ) − 〈θp,∇ · φ〉 + β〈θv, φ〉Γ + λ〈θp, ψ〉 + 〈∇ · (θv), ψ〉
= B(v, θφ) − 〈p,∇ · (θφ)〉 + β〈v, θφ〉Γ + 〈∇ · v, θψ〉 + λ〈p, θψ〉 (3.7)

+〈p∇θ, φ〉 + 〈v · ∇θ, ψ〉 + 〈F 1, φ〉 + 〈F 2, φ〉 + ν〈l(v), φ〉Γ,

for all v ∈ H1
τ .

Note that in the previous calculations it is not assumed that v is a solution.
From now on we assume that (v, p) ∈ H1

τ ×L2 is a solution to problem (2.12)
and (φ, ψ) are test functions in H1

τ × L2. Hence (θφ, θψ) is, as well, a test
function. Consequently, the first five terms on the right-hand side of (3.7)
can be replaced, according to (2.12). This yields

B(θv, φ) − 〈θp,∇ · φ〉 + β〈θv, φ〉Γ + λ〈θp, ψ〉 + 〈∇ · (θv), ψ〉
= −B(w, θφ) + 〈θf, φ〉 − β〈θw, φ〉Γ + 〈θb, φ〉Γ + 〈θg, ψ〉 − 〈θ∇ · w, ψ〉
+ 〈p∇θ, φ〉 + 〈v · ∇θ, ψ〉 + 〈F 1 + F 2, φ〉 + ν〈l(v), φ〉Γ. (3.8)

On the other hand, from (3.2) it follows that

B(w, θφ) = B(θw, φ) − 〈F 1[w] + F 2[w], φ〉 + ν〈l(w) + (w · n)∇θ, φ〉Γ. (3.9)

By substitution of (3.9) in (3.8) one finally obtains

B(θv, φ) − 〈θp,∇ · φ〉 + β〈θv, φ〉Γ + λ〈θp, ψ〉 + 〈∇ · (θv), ψ〉
= −B(θw, φ) + 〈F, φ〉 + 〈G, ψ〉 + 〈ζ, φ〉Γ, (3.10)
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where  F = θf + p∇θ + F 1[v] + F 2[v] + F 1[w] + F 2[w],
G = θg − θ∇ · w + (∇θ) · v,
ζ = θb − βθw + ν(l(v) + l(w) + (w · n)∇θ).

(3.11)

It is worth noting that the supports of F, G, and ζ are contained in the
support of θ, hence in Ω2ρ.

Equation (3.10) shows that (θv, θp) solves, in the whole of Ω, a problem
of type (2.12). By using, in particular, (3.5), it follows that

‖F‖ ≤ c (‖f‖ + ‖p‖ + ‖v‖1 + ‖w‖1)
‖G‖1 ≤ c

(
‖g‖1 + ‖v‖1 + ‖a‖3/2

)
‖ζ‖1/2 ≤ c

(
‖b‖1/2 + ‖v‖1 + ‖w‖1

)
.

(3.12)

On estimating ‖G‖1 we take into account that here the vector field w satisfies
(2.8), or (2.9), with ‖a‖1/2, ‖g‖, and ‖w‖1 replaced by ‖a‖3/2, ‖g‖1, and
‖w‖2, respectively. In particular, ‖w‖2 ≤ c(‖a‖3/2 + ‖g‖1). Hence, we have
proved the following result:

Theorem 3.1. Let (v, p) ∈ H1
τ ×L2 be a solution to problem (2.13) (i.e., to

problem (2.12)) for each (φ, ψ) ∈ H1
τ ×L2. Then (3.10) holds, where F ∈ L2,

G ∈ H1, and ζ ∈ H1/2, defined by (3.11), satisfy (3.12).

Note that in equation (3.10) there are no smallness assumptions on the
supports of the test functions (φ, ψ) ∈ H1

τ × L2.

4. The change of variables

It is clear that if the above solution (θv, θp) is regular, then the original
solution (v, p) is regular in the interior of the support of the function θ.
Hence, to prove the regularity of (v, p) it is sufficient to prove the regularity
of the (θv, θp)’s for a family of θ’s such that the union of the (interiors of
the) supports of the θ’s contains Ω. In other words, given an arbitrary, but
fixed, point x0 ∈ Ω, we need just to prove that (θv, θp) is regular for some
θ such that θ �= 0 in a neighborhood of x0. If x0 ∈ Ω, the proof is much
easier; hence, one assumes that x0 ∈ Γ. In order to reduce this problem,
by a suitable change of variables, to a problem involving a flat boundary,
we need to consider functions θ with a sufficiently small support. Since the
functions (θv, θp) are solutions in the whole of Ω, the transformed functions
(θ̃v, θ̃p) will be global solutions as well (in fact, their extensions by zero
are solutions in the whole half space R3

+). This fact allows us to avoid the
introduction of more technical truncations and related manipulations, whose
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complete treatment becomes quite onerous in the context of systems with
nonhomogeneous boundary conditions.

Note that, since w ∈ H2, the H2 regularity of u = v + w follows from
that of v. Hence, we concentrate our attention on the solutions v ∈ H1

τ of
problem (2.12).

Let x0 ∈ Γ be given, and let π be the tangent plane to Γ at x0. We
assume that the axes of xi, i = 1, 2, 3, are such that the origin coincides
with x0 and the x3 axis has the direction of the inward normal to Γ at x0.
Hence the axes of xi, i = 1, 2, lie in the plane π. We may use this particular
system of coordinates since the analytical expressions that appear on the left-
hand side of (3.10) are invariant under orthogonal transformations, since the
expressions of the divergence and gradient are invariant.

In the sequel we assume that Γ is a manifold of class C3. It is worth
noting that small modifications in the proofs show that W 3,3 regularity is
sufficient to prove Theorem 1.2. This can be shown by a suitable application
of Hölder’s inequality (with exponents 2, 3, and 6) and of Sobolev’s embed-
ding theorem H1 ↪→ L6. However, we assume C3 regularity, to avoid further
manipulations. We remark that the proofs presented below also apply if Γ
is a C2,1 manifold.

Let x0 ∈ Γ be given, and let (x′, x3) = (x1, x2, x3) be the above system
of coordinates. By the definition of a C3 manifold, there is a positive real
a and a real function x3 = h(x′), of class C3 on the sphere {x′ : |x′| < a},
such that the points x for which x3 = h(x′) belong to Γ, the points x for
which h(x′) < x3 < a + h(x′) belong to Ω, and the points x for which
−a + h(x′) < x3 < h(x′) belong to R3 − Ω. Without loss of generality, we
assume that a ≤ 1. We define

Ir = {x : |x′| < r,−r + h(x′) < x3 < r + h(x′)} ,
Ωr = {x ∈ Ir : h(x′) < x3} , Γr = {x ∈ Ir : x3 = h(x′)} ,

(4.1)

where 0 < r < a. Note that Ir is a neighborhood of x0 with “size” r,
Ωr = Ω ∩ Ir, and Γr = Γ ∩ Ir. We set

Jr = {y : |y′| < r,−r < y3 < r}
Qr = {y ∈ Jr : 0 < y3} , Λr = {y ∈ Jr : y3 = 0} .

(4.2)

We consider the change of variables y = Tx given by

(y1, y2, y3) = (x1, x2, x3 − h(x′)), (x1, x2, x3) = (y1, y2, y3 + h(y′)). (4.3)

For each r, T is a C3 diffeomorphism of Ir onto Jr that maps Ωr onto
Qr and Γr onto Λr. If y = Tx, then y′ = Tx′. Hence, h(x′) = h(y′)
and ∂h(x′)

∂xj
= ∂h(y′)

∂yj
, for j = 1, 2. For this reason, we will not indicate the
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independent variables when dealing with h functions. Also note that the
Jacobian determinant of the above transformation is equal to 1.

Given x0 ∈ Γ we fix, once and for all, a positive ρ such that 3ρ < r. For
convenience, we set Q = Q3ρ, Λ = Λ3ρ. Next we fix a function θ ∈ C2

0 (R3) (or
even in C∞

0 (R3)) such that U := supp θ ⊂ I2ρ and θ �= 0 (say, θ = 1) on Iρ.
Our aim is to prove that (θv, θp) belongs to H2(Ω3ρ)× L2(Ω3ρ). This shows
that (v, p) ∈ H2(Ωρ)×L2(Ωρ). Note that supp (θv, θp) is contained in Ω2ρ, as
well as the supports of the corresponding data in equation (3.10). To prove
the regularity of (v, p) in Ω we cover Γ by a finite number of neighborhoods
Iρ, as described above. Hence, we use just a finite number of fixed functions
h and θ. For that reason it would be superfluous to indicate the dependence
of the constants c on these functions.

In the sequel we will use the following notation:

f̃(y) = f(T−1(y)), (4.4)

where here f denotes an arbitrary scalar or vector field. As a rule, f =
f(x) and f̃ = f̃(y). Moreover, partial derivatives and differential operators
when applied to f functions concern the x variables and when applied to f̃
functions concern the y variables.

The regularity of (θv, θp) on Ω3ρ is equivalent to that of the corresponding
transformed functions (θ̃ v, θ̃ p) on Q3ρ. Note that these functions, as well
as the transformed data, have support contained in Q2ρ. Hence (θ̃ v, θ̃ p),
extended by 0 to all of R3

+, is a solution on the whole of R3
+.

The (covariant) transform of a vector field v via the change of coordinates
y = Tx is given by

ṽj(y) = vj ; ṽ3(y) = v3 − (∂1h)v1 − (∂2h)v2, (4.5)

where j = 1, 2, and the vi functions are calculated at the point (y′, y3+h(y′)).
Conversely,

vj(x) = ṽj ; v3(x) = ṽ3 + (∂1h)ṽ1 + (∂2h)ṽ2, (4.6)

where j = 1, 2, and the ṽi functions are calculated at the point (x′, x3−h(x′)).
Note that divergences remain invariant:

(∇x · v)(x) = (∇y · ṽ)(y), (4.7)

where y= T x. Moreover, ṽ(y) is tangential to the boundary Λ3ρ; i.e.,

ṽ3 = 0 on Λ3ρ (4.8)

if (and only if) v is tangential to Γ3ρ. A main point here is that

∂jh(0, 0) = 0, j = 1, 2, (4.9)
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which holds since π is tangential to Γ at x0. From (4.6) it follows that

∂vj

∂xk
= ∂ṽj

∂yk
− (∂kh) ∂ṽj

∂y3
;

∂vj

∂x3
= ∂ṽj

∂y3
;

∂v3
∂xk

= ∂ṽ3
∂yk

− (∂kh)∂ṽ3
∂y3

+
∑2

j=1 (∂j∂kh) ṽj +
∑2

j=1(∂jh)
[

∂ṽj

∂yk
− (∂kh) ∂ṽj

∂y3

]
;

∂v3
∂x3

= ∂ṽ3
∂y3

+
∑2

i=1(∂ih) ∂ṽi
∂y3

,

(4.10)

where the partial derivatives of ṽ are calculated at y = Tx. We wrote the
above expressions just for completeness. Their exact forms are not of interest
here. The useful properties are that the coefficients ∂jh are regular functions
(C2, in our case) and satisfy (4.9). Hence, instead of (4.10), we simply write

∂vi

∂xk
=

∂ṽi

∂yk
+

∑
(∂h)ṽy +

∑
(∂h)2ṽy +

∑
(∂2h)ṽ, (4.11)

where ∂h could indicate any first-order partial derivative of h. More gener-
ally, (∂h)k could indicate any product of k first-order partial derivatives of
h. Moreover, (∂kh) denotes any partial derivative of order k of h. It now
seems clear the meaning of symbols like (∂h)m(∂kh)s.

Our next aim is to write equation (3.10) in terms of the new variables y.
By using (4.11), one verifies that∫

Ω
[∇(θv) + ∇(θv)T ] · [∇φ + ∇φT ]dx (4.12)

=
∫

Q
[∇(θ̃ v) + ∇(θ̃ v)T ] · [∇φ̃ + ∇φ̃T ]dy +

4∑
m=1

∫
Q
(∂h)m(θ̃ v)yφ̃y dy

+
2∑

s=0

∫
Q
(∂h)s(∂2h)(θ̃ vφ̃y + (θ̃ v)yφ̃)dy +

∑ ∫
Q
(∂2h)2θ̃ vφ̃ dy.

We set f̃y = ∂yf̃ , and so on. Note that in the transformation formulae (4.12)
v is an arbitrary vector field in H1 (not necessarily a solution). This situation
prevails through equation (4.17). In particular, (4.17) holds for v = w.

Let us simplify our notation, by avoiding some useless information. Con-
sider, for instance, the four coefficients (∂h)m in equation (4.12). The point
is that these coefficients are of class C2 (since we assume that h is of class
C3) and, moreover, they vanish at the origin (y1, y2) = (0, 0), due to (4.9).
Hence, we will denote by the symbol H ′

0 = H ′
0(y1, y2) functions at least of

class C2 and such that H ′
0(0, 0) = 0, and simply by H ′ = H ′(y1, y2) func-

tions at least of class C2. More precisely, as in the above example, these
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functions will be products of derivatives of h of order less than or equal to
one. This is the reason we insert a prime on the above symbol. Similarly,
the coefficients (∂h)s(∂2h) will be denoted by H ′′. This symbol denotes, in
general, C1 functions of y′ = (y1, y2). The coefficient (∂2h)2 is, as well, an
H ′′ function. As a rule, the primes on the symbols H denote the order of
the higher partial derivatives of h that appear in the particular coefficient
H. As a last example, a product of an H ′′ by an H ′′′ coefficient is an H ′′′ co-
efficient (which is the highest order that will appear in the sequel). Finally,
multiplicative constants c are incorporated in this type of coefficient.

With the above notation, equation (4.12) can be written as∫
Ω
[∇(θv) + ∇(θv)T ] · [∇φ + ∇φT ]dx (4.13)

=
∫

Q
[∇(θ̃ v) + ∇(θ̃ v)T ] · [∇φ̃ + ∇φ̃T ]dy + R(θ̃ v, φ̃),

where the bilinear form R = R(θ̃ v, φ̃) is given by

R(θ̃ v, φ̃) =
∫

Q
H ′

0(θ̃ v)yφ̃y dy +
∫

Q
H ′′(θ̃ vφ̃y + (θ̃ v)yφ̃) dy +

∫
Q

H ′′θ̃ vφ̃ dy.

(4.14)
For later use, note that the first term on the right-hand side of (4.14) (i.e.,
the second one on the right-hand side of (4.12)) has the form∫

Q
H ′

0(θ̃ v)yφ̃y dy =
∫

Q

3∑
i,j,k,l=1

cij
kl(y

′)
∂(θ̃ v)i

∂yk

∂(φ̃)j

∂yl
dy. (4.15)

Next, by using (4.7) it follows that∫
Ω
(∇ · θv)(∇ · φ)dx =

∫
Q
(∇ · θ̃ v)(∇ · φ̃)dy. (4.16)

Consequently, by (4.13), it follows that

B(θv, φ) = B̃(θ̃ v, φ̃) + R(θ̃ v, φ̃), (4.17)

where B̃ is defined as B in (2.3), by replacing Ω by Q. According to the
above conventions, the coefficient ν/2 was incorporated in the functions of
type H. As already noted, equation (4.17) holds with v replaced by w.

Next, by (4.7), one gets

〈θp,∇ · φ〉Ω = 〈θ̃ p,∇ · φ̃〉Q. (4.18)
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On the other hand, by (4.6),

3∑
i=1

∫
Ω

Fiφi dx (4.19)

=
∫

Q

[
F̃1φ̃1 + F̃2φ̃2 +

(
F̃3 +

∂h

∂y1
F̃1 +

∂h

∂y2
F̃2

)(
φ̃3 +

∂h

∂y1
φ̃1 +

∂h

∂y2
φ̃2

)]
dy,

where F = (F1, F2, F3) is defined in (3.11). Hence, with our simplified
notation,

〈F, φ〉Ω =
∫

Q
H ′F̃ φ̃ dy, (4.20)

for some H ′ functions (a summation of terms of the form H ′F̃ φ̃ is under-
stood). Finally, it readily follows that

〈ζ, φ〉Λ =
∫

Λ
ζ̃ · φ̃H ′(y1, y2)dy1 dy2, 〈θv, φ〉Λ =

∫
Λ

θ̃ v · φ̃H ′(y1, y2)dy1 dy2,

(4.21)
where, in this particular case,

H ′(y1, y2) =
(
1 +

( ∂h

∂y1

)2
+

( ∂h

∂y2

)2) 1
2
.

The fact that (v, p) is a solution of the original problem was not used to
prove the above transformation formulae for integrals. Now we will use
these transformation formulae to write (3.10) in terms of the y coordinates.
From now on (v, p) is a solution of problem (2.12).

Remark. Clearly, in equation (2.12) there are no restrictions on the size of
the supports of the test functions (φ, ψ) ∈ H1

τ ×L2. After the multiplication
of the solution (v, p) by θ we obtain equation (3.10), where the test functions
remain the same as above. Consequently, after the change of variables x �→ y,
there are no smallness assumptions on the supports of the (transformed) test
functions (φ̃, ψ̃). In particular, ψ̃ may be any element in H1(Q) such that
φ̃3 = 0 on Λ and Ψ any element in L2(Q). Actually, these test functions are
completely free outside Q2ρ since all the integrals vanish outside this set.

Let us turn back to equation (3.10). We start with the φ terms. Set ψ = 0
in equation (3.10). By using (4.17), (4.18), (4.20), and (4.21) one gets

B̃(θ̃ v, φ̃) − 〈θ̃ p,∇ · φ̃〉 + β〈H ′θ̃ v, φ̃〉Λ (4.22)

= −B̃(θ̃ w, φ̃) + 〈H ′ζ̃, φ̃〉Λ − R(θ̃ v, φ̃) + R(θ̃ w, φ̃) + 〈H ′F̃ , φ̃〉.
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Next, we write the “ψ” part of equation (3.10) in terms of the y variables.
By setting φ = 0 one gets (in Ω)

λ〈θp, ψ〉 + 〈∇ · (θv), ψ〉 = 〈G, ψ〉.
Due to (4.7) one shows that

λ〈θ̃ p, ψ̃〉Q + 〈∇ · (θ̃ v), ψ̃〉Q = 〈G̃, ψ̃〉Q. (4.23)

From (3.12) it follows that
‖F̃‖ ≤ c (‖f‖ + ‖p‖ + ‖v‖1 + ‖w‖1)
‖G̃‖1 ≤ c

(
‖g‖1 + ‖v‖1 + ‖a‖3/2

)
‖ζ̃‖1/2 ≤ c

(
‖b‖1/2 + ‖v‖1 + ‖w‖1

)
.

(4.24)

Note that the supports of F̃ , G̃, and ζ̃ are contained in Q2ρ.
By addition of (4.22) and (4.23) one obtains the complete transformation

formulae of (2.12), whose meaning, due to the arbitrary nature of φ̃ and ψ̃,

is that (θ̃ v, θ̃ p) is a weak solution in Q (hence in R3
+) with perturbed data.

The solution and the data have compact support in Q2ρ.

5. The fundamental estimate

For notational convenience, in this section the symbols v, p, w, φ, and ψ
will be used with the following meaning:

v = θ̃ v; p = θ̃ p; w = θ̃ w; φ = φ̃; ψ = ψ̃. (5.1)

We set, for arbitrary scalar or vector fields f ,

τhf(y1, y2, y3) = f(y1 + h, y2, y3)

or
τhf(y1, y2, y3) = f(y1, y2 + h, y3),

where the index j, j = 1 or j = 2, denotes the direction yj of the above
translation. In the calculations that follow j is assumed to be fixed. We also
set

fh = τhf ; ∆hf =
fh − f

h
,

where h ∈ R. Note that translations are in the tangential directions.
We start from equations (4.22) and (4.23). Note that there are no as-

sumptions on the supports of the test functions (φ, ψ). In fact, they could
be arbitrary elements of H1

τ (R3
+)×L2(R3

+). However, if |h| < ρ (sufficient for
our purposes), they have support on Q∪Λ. In particular, ‖φh‖ ≤ c‖φy‖, and
similarly for ψ. Just for notational convenience we will assume this property.
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We start from equation (4.22). By replacing φ by −∆−hφ, it follows that

B̃(∆hv, φ) − 〈∆hp,∇ · φ〉 + β〈H ′v,−∆−hφ〉Λ = −B̃(∆hw, φ) (5.2)

+ 〈H ′ζ̃,−∆−hφ〉Λ − R(v,−∆−hφ) + R(w,−∆−hφ) + 〈H ′F̃ ,−∆−hφ〉.
Note that (recall definition (4.14))

R(v,−∆−hφ) = 〈∆h(H ′
0vy), φy〉Q + 〈∆h(H ′′v), φy〉Q

+ 〈∆h(H ′′vy), φ〉Q + 〈∆h(H ′′v), φ〉Q. (5.3)

Next we estimate the first term on the right-hand side of (5.3). One has (we
drop the symbols Q)

|〈∆h(H ′
0vy), φy〉| ≤ |〈H ′

0(∆hvy), φy〉| + |〈(∆hH ′
0)vy, φy〉|. (5.4)

Let ε > 0 be given. Since H ′
0(0, 0) = 0, we may fix ρ > 0 in such a way that

|H ′
0(y1, y2)| ≤ ε in Q3ρ. (5.5)

Hence, the first term on the right-hand side of (5.4) is bounded by

ε‖∆hvy‖‖ φy‖.
On the other hand, it is easily shown that the second term on the right-
hand side of (5.4), as well as all the remaining terms on the right-hand side
of (5.3), are bounded by c(‖v‖ + ‖vy‖)(‖φ‖ + ‖φy‖). It follows that

|R(v,−∆−hφ)| ≤ ε‖∆hvy‖‖φy‖ + c‖vy‖‖φy‖. (5.6)

Above, we have used the C3 (or C2,1) regularity of Γ, since it gives rise to
the regularity of the H-type functions. In this context, the reader may verify
that Γ of class W 3,3 would be sufficient. In this case, the H ′ functions will
be of class W 2,3, and the H ′′ functions of class W 1,3.

Clearly, (5.6) holds by setting v = w. However, a much rougher estimate
is sufficient here, namely

|R(w,−∆−hφ)| ≤ c‖w‖2‖φy‖. (5.7)

Note that ‖∆hwy‖ ≤ ‖w‖2. Next,

|B̃(∆hw, φ)| ≤ c‖w‖2‖φy‖, (5.8)

and
|〈H ′F̃ ,−∆−hφ〉| ≤ c‖F̃‖‖φy‖. (5.9)

Note that ‖∆−hφ‖ ≤ ‖∂φ/∂yj‖ ≤ ‖φy‖, where φy = ∇φ.
On the other hand,

|〈H ′ζ̃,−∆−hφ〉Λ| ≤ c‖H ′ζ̃‖1/2‖φyj‖−1/2,
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where the fractional Sobolev norms concern the flat boundary Λ (or, equiv-
alently, the whole plane R2) and j = 1 or 2. Since

‖φyj‖−1/2 ≤ ‖φ‖1/2 ≤ ‖φ‖H1(Q),

one gets
|〈H ′ζ̃,−∆−hφ〉Λ| ≤ c‖H ′ζ̃‖1/2‖φy‖. (5.10)

Similarly, one easily shows that

|〈H ′v,−∆−hφ〉Λ| ≤ c‖vy‖‖φy‖. (5.11)

From (5.2), taking into account the equations (5.6), (5.7), (5.8), (5.9), (5.10),
and (5.11), one gets

|B̃(∆hv, φ)−〈∆hp,∇·φ〉| ≤ ε‖∆hvy‖‖φy‖+c(‖vy‖+‖w‖2+‖F̃‖+‖ζ̃‖1/2)‖φy‖.
(5.12)

By setting φ = ∆hv one gets

|B̃(∆hv,∆hv) − 〈∆hp,∇ · ∆hv〉|
≤ ε‖∆hvy‖2 + c(‖vy‖ + ‖w‖2 + ‖F̃‖ + ‖ζ̃‖1/2)‖∆hv‖. (5.13)

Next we use the equation (4.23). Replacing ψ by −∆−hψ, one gets, by
standard devices,

λ〈∆hp, ψ〉Q + 〈∇ · (∆hv), ψ〉Q = 〈∆hG̃, ψ〉Q,

and by replacing ψ by ∆hp

λ‖∆hp‖2 + 〈∇ · (∆hv), ∆hp〉Q = 〈∆hG̃, ∆hp〉Q. (5.14)

Finally, from (5.13) and (5.14) it follows that

B̃(∆hv,∆hv) + λ‖∆hp‖2 ≤ ε‖∆hvy‖2 + c(‖vy‖ + ‖w‖2 + ‖F̃‖ (5.15)

+ ‖ζ̃‖1/2)‖∆hv‖ + c(‖G̃‖1 + ‖w‖2)‖∆hp‖.
Note that all the functions that appear in equation (5.15) have compact
support contained in Q (assume |h| ≤ ρ). Hence norms in Q, in terms of
the variable y, are bounded by the corresponding norms in Ω3ρ, in terms of
the variable x. Actually (see (5.17) below), some of these last norms will be
bounded by the corresponding norms in the whole of Ω.

Remark that
|B̃(∆hv,∆hv)| ≥ ν‖∇∆hv‖2. (5.16)

This is shown by applying (2.18) with respect to the variable y (with Ω
replaced by Q), by taking into account that ∆hv has compact support con-
tained in Q, and that the boundary integral vanishes since v3 = 0 on Λ and
n = (0, 0, 1).
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For clearness, let us turn back to the original notation (recall (5.1)). By
using (5.15) with ε = ν/2, (5.14), and (5.16) it follows that

‖∆h(θ̃ v)y‖2
Q + λ‖∆hθ̃ p‖2

Q ≤ c(‖vy‖Ω + ‖p‖Ω + ‖w‖2,Ω + ‖f‖Ω (5.17)

+ ‖b‖1/2,Γ)‖∆hθ̃ v‖ + c(‖g‖1,Ω + ‖a‖3/2,Γ + ‖w‖2,Ω + ‖vy‖Ω)‖∆hθ̃ p‖,

where we have taken into account the estimates (4.24) and also that ‖(θ̃ v)y‖Q

≤ c‖vy‖Ω and ‖θ̃ w‖2,Q ≤ ‖w‖2,Ω. Note that ‖w‖2,Ω ≤ c(‖a‖3/2,Γ + ‖g‖1,Ω),
as already remarked after equation (3.12). The estimate (5.17) is not suf-
ficient for proving the regularity Theorem 1.2 for weak solutions under the
hypotheses (b) in Theorem 1.1. We will need the following device. Turn
back to equation (5.2) and assume that φ ∈ C∞

0 (Q). Note that the two
boundary integrals vanish. Obviously we obtain, just as above, the equation
(5.12) without the term involving ζ̃ (we remark that the more accurate es-
timate (5.5) is not necessary here since we simply replace ε by c). Taking
into account that

|B̃(∆hv, φ)| ≤ c‖∆hvy‖‖φy‖,
it follows that

|〈∆hp,∇ · φ〉| ≤ c(‖∆hvy‖ + ‖vy‖ + ‖w‖2 + ‖F̃‖)‖φy‖, ∀φ ∈ C∞
0 (Q).

Hence,
‖∇∆hp‖−1 ≤ c(‖∆hvy‖ + ‖vy‖ + ‖w‖2 + ‖F̃‖).

Turning back to our more complete notation, and using estimates already
shown, we prove that the left-hand side ‖∇∆hp‖−1 of the above equation is
bounded by the right-hand side of equation (5.18) below. Equation (5.18)
follows by Proposition 1.1. In fact, the mean value of ∆hp in Q vanishes (for
|h| ≤ ρ) since ∫

Q
[τh(θ̃ p) − (θ̃ p)]dy = 0.

Note that translations are in the tangential directions and θ̃ p has compact
support in Q2ρ. This shows that

‖∆hp‖ ≤ c(‖∆h(θ̃ v)y‖ + ‖vy‖Ω + ‖w‖2,Ω + ‖f‖Ω + ‖p‖Ω). (5.18)

6. Proof of Theorem 1.2

In this section we will use Nirenberg’s translation method (see [32]) to
prove the H2 regularity.
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From (5.17), by using Cauchy-Schwartz inequality, and by taking into
account that the weak solution (u, p) satisfies (1.11), one easily gets

‖∆h(θ̃ v)y‖2
Q + λ‖∆hθ̃ p‖2

Q ≤
c1+λ

λ (‖f‖2 + ‖g‖2
1 + ‖a‖2

3/2 + ‖b‖2
1/2) + c

λ2 (‖g‖2 + ‖a‖2
1/2),

(6.1)

where the norms on the right-hand side concern Ω or Γ. This shows that

‖D2
∗(θ̃ v)‖2

Q + λ‖D∗(θ̃ p)‖2
Q ≤

c(λ)(‖f‖2 + ‖g‖2
1 + ‖a‖2

3/2 + ‖b‖2
1/2 + ‖g‖2 + ‖a‖2

1/2),
(6.2)

where, in general, c(λ) goes to infinity as λ tends to zero. For convenience,
D∗ indicates any first derivative with respect to the y variables except for
Dy3 , and D2

∗ indicates any second derivative with respect to the y variables
except for D2

y3
.

The estimate (6.2) is sufficient to prove the regularity of the weak solutions
described in part (a) of Theorem 1.1. For case (b), in particular when λ = 0,
we have to appeal to Proposition 1.1.

Assume that (v, p) is the weak solution in Theorem 1.2, part (b). From
(1.12) it follows, in particular, that

‖vy‖Ω + ‖p‖Ω ≤ cM, (6.3)

where M = ‖f‖Ω + ‖g‖1,Ω + ‖a‖3/2,Γ + ‖b‖2
1/2,Γ. From equations (5.17),

(5.18), and (6.3), straightforward manipulations yield

‖∆h(θ̃ v)y‖2
Q + (1 + λ)‖∆hθ̃ p‖2

Q ≤ cM2. (6.4)

By taking into account that the translations τh can be done in the two
tangential directions y1 and y2, it follows that

‖D2
∗(θ̃ v)‖Q + (1 + λ)‖D∗θ̃ p‖Q ≤ cM. (6.5)

Now we turn back to equation (4.22). Note that (as for (2.5))

B̃(θ̃ v, φ̃) = −
∫

Q

[
ν∆θ̃ v + µ∇(∇ · θ̃ v)

]
· φ̃ dy, (6.6)

for all φ̃ ∈ C∞
0 (Q). Hence, by using in equation (4.22) test functions φ̃ ∈

C∞
0 (Q) we show that

− ν∆θ̃ v − µ∇(∇ · θ̃ v) + ∇(θ̃ p) (6.7)

= −B̃(θ̃ w, φ̃) − R(θ̃ v, φ̃) + R(θ̃ w, φ̃) + 〈H ′F̃ , φ̃〉, ∀φ̃ ∈ C∞
0 (Q).

Straightforward calculations together with estimates already shown prove
that

|B̃(θ̃ w, φ̃)| ≤ c‖θ̃ w‖2‖φ̃‖ ≤ cM‖φ̃‖
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and
|〈H ′F̃ , φ̃〉| ≤ c‖F̃‖‖φ̃‖ ≤ cM |φ̃‖.

On the other hand, from (4.14) and integrations by parts, it follows that

R(θ̃ v, φ̃) = −〈H ′
0∇(θ̃ v)y, φ̃〉 − 〈(∇H ′

0)(θ̃ v)y, φ̃〉 (6.8)

− 〈∇(H ′′θ̃ v), φ̃〉 + 〈H ′′(θ̃ v)y, φ̃〉 + 〈H ′′θ̃ v, φ̃〉,

for all φ̃ ∈ C∞
0 (Q). It is easily shown that the last four terms on the right-

hand side of (6.8) are bounded by c‖(θ̃ v)y‖‖φ̃‖, hence by cM‖φ̃‖. By writing
(6.8) with v replaced by w, one easily shows that

|R(θ̃ w, φ̃)| ≤ c‖w‖2‖φ̃‖ ≤ cM‖φ̃‖.
From equations (6.7) and (6.8), by taking into account the above estimates,
and by writing the first term on the right-hand side of (6.8) in a more detailed
form (see (4.15)) one gets (we write the three scalar equations, j = 1, 2, 3)

{−ν∆θ̃ v − µ∇(∇ · θ̃ v) + ∇(θ̃ p)}j =
3∑

i,k,l=1

cij
kl(y

′)
∂2(θ̃ v)i

∂yk∂yl
+ Tj , (6.9)

where T ∈ L2(Q) and ‖T‖ ≤ cM. Since the L2 norms of the second partial
derivatives of θ̃ v, which are of type D2

∗(θ̃ v), have already been estimated (see
(6.5)), we include all the terms in the above summation for which (k, l) �=
(3, 3) in the term T. We do the same with the single terms on the left-hand
side of (6.9) that concern second derivatives D2

∗(θ̃ v), as well as ∇∗p. It
follows that (6.9) can be written in the form (we write cij = cij

33)
(ν + c11)D2

3(θ̃ v)1 + c21D2
3(θ̃ v)2 + c31D2

3(θ̃ v)3 = T1,

c12D2
3(θ̃ v)1 + (ν + c22)D2

3(θ̃ v)2 + c32D2
3(θ̃ v)3 = T2,

c13D2
3(θ̃ v)1 + c23D2

3(θ̃ v)2 + (µ + ν + c33)D2
3(θ̃ v)3 − D3p = T3,

(6.10)

where D3 = ∂/∂y3 and D2
3 = D3D3.

On the other hand, equation (4.23) shows that

λθ̃ p + D3(θ̃ v)3 = −D1(θ̃ v)1 − D2(θ̃ v)2 + G̃.

By differentiating with respect to y3 and by taking into account the second
equation (4.24), it follows that

D2
3(θ̃ v)3 + λD3θ̃ p = T4, (6.11)

where T4 ∈ L2(Q) satisfies ‖T4‖ ≤ cM.
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Finally, we consider the 4×4 linear system in the four unknowns D2
3(θ̃ v)j ,

j = 1, 2, 3, and D3θ̃ p, consisting of equations (6.10) and (6.11). Now recall
that the coefficients cij

kl(y
′) are functions of type H ′

0(y
′), i.e., functions of

class C2(Q) that vanish for y′ = 0. Hence, by fixing a sufficiently small
ρ or, equivalently, a function θ with a sufficiently small support U , the
absolute value of the functions cij

kl is bounded in Q by an arbitrarily small
positive constant δ. By choosing δ sufficiently small (in terms of ν and ν +µ)
one easily shows that the determinant of the above system is larger than
cν, for some constant c, uniformly on Q (and independently of λ). For
the reader’s convenience, we note that the above determinant is given by
(ν +c)2−c2 +λ[(ν +c)2(ν +µ+c)+2c3−c2(3ν +µ+3c)], where c represents
a generic coefficient cij

kl(y
′). This shows that the second derivatives D2

3(θ̃ v),
as well as D3p, belong to L2(Q) and have L2 norm bounded by a constant
times M. Consequently,

‖θ̃ v‖2 + (1 + λ)‖θ̃ p‖1 ≤ cM. (6.12)

Hence, the estimate (1.14) holds.
In case (b), we work with the estimate (6.2) instead of (6.5). Arguing as

above, we prove that

‖θ̃ v‖2 + λ‖θ̃ p‖1 ≤ c(λ)M, (6.13)

where c(λ) is as in Theorem 1.2 (it is not difficult to obtain a more precise
form for c(λ)).

7. Appendix I

Here we consider the homogeneous system (1.1), (1.5) (i.e., f, g, a, and b
vanish) and show that the solutions are just the elements of Z. We start by
showing the following result.

Proposition 7.1. Let a and l be two given vectors, l �= 0, and define

z(x) = a + l ∧ x. (7.1)

Then z �= 0 is a solution to the homogeneous problem (1.1), (1.5) if and only
if β = 0 and Ω is axially symmetric with respect an axis l parallel to l.

Proof. The axis l is constructed as in the proof of Lemma 2.3.
It is immediate to verify that any vector field of the form (7.1) satisfies

∇ · z = 0, ∆z = 0, and also
∂zi

∂xk
+

∂zk

∂xi
= 0. (7.2)
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Note that, in particular, B(u, z) = 0, for any vector field u. From (7.2) it
follows that T (z, p) = −pI, t = −pn, and τ(z) = 0. Hence, z is a solution to
the homogeneous problem (1.1), (1.5) if and only if βzτ = 0 and z · n = 0
on Γ, hence if and only if β = 0 and z · n = 0 on Γ. This last condition is
equivalent to saying that Ω is axially symmetric with respect to the above
axis l. Clearly, if z is as above, (z, p) is a solution to our problem if and only
if p = 0 (p a constant if λ �= 0).

Next we prove that if β = 0 and Ω is axially symmetric, then necessarily
any solution v of the homogeneous problem belongs to Z.

Theorem 7.1. Consider the special case and assume that (v, p) is a solution
to the homogeneous problem. Then v ∈ Z and p = 0 (constant, if λ = 0).

Proof. From (2.12) one gets{
B(v, φ) − 〈p,∇ · φ〉 = 0 ∀φ ∈ H1

τ ,
λ〈p, ψ〉 + 〈∇ · v, ψ〉 = 0, ∀ψ ∈ L2.

(7.3)

Next decompose v, v ∈ H1
τ , as v = v0 + z, where v0 ∈ V1

τ and z ∈ Z. Since
B(v, v) = B(v0, v0), as remarked in proving the above proposition, and since
also ∇ · v = ∇ · v0, it readily follows from (7.3) that B(v0, v0) + λ‖p‖2 = 0.
Since v0 ∈ V1

τ , it follows from Lemma 2.3 that v0 = 0. On the other hand,
p = 0 if λ �= 0. If λ = 0, it follows from the first equation (2.12) that
〈p,∇ · φ〉 = 0; hence, ∇p = 0.

8. Appendix II

In this section we prove the Proposition 1.1.

Proposition 8.1. Let b = (b1, b2, 0) ∈ H1/2(R2) denote a generic tangential
vector field on the boundary R2 = {x : x3 = 0}. There is a linear map
b → w, continuous from H1/2(R2) into H2(R3), such that

w|R2 = 0, (∇× w)|R2 = b. (8.1)

Moreover, w3 = 0 on R3.

Proof. We use the Fourier transform in R3

(Ff)(ξ) = f̂(ξ) =
∫

e−2πix·ξf(x)dx

and the inverse Fourier transform

(F−1f)(x) =
∫

e2πix·ξ f̂(ξ)dξ.
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Moreover, we denote by F the Fourier transform in R2 and by F−1 its inverse.
We set x′ = (x1, x2) and ξ′ = (ξ1, ξ2).

Let f be a function defined in R3 and γ0f be its trace on R2. Then, the
Fourier transform F of the trace is given by

F (γ0f)(ξ′) =
∫

f̂(ξ)dξ3. (8.2)

In fact, one easily shows that the inverse Fourier transform F−1 of the right-
hand side of (8.2) is just F−1(f̂)|x3=0. In particular, (8.2) shows that γ0f = 0
on R2 whenever f̂(ξ) is odd with respect to ξ3.

We look for ŵ of the form (ŵ1, ŵ2, 0), in order that w3 = 0. From (8.2), and
by taking into account that differentiation with respect to xj is transformed
in multiplication by 2πiξj , it follows that the second equation (8.1) becomes

−
∫

ŵ2ξ3dξ3 =
1

2πi
b̂1,

∫
ŵ1ξ3dξ3 =

1
2πi

b̂2, (8.3)

for functions ŵj(ξ), j = 1, 2, which are odd with respect to ξ3. In the sequel
we seek such functions.

We immediately see that equations (8.3) are satisfied by functions of the
following type:

ŵ1(ξ) =
1

2πi
ξ3µ

3(ξ′)θ(ξ3µ(ξ′))̂b2(ξ′),

ŵ2(ξ) = − 1
2πi

ξ3µ
3(ξ′)θ(ξ3µ(ξ′))̂b1(ξ′),

where θ(z) = νe−
z2

2 , ∀z ∈ R, and ν is such that∫
z2θ(z)dz = 1.

Note that θ is an even function, infinitesimal at infinity, of infinite order.
Since the ŵj ’s are odd with respect to ξ3, it follows that the w’s have zero
trace on R2.

A trivial choice would be µ = 1. However, this choice does not guarantee
that w ∈ H2(R3). We set

µ(ξ′) =
1

(1 + |ξ′|2) 1
2

.

With this choice one has∫
R3

|ŵ1(ξ)|2(1 + |ξ|2)2dξ ≤ 2
4π2

∫
R3

[(1 + |ξ′|2)2 + ξ4
3 ]µ

6ξ2
3θ2(ξ3µ)|̂b2(ξ′)|2dξ.
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The above integral is bounded by
1

2π2

∫
R3

µ2ξ2
3θ2(ξ3µ)|̂b2(ξ′)|2dξ +

1
2π2

∫
R3

ξ6
3µ6θ2(ξ3µ)|̂b2(ξ′)|2dξ =

1
2π2

∫
R2

(1+ |ξ′|2) 1
2 |̂b2(ξ′)|2dξ′ +

1
2π2

(
ν

8
√

2
+

ν2

2

) ∫
R2

(1+ |ξ′|2) 1
2 |̂b2(ξ′)|2dξ′,

since ∫
R2

ξ6
3µ6θ2(ξ3µ)d(µξ3) =

ν2

8
√

2

∫
z6e−

z2

2 dz.

Hence, ∫
R3

|ŵ1(ξ)|2
(
1 + |ξ|2

)2
dξ ≤ C

∫
R2

(
1 + |ξ′|2

) 1
2 |̂b2(ξ′)|2dξ′;

i.e.,
‖w1‖2

H2(R3) ≤ c‖b2‖2

H
1
2 (R2)

,

and similarly for w2.

Corollary 8.1. Let K be a compact set in R2, and let H
1
2 (K) denote the

linear subspace of H
1
2 (R2) consisting of tangential vector fields b = (b1, b2)

with compact support in K. Let U be an open subset of R3 such that K ⊂ U.

There is a linear map b → v, continuous from H
1
2 (K) into H1(R3), such that

∇ · v = 0, v|R2
= b, supp v ∈ U. (8.4)

Proof. Let w denote the vector field constructed in Theorem 8.1, and let χ
be a (fixed) smooth function with compact support in U and equal to 1 on
an open subset U0 of R3, that contains K. The vector field v = ∇ × (χw)
satisfies all the desired properties. Let’s prove the second equation of (8.4).
Since

∇× (χw) = χ(∇× w) + (∇χ) × w,

and since w|R2 = 0, it follows that

∇× (χw) = χ(∇× w) = χb

on R2. By the construction, it immediately follows that χb = b on R2.

Corollary 8.2. Let Ω be a bounded, connected, open set in R3, locally situ-
ated on one side of its boundary Γ, a manifold of class C1,1, and let

(b, g) ∈ H
1
2 (Γ) × L2(Ω)

be such that ∫
Ω

g dx =
∫

Γ
b · n dΓ.
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There is a linear continuous map (b, g) → v, from H
1
2 (Γ)×L2(Ω) into H1(Ω),

such that {
∇ · v = g, in Ω,

v = b, on Γ.
(8.5)

Proof. First we consider the solution Φ ∈ H2(Ω) of the Neumann problem
∆Φ = g in Ω, ∇Φ · n = b · n on Γ. Choose, for instance, the solution Φ with
vanishing mean value in Ω. Next, define b on Γ as b = b −∇Φ. Note that b

belongs to H
1
2 (Γ) and is tangential to Γ.

Finally, we construct a vector field v ∈ H1(Ω) such that{
∇ · v = 0, in Ω,
v = b, on Γ,

(8.6)

and set v = v + ∇Φ.
The construction of v follows easily from Corollary 8.2, by using a suit-

able partition of unity and the change of coordinates y = Tx; see (4.3).
Vector fields are transformed according to (4.5) (for notation and details,
see Section 4).

Hence, to each x0 ∈ Γ we associate a sufficiently small neighborhood Ir

(see (4.1)) in such a way that Γ ∩ Ir is described in the Cartesian coordi-
nates introduced in Section 4. Next, we cover Γ by a finite number N of
these neighborhoods Irj , j = 1, . . . , N, and consider a partition of unity θj ,
subordinate to this covering. Let j be fixed (below, we drop the symbol j
from the notation).

Using the notation introduced in Section 4, we consider in Λr the tangen-
tial vector field θ̃b (the transform of the vector field θb by means of (4.5)).
Corollary 8.1 shows that there is a vector field ṽ such that{ ∇ṽ = 0, in Ir,

ṽ|Λr
= θ̃b, supp θ̃b ∈ Ir.

Turning back to the x variables, we obtain from ṽ(y) a vector field v(x), with
compact support in Ωr, such that ∇v = 0 and v|Γr

= θb. Recall that, due
to (4.7), (4.6) transforms divergence-free vector fields into divergence-free
vector fields, and tangent vector fields to Λr into tangent vector fields to Γr.

By addition of all the above vector fields, as j runs from 1 to N , we get a
vector field v that satisfies (8.6). The proof of Corollary 8.2 is accomplished.

We learned the above argument from a manuscript of G. Prodi.

Proof of Proposition 1.1. See also [27]. Let p and p be as in Propo-
sition 1.1. Further, endow H1

0(Ω) with the norm ‖∇v‖. Clearly, ∇p is an
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element of H−1(Ω). By using the definition of the strong dual norm, together
with (∇p, v) = (p,∇ · v), it immediately follows that

‖∇p‖1 ≥ |(p,∇ · v)|
‖∇v‖ ,

for each v in H1
0(Ω). By using as v the solution v of problem (8.5), where

g = p and b = 0, (1.15) follows. �

References

[1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions II, Comm.
Pure Appl. Math., 17 (1964), 35–92.

[2] G.J. Beavers and D.D. Joseph, Boundary conditions of a naturally permeable wall, J.
Fluid Mech., 30 (1967), 197–207.
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[31] J. Nečas, “Les Methodes Directes en Theorie des Equations Elliptiques,” Academia,
Prague, 1967.

[32] L. Nirenberg, On elliptic partial differential equations, An. Sc. Norm. Sup. Pisa, 13
(1959), 116–162.

[33] C. Pare’s, Existence, uniquiness and regularity of solutions of the equations of a tur-
bulence model for incompressible fluids, Appl. Analysis, 43 (1992), 245–296.

[34] H. Saito and L.E. Scriven, Study of the coating flow by the finite element method, J.
Comput. Phys., 42 (1981), 53–76.



1114 H. Beirão da Veiga

[35] J. Serrin, Mathematical principles of classical fluid nechanics, in “Encyclopedia of
Physics,” VIII, pp. 125–263, Springer-Verlag, Berlin, 1959.

[36] J. Silliman and L.E. Scriven, Separating flow near a staic contact line: slip at a wall
and shape of a free surface, J. Comput. Physics, 34 (1980), 287–313.

[37] V.A. Solonnikov, On estimates of Green tensors for certain boundary value problems,
Dokl. Akad. Nauk. SSSR, 29 (1960), 988–991.

[38] V.A. Solonnikov, General boundary value problems for Douglis-Nirenberg elliptic sys-
tems, II, Proceedings of the Steklov Institute of Mathematics, 92, 1966. English trans-
lation, American Mathematical Society, 1968.

[39] V.A. Solonnikov, Solvability of three dimensional problems with a free boundary for a
stationary system of Navier-Stokes equations, J. Sov. Math., 21 (1983), 427–450.

[40] V.A. Solonnikov, Coercive Lp-estimates for solutions to the initial-boundary-value
problem for the generalized Stokes equations in a half-space, Probl. Mat. Anal., 20
(2000), 243–270. English translation: J. Sci. (New York), 102 (2000), no. 5, 4523–
4543.

[41] V.A. Solonnikov, Lp-estimates for solutions to the initial boundary-value problem for
the generalized Stokes system in a bounded domain, Probl. Mat. Anal., 21 (2000),
211–263. English translation: J. Math. Sci. (New York), 105 (2001), no. 5.
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