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1. Introduction and main results

This work originates essentially from some problems in arteries, where fluid and
structure models are coupled. Fluid flows are here described by the Navier—Stokes
equations {a good approximation for flows in large vessels). Concerning the struc-
ture model we will consider the so-called generalized string model, see Quarteroni,
Tuveri and Veneziani [14] Eq. (27), Formaggia, Gerbeau, Nobile, and Quarteroni,
[6] Eq. (7), Quarteroni and Formaggia (13], Eq. (4.23). For recent overviews on
this problem the reader is refered to [13] and [10]. For some related papers we also
refer the reader (without any claim of completeness) to references [2], [3], [4], (9],
[10] and to the bibliography of all the above papers. The results and proofs given
in this paper have been made available, in particular, in a preprint published in
2001 by the author’s Mathematical Department.

Tt is worth noting that the proofs given below may be simply modified to
consider other vessel models. The consideration of a definite model is done here
for the sake of clearness. The choice of model (1.3), where in particular it may be
« = 0, is done since real numerical applications have been having large success in
medical communities.

Our main objective will be to establish a rigorous result on the existence of
strong solutions to initial-boundary value problems, in which the crucial point
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is the study of the interaction of fluid and structure. To our knowledge, this is
the first rigorous proof of the above result for models like that considered here.
Another interesting problem would be to obtain a rigorous proof of the existence
of weak solutions. An @ priori estimate in this direction is well known. See, for
instance, [4], [14] Eq. (41), and {6} Lemma 1.1.

Since our main concern is the study of the interaction of fluid and structure,
the mathematical obstacles coming out from the artificial consideration of just a
segment of vessel are avoided by considering data and solutions which are periodic
in the “vessel direction” (with period L, equal to the length of the vessel). The
expression “an z-periodic function f” means here the restriction to [0,L] of a
periodic function f on the variable z € R, with period L. More precisely, f(z+L) =
f(z), for each (or almost all) z € R. Clearly, f may depend on other variables
(typically v, z, and t). We will consider the 2-D problem. Hence the moving
structure consists of two separate boundaries. In order to simplify the presentation
we will assume that one of these boundaries is fixed. The consideration of two
moving boundaries can be treated in a similar way, by using the change of variables
(2.3) instead of (2.1).

We consider a family of z-periodic plane curves I'y, ¢ € [0,7, with equations

y=1+n{t,z), z e [0,L}. (1.1)

Without loss of generality we assume that

L
]U 7’ (z)dz =0, (1.2)

where n°(x} = (0, ). If (1.2) were not satisfied we may impose it just by replacing
the constant 1 in (1.1) by the mean value of 1+ 7%{z) on 10, L[.

The family of curves I'; is just one of the unknowns of our problem. In fact,
the z-periodic functions 7(t, z) should solve the evolution problem

TNe — Bz — VY Meww + O Ngzex + 00 = ®, in Iy,

(0, z) = n"(z), {1.3)

7:(0,z) = T?l(’w'")7
where I =|0, L], It =]0,T[xI, ® is the forcing term (see below), vy is a strictly
positive constant and a, 3, and ¢ are nonnegative constants. Note that « may
vanish. In fact, we mostly will assume that @ == 0. We also remark that the
addition of a given external force field to the right-hand side of equation (1.3),
does not give rise to any difficulty.

The z-periodic functions 7%(z) and n'(z) are given, moreover 7,(x) satisfies
(1.2) and also the assumption

1+n%z) > 28, Vzel, (1.4)

for some positive constant dg. This corresponds to the fact that the vessel £2; at
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time ¢ = 0 is connected. Here
Q= {(z,y): O<y<l+nitx)}. (1.5)

The function ®(¢,z) on the right-hand side of (1.3) is defined as follows.
®[n,v,p} i= (p1pne — p2v[Vv+ Vo' nt)ll“t V141526, (1.6)

where p and v are the pressure and velocity of the fluid, ¥ > 0 is the (given)
viscosity of the fluid and n, is the unit normal to I';, namely

—1 €1 + €2
Vit

Here ¢; and &3 denote respectively the unit vectors in the x and y (orthogonal)
directions . Note that, with an obvious notation,

dl'y = /1 + nde.

The presence of the term /1 + 2 in the right-hand side of Eq. (1.6) is not neces-
sary to obtain our results. However it takes into account that in equation (1.3) @
denotes density of external forces with respect to dz and not to db'y. We remark
that the above term seems necessary to obtain the estimate (40) in reference [14].

In equation (1.6) py and p; are positive constants that represents, if p; = pa,
the ratio between the density of the fluid and that of the vessel. Note that to
assuwme this ratio “sufficiently small” is a physically reasonable assumption. We
do not assume here that (necessarily) py = po due to a “mathematical reason”. In
fact, we are able to prove the existence of a local (in time) strong solution of our
problem for an arbitrary positive constant ps. However, the positive constant p;

ﬂt(ta$=1+"?(f»$)} = (17)

should be assumed “sufficiently small”. We note that it seems possible to drop-the.
smallness condition on p; by using an energy. estimate inspired by that referred

_abave. However, since we do not use this device, the proofs done here does not
depend so much on the particular form of the forcing term ®. (in particular, we
may drop the term Vv? on the right-hand side of (1.6)). We consider here the
particular form (1.6} just for fixing ideas.

Concerning the fluid Aow, we consider here the Navier-Stokes equations in the
moving domain £1;. We set

QT = {(t,z,y} it E]D)T{: (cc,y) & Ql}:

Yo o= A{({t,zy): t€)0,T], (z,y) € s},
Ap = {(tv'ﬂa(]) it E]G,T[, z E]U,L[} '




24 H. Beirao da Veiga JMEM

and we consider the initial-boundary value problem
v+ (w-Viv—vAv+Vp =0,
Vou=0 inQr
v(0,z,y) =v*(z,y)  in{; (1.8)
ot ] Fn(tys)) =m(ha) 6 on s
L v(t,2,0) =0 on Ap,
where 7 is the solution of problem (1.3). As for equation (1.3), the addition of
an external force field to the right-hand side of equation (1.8), can be handled by
routine calculations.

The problems (1.3) and (1.8) are coupled by means of the dependence of the
right-hand side of equation (1.3); on p and v and by means of equation (1.8),-

We assume the following (necessary) compatibility conditions on the given initial
velocity v*(z, y).

V-l = in §2g;
9(z,0) =0, (1.9)
v (z,14+7°(z)) =n'(z)ez  onl,

plus the z-periodicity assumption on oY,
The last compatibility condition to be assumed is

L
/0 n'(x)dz = 0. (1.10)

This condition is imposed by the divergence theorem, as shown below. Another
consequence of the divergence theorem is the following one. Let us write each
“pressure” p(t,z,y) in the form

p(t,z,y) = polt, %, y) + ¢(t) (1.11)
where po(%, ©, y) satisfies
1 b
5 f po(t,z,1 +n(t,z))de =0, Vtec[0,7T] (1.12)
0

and $(¢) is an arbitrary function of ¢. We show that if (1, v, p) is a solution of our
problem then it must be

L
v s i vy g Aug
= = Tz e —_— 2_ . .
$t) = glmol = = | [ U (ay + BI)+ 59]&3 da (1.13)

In fact, from (1.8),, 5, from the z-periodicity of » and from the divergence theorem

it readily follows that
L
/ v-nidI‘t:/ mdx =0, (1.14)
ry 0
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for each t € [0, T] (note, as claimed above, that n' (z) must satisfy the compatibility
condition (1.10)). Moreover, (1.14) together with (1.2) shows that

fL nlt, ) dx = 0, Vit e 0,7 (1.15)

By integrating both sides of (1.3}, on {0, L] and by taking into account (1.15} and
the z-periodicity of n, it readily follows that

£ N
/@[ﬁ,v,p]d.ﬁ::(), vie[o,T], (1.16)
]

whenever (1,v,p) is a solution. On the other hand, by (1.6) and (1.7), one gets

duy  Bug Sy
= o | o | 222 , ,
& [n,v,p] {Plp-l-V,Oz [n (By + 83:) ‘9@/”[1} (1.17)

where v = (v1, v2) = v1 €] + vy €. Consequently, it follows that (1.16} is equivalent
to saying that p has the form (1.11} with ¢{t) given by (1.13).

Hence our original problem is equivalent to looking for a solution (n,py,v) of
the systems (1.8) and

Mt — Bz — Y ez + O Npgar +0 =0 [?LU,PG] +p1 9’5["7:"‘-’];
7}'(0,$) = Wo(ﬁ), (1'18)
”t(07$) = 771(37),

where pg satisfies (1.12) and ¢ is given by (1.13). Then the solution (1,v,p) of
(13): (18) 18 given by (Wa’U:PD + QS [777’03)-

In the sequel we use well-known notations to indicate classical functions spaces,
like Sobolev spaces of fractional order H*(£2) or H*(I}, and spaces like L?(0,T; X)
ar C([0,T]; X), where X is a Banach space. We use the same notations for spaces
of scalar and of vector valued functions. The symbol # indicates z-periodicity.

It must be pointed out that strict positivity of some or all of the constants
a, 3,0 could just help the proofs. However, only the assumption v > 0 is used
here. Under this assumption, the estimates due to § > 0 or ¢ > 0 are, in fact,
useless. On the contrary, if @ > 0, a stronger estimate on 1 can be obtained (and
used to simplify some proofs). For these reasons we assume in our proofs the (less
favorable) case 3, @, ¢ = 0. However we state and prove the main existence result
(see the next theorem) also for the case a > 0.

Qur main result is the following.

Theorem 1.1. Assume that v > 0, that
{ pl [ H_}#_(QQ),

(1.19)
o € Hy/ (1), m € Hy (D),
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;

and that the hypotheses (1.2), (1.4), (1.9), and (1.10) hold. Then ij{p_ﬁ, 17| ooy
and |99 Les(1y are sufficiently small the problem (1.3), (1.8) has a solution (n,v, p)
for a sufficiently small value of T. Moreover

v € L*(0,T; H (M),
v, € L2(0,T; L2(Q4)), (1.20)
p € L*(0,T; Hy ()
and
m € L2(0,T5 Hy (1) 0 L= (0, T; Hy (1)),

) s {1.21)
N € L0, T Hy, 7 (1))

If a > 0, and by asswming that n, € H;/Z(I), one also has n € L*(0,T; H;/Z(I)).

Remark. If the data are more regular and the necessary compatibility conditions
hold, then the solutions are more regular.

Our problem will be solved by previously transforming it in an equivalent prob-
lem on the fixed spatial domain

0 =10, L[x]0, 1[.

2. An equivalent problem in a fixed domain

We perform the following change of variables
Y
- [ S 2.1
R P O (21
that transforms, for each fixed ¢, Q, onto (1.
Remark. In the case of a domain 2, with two moving boundaries
Q= {(@.9): ze(0,L), 04 ult,z) <y < 1+n(t,0)} (2:2)
we replace (2.1) by
— it
Lt nlt, o) — p(t, @)
which already transforms ©; onto Q. Now v(t, z, u(t, z)) = u(t, x) €3
In general, in correspondence to any function f (x,y) defined on £2; we associate
the function f{x, 2} = f(z,y). More precisely,

-~

fz, Z) = f(:E? (I Jr"?(t,ﬂf')) z):

" y (2.4)
fe) =5 (= 1 )
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Clearly, f and f may depend also on ¢. In the sequel the differential operators v
and A, when applied to functions labelled by a hat, a tilde or a bar (like ¥,V or 7),

act on the variables (z, 2).
It readily foilows from (2.4) that

fi= JE—ZILJ:?—?J%
fo= ool
1 -
fy: _""**\fz:
AN
fzzx fxmfzz f:cz (zl+n) fez
B (1+"7)"?xx 27’1rf
(1+ny
fyy_ (1+ ) fzza

where f is taken at point (£, z,y) and fat (t,2,2), z=y/(1+n(t,)). In particular

e & 1
VP— (p — 2 Pz)elﬁ“ -_pzez

I
1-+n 1+mn

(2.6)

By multiplying equations (1.8), , by 1+7 and by performing the above change of

variables we obtain

5, — VAT + VP = F[n,7, V5],

V-i=ghtl  inQr
90,2,2) =%z, 2)  in Y
Ut x, 1) = m(t, z) € on X
| o(t,z,0) =0 on Ay,
where %y =]0, T[xT, Q¢ =)0, T[x(, and ' =: {(z,1) : z €]0, L[} . Here
F(t,z,2) = Fin,©, Vil

Uy + +rz 2??'2 v,
= - Z — Tz z
Ty T 1 T

0% =1 vzz}
1+n]

(1 + 77)6161 + (anﬁl - ﬁ2)ﬁz;

+ v {22771.6“ + e + {

+ 2(nep, — NP 1El —
and
§(t,$) = ﬁ[’l], ’l?] = "*?']171’3; + Z?’[Iﬁl’z,

where ¥ , = 801 /0x, and so on. Moreover

iz, 7) = 0'(z, (1 +n°(2))2)

(2.7)

(2.8)

(2.9)

(2.10)
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Clearly 7 is still z-periodic.
The assumptions (compatibility conditions) (1.9) become

Vo =g[n", 8% = =9, + 2050,
?}0(3, 0) =0 on I, (2.11)
?(z,1) =n'(z)é3  on I

The compatibility conditions (1.2) and (1.10) remain unaltered. The same
bolds with respect to equation (1.18), since this equation is independent. of z.
However we will denote ® by & when it is written in terms of § and 7. From
(1.18), by using (2.5) and by taking into account that » — 1, one shows that
problem (1.18) becomes

e — /877:1,3. — Y Max T AMgppe + 0N = ‘i’ [n,ﬁ,ﬁn] +m &5[77:@1
n(0,z) = #%(x), (2.12)
Ut({); I) = 7?1 (17)

Here
= ~ -~ Nz ~ ~ 2+T]§A
& = 2 Vo g — z ] A
1, 0,0] i= p1 B+ vy (1+nv1, + 17Uz, T4 (2.13)
Dy satisfies
1 7k
E/ Bolt,z1)dz =0,  Vie[o,T], (2.14)
0
and
L 2
~ L v po e 24 nE )
t) = yUpim —— 2 7, U, — ] dx. 2.15
#0 =it == 12 [ ((2n .- B, (2.15)
According to (1.11) § is given by
Bt,x,z) = Polt, 2, 2) + [, 9]. (2.16)

This is equivalent to saying that
L
/ SIn,u,plde=0, Vielo] (2.17)
0

which corresponds to (1.14).
For convenience we define

H%(Q) = {ﬁo c H#(Q) : /[; ooz, 1) dx = G} . (2.18)

Since the integral in (2.18) defines a continuous linear functional on F L(Ey) it

follows that H;# is & clesed subspace of Hg,# and that there is a positive constant
¢ such that

Poll ey < ellVhollezcy,  ¥H, € HL(). (2.19)
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Hence || VDol 22(q) is a norm in H ;;& , equivalent to the canonical H*-norm.

Now, for the reader’s convenience, we summarize the approach followed in
the sequel in order to solve our problem. One gives z-periodic data ﬁo,nﬁ,nl
satistying the assumptions (2.11), (1.2), (1.4), and (1.10). These data belong to
the functional spaces indicated in equations (1.19). If & > 0, we also assume that

o € H;/ 2 ({). Then we look for an z-periodic solution (1,7, Dy) of systems (2.12),
(2.7), where F,§,®, and ¢ are defined respectively by (2.8), (2.9), (2.13), and
(2.15). The function f, should satisfy (2.14). The solution of our problem (in
2} is then given by (n,%,7), where 7 is defined by equation (2.16). Finally, the
solution (n, p, v} of the initial problem (1.3),(1.8) is obtained by turning back to
the variables (¢, 2,y), by means of (2.4),.

In order to solve (2.12), (2.7), we linearize these systems, solve the correspond-
ing linear systerns, and look for a fixed point. The linearized systems are obtained
by replacing on the right-hand side of (2.12) and (2.7) the unknown funchions
7,7, Py by given functions 7,7, Dy Hence we consider the couple of systems

ﬁtt - 'Yﬁtxa: + aﬁmm:ﬂ:ﬂ =& [ﬁ:ﬁﬂ:ﬁ] +p; ¢ [ﬁwﬁ]i
70, ) = n°(x), (2.20)
ﬁt(oﬁm) = 771 (.’13),
{where & and ¢ are given respectively by (2.13) and (2.15)) and
(T — v AT+ Vi = F[7,7, V),
V. v=g[R3, inQp
§ 90,2, 2) =%z, 2), inQ (2.21)
v(t,z,1) =7,(t,z) &3, on r;

o(t,x,0) =0, on Ap,

where F is defined by (2.8). Note that Vp = Vpy if p has the form (2.16), since
¢ [, v| depends only on ¢. For convenience we set

$(t) == $[7,7]. (2.22)

Next, given (%, py, 7) in a suitable set K, we solve the linear systems (2.20), (2.21).
Let (1,Py,7) be the solution of this problem. Then we look for a fixed point
(1 Po,¥) = (7, 7,0) in K. This fixed point is just the solution (n,2,0) of (2.7),
(2.12), where p'is given by (2.16).

The assumptions on the functions %, Py, and 7 are the following (see (5.21)).

T € L0, T Hy (1)) 0 £2(0, T; HY/(1)),

(2.23)
T € L2(0,T5 H, (D)),
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5CL0,T;H/*(I),  onlyifa>0. (2.24)
700, z) = n°(x),
{?( ) 1( ) (2.25)
Tn’t(ov '7;) =7 (“E)a
1+7%(t,z) > 6 on Iy, (2.26)
and
L
f Ata)de =0, Vielo,T] (2.27)
o
Furthermore
7 e LH0,T; HZ (),
7, € L0, T; L3(§)), (2.28)
Bo € L(0,T; HL(D)),
L
f Bolt,z,1)dz =0, a.e. in [0, T, (2.29)
o
B(0,z, 2) = 1(z, 2) in £, (2.30)
and
Ti(t,z,2) =0 forz=0and z =1, {2.31)

where ) is the first component of @.
We recall that (2.28), , implies that (see {11}, Chap. 1)

v e C([0,T]; Hy (). (2.32)

Let us end this section by introducing some notations used in the sequel. It will
be not difficult to consider the explicit dependence of all the constants that appear
in the sequel in terms of the constants L, &, v, o, 3, v, & {note that constants
concerning Sobolev embedding theorems and similar, on I or on the rectangle {2,
depend only on ). However, in order to simplify notations, we denote simply
by ¢ positive constants that depend at most on the above constants. It is worth
noting that the same symbol ¢ may denote distinct constants, even in the same
equation. A constant ¢ is denoted by cp, ¢1, etc., if its specific value will be taken
into account in some calculation.

In order to simplify notations we often drop the symbols 7,2, and [0, T]. For
instance, both L2(0,T; H(Q)) and L*(0,T; H}(I)) may be denoted by the sym-
bols L2(H}) or L*(0,T; H}). Or by, respectively, LA(H () and L2(HL(I)).
Analogous simplifications may be used in the sequel for other functional spaces.
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For convenience, we define
2
el = Elviliﬁ(ﬂi(ﬂ}) + ”Ut“%ﬂ(m(n))a

v, polll* = {llwll> + i|vp0|liz(m(n))=

(2.33)
2 _ N2 2 2
Hln”l - Eln'ELw(H;."Q) + “nt”Loc(Hi/?) + ”ntlle(H;/?))
] = ”nttilL2(H;1f‘2(])}'
Note that we use the same symbol ||| ||| to denote distinct norms.

3. The linearized structure model

Here we consider the linear problem

Thi — B ez — ¥ Mtaw + X Tpgas + 0N = 'lllj(tgﬂf),
W(Oa 27) = ??O(E): (31)
7715(07‘7") = T’l(I)a

where the data ¥,n%,n' are z-periodic. We also assume, for convenience, that
(1.2), (1.10) hold and that

I
P(t,z)de =0, ¥t >0 {3.2)
0
We will not prove the {well-known) existence of the solution 5 but just show the
particular a-priori estimates that will be used in the sequel.

We start by noting that z-periodic solutions to equation (3.1) must satisfy
(1.15). In fact, by denoting the left-hand side of {1.15) by y(¢) and by integrating
(3.1), on I, one gets (due to the z-periodicity property and (3.2)) y”(t)+o y(t) =0
on I, y(0} = ¢'(0) = 0. Hence y(t) = 0.

The choice of the functional spaces done in the sequel follows from the claim of
strong solutions @ € L2(0, 1", H?), %, € L?(0,T; L?), and VP € L*(0,T; L?). Tence,
well known trace theorems show that the function 3 given by (2.13) belongs to
L2(0,T; HY2(I)) (provided that n is sufficiently regular; in turn, this regularity,
depends just on @ since it follows via the equation (2.12)).

We start by looking for estimates of  in “low” norms. We multiply both sides
of equation (3.1), by n: and integrate on (0, L}. We denote here the L?(I) norm
simply by || . ||. One gets

id

537 (Il + Blmall* + erllnezll” + 0 [1%) + 7 lneell® < clllmeall — (3.3)
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since, by (1.15), lm|| < cl|mz |- Hence, by using the Cauchy--Schwartz inequality,

d . c .

P (Inell® + B el + @ e l? + o 2) + 7 el < ;H?fillz- (3.4)
From (3.4) it follows, by well-known devices, that
”Tit“?r,m(m) + ﬁ”ﬂm”%w(m) + a”ﬂm“%m(m} + U”’?”iw(m) + ’Ylfﬁtm“iﬂ(m)

c 3.5
< 1P+ B il + ol S0 (3:5)

Note that the proof of this estimate on 77 in terms of the data relies just on the
fact that v > 0, as suggested by the coefficient £. On the contrary, the constants
a, 3,0 may vanish. Strict positivity of each of these constants gives additional
estimates, as seen from (3.5). Estimates due to the fact that B or o are strictly
positive are essentially inclieded in that due to 7 > 0. Without loosing generality,
we will assume in the sequel that
B=0c=0 (3.6)
Concerning o the situation is different. If @ > 0 we obtain an independent estimate
on 7z (which could be used to simplify some points in our proofs). However we
will assume that o = 0 and made just some remarks concerning the case o > 0.
Since we are looking for local solutions i time we will assume from now on

that
0<T <1, (3.7)

This allows us to simplify some equations by replacing, on the “right-hand sides”
of our estimates, distinct powers of T by that with the smaller exponent.

We start by looking for an estimate of |lizeo(r2y (note that if & > 0 such an
estimate would be already included in (3.5)). As

¢
() = 7{0) + [ ne(7)dr
0
one easily gets
(il zeocrzy < 0l + lmell oo 2, (3.8)
where {3.7) have been used.
By addition of (3.5) and (3.8), and by taking into account (3.6), one shows
that
ilnli%w(m) + “nf”im(LE) +a ”Wﬂ:ﬂ:”iw([‘m) + Hm“?’ﬂ(}[i‘%)
< ¢ (IO 4 10+ Il + 1905 1)

Next we want to estimate higher norms of 7. For convenience we set A = 1,,.
Omne has, by differentiation of (3.1) with respect to z

Ay — 'Y/\tncx + a/\m:m:a: = 'l;[;a::
A0, z) = nl(z), (3.10)
’\E(O: :L) = ”?31_(5)

(3.9)
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By applying (3.9) to A and by adding side by side the equation obtained in that
way to (3.9) one gets

0412 1p2 o2 2 (3.11)
<e ”77 ”Hi :“77 |EHl CY”??mHm + |i1zb||L2 Ly /-
# # # (&%)

Note that here we have used the estimate

L Nz
/ ’l!)_fL Ai dz / ’lp At:c dz
0 G

Finally we multiply (3.10) by —Ass., integrate over (0,L) and argue as above.
By adding the estimate obtained in that way to (3.11} it follows that

=

i 2 1 2
< = — .
< 5 eall®+ 2,}(WIE

”nlgiw(ﬂi) + ||m %W(H?%L) - ”mlE%Z(H;;)

< e (I W+ I Wy + e el + 10y ) -

%W(H%) + i Nze (312)

Remark. We may replace everywhere L°(0,T") by C([0,T]}. This result is not
used in the sequel.
Finally, by interpolation between (3.11) and (3.12), we show that
2 2 w2 2
“nlELm(Hi"z} + ”m”Lm(H;/z) + o Eln”Lm(H;fZ) + ”Th”Lg(H;/Q) 1)
sc El”olli[ifz + “771“?;[;/2 +a ”’?OHZQ’E + H"qb”ig(gyz) :

where & = min {a,1}.

In the sequel we drop v from the left-hand side of {3.13). Constants ¢ may
depend on v (and on a, if a > 0).

Recall that in Eq. (3.1) (see {2.20)) the function ¢(z,t) is given by

W(w,t) = B [7, By, 8] + pr [1,70]. (3.14)

For clearness of exposition, the proofs of some technical estimates (which are
partially straightforward) is postponed to section 6. In section 6 we prove the
following estimate.

Fs s o Tri= =112
H‘E [n??"!pﬂ] + p1¢ [771 U}lELz(}f;/2(I)}

( 2 (3.15
LT | ) .

< RNVl + 03 (1+ 17 )

()

Hence, by applying the estimate (3.13) to the solution 7 of equation (2.20), we
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show that
S22 ~ 32 Pl P 11 =~ 12
N = 1 ey I ey + N + 0l

<o (I e + 1 By + Pl ) + 62 I9m0lEran ()

2
ey {TH 10 + T2l o [/,
a2 LAHY (1

Note that, if o« > 0, the definition of |||7]|! given here has an additional term with

respect to that in (2.33).
We also need a suitable estimate of the L?(0, T, H~1/?(I)) norm of the solution
7 of {2.20). In section 6 we also show that

Wl o2 0,15 -2y < eoril VBollL2(qr)

+epaTE {1+ 12,7 + ) 11 + <7721l
(3.17)

4. The linearized fluid model equations

Here we consider the linear system (2.21). In section 6 we will show that [7,7, V]
€ L?(Qq) and that

iF 7,7, VAl 120w
< C[flﬁU”Lmu) Fmel ey + 0 0oy + TI/SHWDHH;ﬂU)

+T1/2 (lfﬁLIILm(H;/z(I)) + ”ﬁt“LZ(H;"Z(I))) JrTHﬁf-HiZ(H;”(I))] et ()
+ (lln"liLm(z) + 172l ooy + T2 IIﬁtlisz;ﬂ(;)}) VB2 on)
+cT1/4 (1 + |E770“H;”([) -+ “ﬁt!lﬁ(H,i"%I))) i1,

where the constants ¢ depend at most on v, & and L (for notations, see section 6).
On the other hand the reader easily verifies that

gmel =V w, (4.2)
where W is given by
@(t,x, z) ==w[7,0] = (—771) é + (27,7)) €. (4.3)
Clearly @ is z-periodic and satisfies
wit,z,0) =w(t, 2, 1) = 0. (4.4)
In section 6 we also show that

V-we LY(0,T; Hy(), w, € L*(0,T; L*(Q),
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and that

( p—
IV @l ooy < ¢ (Inlmen + 70U e

TV gy ) 0

@il o2y < ¢ (In°Nzoeqny + 102 ) 1PellE2 @)

L o Y (X P P

where ¢ depends only on L.
In this section we look for solutions ¥, Vp, of system (2.21) in the class

ve H¥YQr), Vi€ L*(Qr) (4.6)

The (necessary) compatibility conditions m order to get solutions in the above
class {4.6) are satisfied. In fact the matching, at time ¢ = 0, between the initial
data 7° and the boundary data follows from (2.11) (together with (2.30), (2.20),
and {2.20),). Concerning the matching, for ¢ > 0, between g and the boundary
data note that, due to {4.4) and the z-periodicity,

Lg[ﬁ,@-l___/;zv.mzo. (4.7)

This agrees with the fact that the flux of ¥ through the boundary of  vanishes
for each t > 0 since the assumption (2.27) yields

L
/ 7, €5 - €5 = 0.
0

We want to show that the solution T, Vp, of (2.21) satisfies the estimate

— — 00" e
”‘U”?fil(QT) + V! %2(QT) <c (”'U “ft.r;#(g) +11F 77, VPOHI%Q(QT)

+ IV - B2 11, ) + lwelzs o) (4.8)

— 2 —_ 2
sy + Wl )

where
H2Y(Qq) = L30,T; HA(©)) 0 H'(0,T; L*(Q)),

HY23/4(50) = LX0,T; B2y n HY4(0,T; LP{§).
The symbol # has the usual meaning (z-periodicity}.
The fact that the boundary data 1 € is not tangential to the houndary gives

rise to an interesting problem connected to trace spaces of divergence free vector
fields. Set
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¥

[N=-RIE

= {'U & LQ(D,T; HS(Q}), Vg € Lz(O:T;HSMQ(Q))} » 8 Z

and
VHQr) = {ve H(Qr) : V- v=0}.

A main problem is to determine the exact functional space consisting of the
traces on Y of the vector fields v € V*(Qy). This problem is studied by Fursikov,
Gunzburger and Hou (in the Hilbertian case L?) in references [7], [8], and by
Solonnikov (in the I case, 1 < p < oo) in references [15], [16]. In reference {7|
the anthors consider the 2-I) case for s = 1 and divergence free solutions (see,in
particular, Theorem 4.2). In reference [8] the authors consider the 3-D case for
an arbitrary real s > 1/2 and divergence free solutions (see, in particular, the
Theorems 2.1 and 2.2}. In references {7], [8] many other very interesting related
problems are studied. In reference [15] the author (by using a complete different
method) considers the 3-D case in a half-space for not necessarily divergence free
solutions and s = 2. See, in particular, the Theorem 1.1. In reference [16] the
author consider the 3-D problem in arbitrary domains. See, in particular, the
Theorem 1.2. For the case of tangential boundary data see, for instance, Farwig
and Sohr {5] and references therein.

The above authors do not consider the z-periodic case. However this does not
change any essential feature in their proofs.

Here we are interested on the 2-D case for vector fields u € H*(Qq) = H*YQ1),
satistying V - w = V - i, where w is a given vector field such that (4.4) and (4.5)
holds (actually, our 77 is given by equation (4.3)). We remark that, if the vector
field W belong to L*(0,7; H(€)), then we may replace in equation (2.21) ¥ by
¥ — 0, in order to work with a divergence free unknown v — . This device can be
done just if & > 0, since in this case we could show that W € H*'(Q7). However
we are mainly interested in the case o = 0. Hence a more careful device is needed.

Since for 2-D problems and s = 2 the results we need are not explicitly con-
sidered by the above authors, we will contemplate it in the sequel. This will be
done by resorting to the method used for s = 1 in reference [7] and to some results
already proved in reference [8} .

For the sake of clearness let us state, in a compact form, the kind of result that
will be used here. For vector fields v defined on @7, denote respectively by o -
and 7o, the trace operators on Ly of the tangential and the normal components
of v. Set

GA(5) = {@n € DO, T5 HY (D) 0 H' (0,73 HE (D)) ¢ frdndl = o},
G2(By) = L2(0, T H/*(T)) 0 HY4(0,T; L3(T)).

Let now @ be as above and assume, for the time being, that we can construct
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a vector field u € Hj’gl(QT) such that

Vou=V- w,
u(t,m,l) :—ﬁt e?l ) (49)
u(t,x,0) =0,
and that :
s < (19 - @3y 1Tl Fecamy el gm0l e )
(4.10)
Note that, due to
ooy < llull a2 @r
one also has
lp—ollry, < lefi-hand side of (4.10). (4.11)

By assuming the existence of the above u, well known results satisfied by solu-
tions of the linear homogeneous system

(5 — w)y — AT — u) + Vg = F — (u; — vAu),

V-@-u)=0 inQp, 12)

(¥ — u)je=0 = 7 — Uli=01»

(T—u)(t,z,z) =0, for z=0and z =1,
show that (4.8) holds. Hence our task becomes proving the existence of the solution
v of problem (4.9), (4.10). The solution « will be obtained in the form u =
) } u® . The only purpose of the introduction of the auxiliary vector field ut®
is to reduce the search of u to that of the divergence free vector field u'? = u il
(see (4.14) and (4.15)). We start by constructing u{V).

For each fixed ¢t consider the problem
{ Ag=V -©w in 0,

5 (4.13)
wh{r, z) =0 forz=0and z=1.

For convenience we impose that

/ q=0.
Iy}
Clearly, g should be z-periodic.
Due to (4.5) and (4.7) the above problem admits a unique solution ¢ €
L3{0,T; H;L(Q) Set u(!) := Vg. Then «(*) € L2(0,T; Hz&(ﬂ)), mMOorenver

{Vu(l) =V-w,

(4.14)
utl? m =0, for z=0and z = 1,
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and

||u{1)“L2(H;) < |V @2 emy)- (4.15)
Furthermore, by using (4.13) and (4.4), one shows that

/Q Vgt +h) — q{t)) - Vo = fﬂ (@(t+h) WD) Ve,

for each ¢ H# (€2). Note that, in general, we may replace in (4.4) the assumption
W = 0 simply by W - n —= 0. This fact is not used here.
By setting ¢ = q(t + h) — q(t) it follows that
Vgt + i) — Vg(t) < @t + h) — w(t)
h 2 h

Since @, € L*(0,T; L*(52)), it follows that

L2

ut eacen) < 1l zogun)-
This estimate together with (4.15), shows that

1 sy < & (19 By + Ielaiu) ) (4.16)
{1

In the sequel we denote by ¥ the union of L7 and Ar and by u»(rl) the tangential
component of u" on T (i.e. ul = {"). Since H3/2:3/ (%) is just the trace space
of H*!(Qr) on % (see Lions-Magenes [12], vol II, Chap. 4, Theorem 2.3) it follows
that

”“(rl}nyi_fz,w(QT) = C”u(l}!iHi’l(QT)‘ (4.17)

Next, we look for a solution u{?} of the problem
(V-ul® =g on Qr;

u® =7,
u.(,Q) = mug) on Lo (4.18)
u? . n =0,

u§?) = nug.l) on A,

such that

“uw)“i’;l(c}ﬂ <c ('lﬁtili2(1f;/2(F)) + “ﬁtt”iz(ﬂglﬂ(l—‘}) + Ilu(rl)liiriﬂﬁfd(g}) .
(4.19)
If such a solution exists, the vector field u = uf) + u(®) satisfies (4.9) and (4.10).
Let us show the existence of u{®. As already pointed out, we extend here
to solutions in H?(Qr) the argument developed in reference [7] for solutions in

HY Q7).
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The construction has a local character, hence we can work separately for the
two boundaries z = 0 and z = 1. We start by considering the problem concerning

the boundary z = 1, i.e.,, L. In the sequel we denote ul?), %, and —u(Tl) by
respectively w, a, and a,. Hence we want to solve the problem

V-w=10 iHQT;

Wo = G, {4.20)
UH = ar on X,
where @ = a, €] + a,, €3,
L
] andz=0, Viel0,T], (4.21)
0
and
a, € B®,  a.€B. (4.22)

For convenience, we set
BY = [2(0,T; Hy *(T)) n HY(0, T; Hy, /* (1)),
By = L*(0,T; Hy *()) N H3/40, T; LE(T)).
Following {7], we look for the solution w in the form
w = Rot F,
where F is a scalar field. Hence
wy = 0, F, we=-8,F

We impose to F' that
F(t,0,0)=0. (4.23)

Equations (4.20), ; become respectively
(az-F)H‘ = —Qn,
(azF)|[‘ = Gr,
for each t € [0, 7). Due to (4.21) and {4.23), equation (4.24), is equivalent to

(4.24)

F(t,z,0) = A(t,z) := /Dm —an(t, &) dE. (4.25)

Set
HL(Qr) = L2(0,T; Hy (Q)) N H'Y(0,T; Hj, (D)) (4.26)

and denote by 7o the trace operator on Ly and by v, the trace operator of the
normal derivative 9, on Zip.
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Assume, for the time being, that

{ Yo(H3(Qr)) = Bo,

4.27
w1 (H3(Qr)) = B1, (4.27)

where
By = L*{0,T; Hj;éﬂ(f‘)) N a0, H;#/Q{F))’

and set v = (79,71). Also assume that there exists a linear continuous lifting y~7,

vt By x Br — Hy(Qr),

1 = J. The verification of these two

which is a right inverse of (v, v1), l.e., yo v~
properties is given below.

Let now a, and a,, satisfying (4.21) and (4.22), be given. By using (4.25) we
construct the function A € By. Next, by applying v to the pair (A, a.), we get
a function F € ’H%(QT) such that v F = A and v F' = a,. Hence w = Rot I
satisfies (4.20). As F € H%(Qr), it follows that w belongs to L*(0,T; HE()) N

HY(0,T; L*{£2)), moreover
lelZago,roagy + Vel eoimiey < ¢ (lanllo + harllp,) - (4.28)

Next we replace w = Rot F by w = Rot {¢ F), where ¢ = ¢(z) is a C°° function
such that ¢(z) = 1 near z = 1 and ¢(z} = 0 near z = 0. The new vector field w
still satisfies the above properties (4.18), , ; and (4.28), moreover it vanishes near
Ar.

Finally, by setting a, =0, ¢, = fugl} on Ay, we construct, in a similar way, a
function " such that the vector field w = Rot F satisfies (4.18), , ;. By considering
a C* function ¢(z) such that ¢(z) = 1 near z = 0 and ¢(z) = 0 near z = 1, we
see that the vector field Rot (¢ F) satisfies {4.18), , ; and vanishes near z = 1.

The vector field ut?) = Rot (¢ F + ¢ oF) satisfies (4.18) and (4.19). O

It remains to show both (4.27) and the existence of v~!. We will see that these
properties follow from results already proved in reference [8]. The existence of
the restriction operator v = (yg,7v1) follows from the theorem 3.1 in the above
reference, where s = 3. This is shown by using the equation (3.26) in reference
[8] for k = 0 and the equation (3.27) for & = 1. The existence of the lifting
operator v~ ! follows from the theorem 3.2 in the above reference. Here we use
(3.44) for £k = 0 and (3.45) for ¥ = 1. Concerning the case k& = 1, note that
1/2 < s — k < 5/2. Hence, for kK = 1 and s = 3, the space on the left-hand side
of equation (3.45) in the above reference is just our space B;. See the Remark
3.2 in reference [8]. Consequently, as already shown, there exists a solution u of
system {4.9) satisfying (4.10). As explained above, this gnarantees the existence
of a (unique) solution u of system (2.21) such that (4.8) holds.
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From (4.8), (4.1) and (4.5) we finally get the estimate

Elglﬁ{il(QT) + UV% %JQ{QT)

< 1y oy + (I oy + By

oild 23,0012
+ el ooy + T lim “H;/zm

+ TElﬁtliim(Hi/Z) + ,‘ljliﬁtlliz(jfiﬂ) + T2 “ﬁt”i?(H;ﬂz)) El!ﬁing
. ; (4.29)
T (i e = ey s

e (L 1y + I I
t (I oty + 12 omisy + T 1y )1 Pol )

— 2 7,12
+ C”ni”H;ﬂﬁM(ZT} + cl!nﬁ”LZ(H;lﬂ(F))'

5. Existence of the fixed point

For convenience we consider in the sequel the case o = 0. The slight modifications
to be done if o > 0 are left to the interested reader.

The construction of the fixed point is based on the estimates (4.29), (3.16),
and (3.17). We use here a fruitful method, introduced in reference [1], which
allows a straightforward application of Schauder’s fixed point theorem to proving
existence of sufficiently strong solutions to nonlinear PDE problems in reflexive
Banach spaces (more generally, in duals of B-spaces). This device has been applied
to many specific problems by several authors {(without a possible, but necessarily
restrictive, formalization of the method).

We start by proving (5.3) below. One has

(5.1)

Hﬁt”Lz{HifQ(I)) S CT1/2 ||ﬁi _LOO(H_‘;’IQ(I))

and also P 5/
_ _ gl i3/
Tl ey, < el st o S Sy

It readily follows that
_ 1/8 _ — /4 — 3/4
H"H“II“:’“(LE(I)) <cT / (“T]"Lm(}_jiﬂlz(j)) + HmHLW(H;/z)E|”Iu|iL2(H#uz)> . (5'2)

In particular, by (5.1} (5.2), one easily gets
|lﬁt|lfq§if2=3/4(ET) <= CTl/d(Hlﬁi!F + ”ﬁttEliz(H;UQ))' (53)
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We set

A = 1oy ISy + 12 emy
By = Iinoilfﬂnm .

Co = 1P gy + 17 Iy

Do = pt+ o3t I e )

Ey = H’tf’;(l“?{;%(ﬂ) :

(I

Note that, in the proofs below, these quantities are fixed constants since the initial
data are given. From (4.29) and (5.3) it follows that

15, BollI2 < 1 Bo + e2 Aolll5, Bolll? + ¢3 [Ae)”
+ e T%3 Bo||7, Bl + e T + WAl e, 2ol (5.4)

+eTY2(1+ By + Wl Bolll* + <™/l + e/ [l
On the other hand (3.16) and (3.17) show that
{712 < ea(Co + Do + g3 TRl Bolll? (5.5)
and that
Foel® < co 21 BOlll® + 02T (1 + AZ -+ 7112, Belll” + ea T2 (5.6)
We impose to the initial data 70 that the norms |[n%||p=(r) and [n2lizee(s) are
sufficiently small, in such a way that
1
Ca Ag S 5 {57)
Now we introduce, in a constructive way, the bounds to be imposed on the norms
of the functions (7, 7, B,) in order to get the desired fixed point (1,9, 5,) = (71,7, Ba)
by means of Schauder’s fixed point theorem.
We assume that the functions v and %, satisfy

17, Bolll* < 4(c1Bo + K) = K§- (5.8)

The value of the positive constant K is fixed {(sufficiently large) in such as way
that the set K, see (5.21) below) is not empty. Note that if Ky is too small than
assumption (2.30) cannot be satisfied by any ©.

Concerning the function 7, we assume that

[|[7[17 < ea(Co + Do)(der Ep +4K) + K = K%, (5.9)

and that

1 K
[’ < Z;;(‘ch Eo +4K) + % K3. (5.10)
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The positive constant K is fixed in such a way that the set K below (see (5.15)) is
not empty, 7.e., in such a way that (2.25}-(2.27) can be satisfied for some 7. We

increase the previous value of K, if necessary.
Finally we impose to p; to be sufficiently small in such a way that

5 1
caCppy < 4

By using (5.7)~(5.11) if follows from (5.4) that
. K .
0, Bolll” < 1 By + 2(c1 By + K) + 5 T (1 Bo + K) + ¢5 T Ay,

where Ay is a well determined constant.
On the other hand {5.5) yields

where A; is a fixed constant.
Finally, {5.6) yields

- 1 ~
< 3 (e By +4K) + e TV Ay 05 TV .

Next we impose smallness conditions on T.
We assume that

e TVAA, < %
Hence (5.12) gives
17, Bolll? < 4(c1 By + K) = K,
that corresponds to (5.8). We also assume that
e T3?A < K
in such a way that (5.13) gives
171[* < ea(Co + Do){dey By + 4K) + K = K2,

which corresponds to (5.9). Finally we impose that
K

[srd T1/4A2 +~CST1/2K]_ < —,
263

in such a way that (5.14), together with (5.18), yields
9 1 K

< —(dey By +H4K)+ —

(7724 *403(61 0+ )+2C:5’

which corresponds to (5.10).

(5.11)
]

(5.12)

(5.13)

(5.17)

(5.18)

(5.19)

(5.20)
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The above calculations lead to defining the set K as follows.
K:= {{7,7,5,) : (2.23}-(2.31) and (5.8)—(5.10) hold}, (5.21)

where T is fixed in such a way that (5.15), (5.17), (5.19) are satisfied.
Next, denote by 7 the map

T(7,%,70) = (1,9, o)
defined by (2.20), (2.21). As shown by equations {5.16), (5.18), (5.20) one has
" T(K) C K.
The set K is clearly a convex, bounded subset of the Hilbert space
H = {(7,7,5,) € L*(Zr) x LHQr) x H (0, T L)}
Note that (2.28), together with (2.29) are equivalent to

To € LX0,T; HA (D).
It is easily seen that the immersion
L2(0,T; HL(Q)) — HH0,75 L*(5)) (5.22)

is compact.

Let us show that K is a compact subset of ‘H.

K is closed: in fact, assume that a sequence (77", 7", pj) € K and that (m, 7", ;)
— (7,%,5,) in H. As 7 — 7 in L2(0,T; (1)) it follows that 77 — 7, and
7 — 7, in D'(0,T; L2(1)), where this last symbol denotes the functional space
of distributions on ]0, T with values in L*(I}.

Since |7 ||| < K1, well-known results on compact embeddings show that 7 -
7 weakly-* in L°(0,T; H¥2(I)), that 77 — 7, weakly in L2(0,T; H3%(I)) and
weakly-* in L°°(0,T; H¥/2(I)), and that 77, — 7, weakly in L*(0, T} H~Y2(y).

By the lower semi-continuity of the norms with respect to the above weak
convergences it follows that

7] < liminfy oo [[7°Ml] < K,
(2] < Liminf o (7] < Ko

Hence 7 satisfies (2.23) and (5.9), (5.10). Finally it is easily seen that the above
weak (and weak-*) convergences are sufficiently strong to “pass to the limit” in
(2.25), (2.26), (2.27), in order to show that the limit 7 also satisfies these last three
properties. For instance, it is easily shown that 7" — % uniformly in 2. Hence
(2.25),, (2.26), (2.27) hold for the limit 7. On the other hand
HS/S(HS/S(I)) —_ [HG(HS/Z), HI(H—l/Z)] . ]
5
Since H3/8(0,T) — COL/3([0, T]) and the embedding H*/%(1) — HY2(I} is com-
pact, it follows {by Ascoli-Arzeld’s theorem) that 7} — 7; in C([0,7}; H 12(n).
Hence 7,(0) = ny, 4.¢. 7 satisfies (2.25),.
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Stmilar arguments show that |||7,5,]]| < Kj and that the limit (7, 5,) satisfies
the properties {2.29), (2.30}, (2.31). For instance, the sequence 7™ is bounded in
C{[0,T); H') and in C%V/2([0, T]; L?). Hence, by Ascoli-Arzeld’s theorem, 7% — 7
in C{[0,T]; L?). Consequently {0} = g, 4.e. the limit 7 satisfies (2.30). o

Compactness of K follows easily. For instance, given a sequence 1" € K, well-
known compact embedding theorems show that the boundedness of |||n™ || implies
the convergence in L?(%r) of (subsequences) n". A similar argument applies to
velocities and pressures.

Let us show that the map 7 : K — K is continuous with respect to the H
topology. Assume that a sequence (777, 7",%;) € K converges in H to a point
(7,7,By). Boundedness of the above sequence with Tespect to the norms used in
the definition of K implies convergence to the same point with respect to the
corresponding weak {or weak-*) topologies. For instance, 7 — ¥ weakly in L2(H?)
and weakly-* in L°°(L?), and ¥} — u, weakly in L2(L?).

Since the sequence of solutions (7",v",p;) of problems (2.21), (2.22) (corre-
sponding to the sequence of given functions (7", 775 )) also belongs to K, it follows
that subsequences of (", 0", py) converge to elements (7, 7, f,) with respect to the
above weak (or weak-*) topologies. For instance, v" and ¥} (subsequences) con-
verge with respect to the weak topologies referred above for the sequences 7"
and wy. The convergence of both the sequences in the weak topologies is largely
sufficient to pass to the limit in equations (2.20), (2.21) (written now for the ap-
proximating sequences) in order to verify that the limit (7,9, 7,) is the solution
corresponding to (7,7, B,). Since the solution to the linear problems {2.20), (2.21)
is unique (for each given (77,7, 7,)) it also follows that all the sequence (7", 3", ppy)
must converge to a unique limit (7,7, 5;) = 7(7,7,7,). Hence T is continuous.

The above fixed point is clearly a solution (n,7,5,) of (2.7), (2.12).

Finally, we obtain § by using (2.16). Clearly, (,9,p) is a solution of {2.7)

(since ¢n, U] depends only on ¢).It is also a solution of (2.12) with right-hand side

given by ®[n, v, p] since this last quantity is equal to the right-hand side of (2.12).
O

Finally, we turn back to the variables (f,z,¥). By using the transformation
formulae (2.5) we obtain from (n, ¥, ) a solution (n, v, p) of the initial system (1.8).
Moreover, 77 is a solution of (1.3) since ®[n,v,p| = @[n,ﬁ,ﬂ, by the construction
done in Section 1.

The fact that the couple (v, p) has the regularity claimed in Theorem 1.1 follows
easily from the regularity of the transformation formulae (2.5), by doing calcula-
tions similar to that done in order to show, in Section 6, that F ¢ L*{(Q7). Note
that, from the point of view of regularity, the change of variables y — z and its
reciprocal 2 — y are similar since 0 < &g < 1+ 5(t, z) < constant. O
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6. Auxiliary estimates. Proofs

In this section we prove the estimates (4.1}, (4.5), (3.15), and (6.26). We start by
proving (4.1). Since in definition (2.8} p appears only in terms of its gradient, we
may indistinctly use p or py.

The functions 5(t,z), defined for « € I', are extended to {1 simply by setting
n(t,z,z) = n(t,x), z €]0,1]. Consequently, the values of the norms of n as a
function defined on 2 coincide with the corresponding norms of 7 as a function
on I _

For notational convenience in this section we mostly denote 7,7, By, B, W simply

by v, 0o, P, W,
We also use in this section the following abbreviate notation:

A<RB

means that A < ¢ B, for some positive constant c. N
We start by estimating the single terms that appear in the definition of F. In
general, the estimates obtained below could be rough whenever this choice da nat
have a substantial effect on the main final result to be proved.
One has

InvellL2aey = Illo=@e |l

and .
It oy < Ilieiny + [ I lmo zimony dr.
Consequently
9l £om@ry = 110 pee iy + T2 el 20 11072 (6.1}
Hence
tlizzr) = peo(ny Tl 20,7320y : :
li7 w2 i = {IIn°l + T2 il (6.2)
O

Next {here v, = &,v, and so on)

lzm vz o0 = mllez o, eey vll-
On the other hand

lIme %Z(O,T;Lm(ﬂ)) = TE|7?f||2Lm(e,T:Lm(n)) = T”W-’-H%O‘J(D,T;Lm(l)}'
Since H3/2(I) < L>(I) it follows that
el 220, 752000y) = T2l ooy o201y (6.3)
Hence
lzmev:lL2@m = T2 0l oo zemorza 11 (6.4)
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Next, by applying (6.1) to 7,, it follows that
||77::I§L°°(QT) = |f772|iL°°(1) + Tl/ZHniI”L2(0,T;H-"f'2(1))- (6.5)
On the other hand (2.26) yields
1
11/(1+ 9}l oogry < & (6.6)

Consequently, by (6.5) and by taking into account that v, ¢ L0, T; L2(2), it
follows

2 A 2
M 1 ( 0 /2 ) 1/2
L =< = o PRy T . {6.
Tig som B (el ooy + T el oo, mrsre gy livlfl- (6.7)
U
Now .
1es () = 102l0) + [ haa(s) dr
0
vields
Wl oo 0,25 200720)y < Mgl mrarery + T2 Meall Logo s mri iy (6.8}
In particular
”??.—sm”Loo(u,T;Lﬁ(n)) = ”7721-”111/2(1) JrTl/z”ﬁtm”JI#(U,T;:‘:”"?(1’))1
since H1/2(1) « LP(I), for each p < +oo. On the other hand
HY3(Q) = [22(2), #'(Q)] 5,
moreover H'/3(Q) <= L3(Q). Hence
: 3
IVollay < IVOIP Vol g,
It readily follows that Vv € L%(0,T; L*(Q)) and that
3 1/3
“vv!iLG(D,T:LS(Q)) = “vyniéﬂ((),i“;[,i‘(ﬂ))HVUHL[Z(U,T;HI(Q)) = Hiv”!
In particular
IVUll 20, 30y) < T3 l]l]. (6.9}

From (6.8} and (6.9) we finally obtain

l2nuavall L2y = T3 (Hﬂgxﬁﬂm(r) + Tl/z”"km||L2(0,T;Hlf2(r))) Hlelll- (6.10)
O

Now we consider the terms containing second order derivatives of v. By using
(6.6} one shows that the left-hand side of (6.11) below is bounded by

1
o{liean + Wilhomion+ - (rlimany + Fllsian | el
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Hence, by (6.1) and (6.5) it readily follows that

2,2 _
-2 MNa Vo2 -+ T Ve + _"z%'_'_nvzz
+n L2(Qr)
: 6.11
< c(l + “5;){”7?0“[:‘”(1) + T2l 2o aseeny + ey (6.11)
PPl eaerscy I ey + Tl gz PV
,_ )

Next we consider the term that depends on the pressure. By means of (6.1)
and (6.5) one shows that

liz(ne p- — npe)eilizz@r)
. . 2 (6.12)
< (“77 lpeory + [zl pee gy + €T i|TIt||L2(D»T;Hﬁ“(I})) HVpliire -

d

Finally, we consider the terms originating from the "nponlinear” term. Since
- Bsey < - 2wl || Lo(y and H' () < LP(Q) for each [inite p (here p = 6),
it readily follows that
1/2 1/2
19vlecomizeen < cllvl o oIl ey
Consequently

3 1/2
v Vollcampen < CTIMH’U”L/DE(D,T;Hl(ﬂ))IEUHL/?(O,T;HQ(Q))'

By using (6.1) and (6.5) it follows
|~ @+ oL, + (2001 — v2)U ]l 202 @)
< TV (L I apssaqry + T2 el o mosssra o)) WO

In conclusion, from equations (6.2), (6.4), (6.7), (6.10), (6.11}, (6.12) and (6.13)
oue easily shows that (4.1) holds. For convenience, in this last equation we assume
that (3.7) holds. O

(6.13)

Next we prove (4.5),. Recall that V-w =~ —nDv + 27, Dy, where D means a
first order derivative with respect to x oI 2.

The main quantities to be estimated in order to bound the left-hand side of
(4.5), are (|2 9zs DVl L2(gr) and |29z D?vll12(q)- The first of these two quanti-
ties is bounded by the right-hand side of (6.10). The second one is bounded by
lin2 )| oo (@73 1w lil, which, in turn, is estimated by resorting to (6.5). We left details
to the reader. i




ol
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In order to show (4.5), we estimate the L?(Q7) norm of n,v; just as done
above for 1, D%v. On the other hand the L*(Q7) norm of ny v is estimated as
follows:

Il UHL?(D,T;L?(Q)) = C”'ntm“Lz(O,T;L‘*(Q))“U”L""(O,T;L‘l(ﬂ))
< TY2|\mefi poo o a2y -
Details are left to the reader. |

Next we prove (3.15). From (2.28); and (2.29) it readily follows that
Ipoll ey < el Vipoll-

Nate, in this regard, that the left-hand side of (2.29) is a linear continuous func-
tional on Hy (€2). Hence, in particular

lwoll p2go. ey < eliVpollLzor220))- (6.14)
Next, we consider the expression of P given by (2.13). One has

2+ n; < 6”2+n§
147 HY2(1) B 147
1
Sehi T 12+ mellm oy vl iz
el ol
< e(1+ ImallGn vl az -

llve,2 [ 20y
H(i)

U2 2

In a similar way we estimate the other terms that compose P pPy-After all,
we deduce that

Tl 2+m2
U z+ U Vo o
T+n " Tl V2, Try =

< o1+ el ) vl a2y, (6.15)
Hi2(7)

as a+a? < {1+ a®). Since HY(I) — H®2(T), it readily follows that the L*(0,T)
norm of the left-hand side of (6.15) is bounded by

c (1 + ”"h

iw(U,T;HWZ(I)})mU!Ei-

Finally we estimate the L°°(0, T; H*/*) norm of 1, by arguing as for (6.8). All
that yields

?,2(0,1';1{5/2(1)) Hlwlll-
(6.16)

F@ — prpoli oz S €P2 1+ ||?701|?1r5/2(1) +T%2||n,
From (6.16) and (6.14) one shows that (here we use the “bar” notation)
18,7, Bo)ll20rsm 24y < corlVBolliaan)
+epa(l + Hnoil?{ﬁﬂ(f)+T3/21|ﬁt1|?52(n;1';;{w2(1}))!Hm”-

(6.17)
O
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Next we estimate the L2(0, 7% Hi#/ *(1)) norm of g(t) = c};[n, v}. Since é depends
only on ¢ this norm coincides with the L2(0,7; L?(1)} norm.
From (2.15) one has, for each t,

30 < 214 el aaemy) IVl o (6.18)
Hence, by using (6.3), it follows from (6.18) that
pill@lirzm < epa(l+ G ooy + Tlinell7 (Q,T;Hsﬂ(r)})“v“ﬁL?(D,T;LZ(F))'
Next, by Theorem 2.1, Chap. 4, in reference {12], one has
HV'U“HU‘l(O,T;LZ(F)) < cllvli.
Since HY/4(0,T) — L*(0,T) it readily follows that
Vol eomeaay < Tl
Hence
pull Bl 2,y < cp2 TV + 0 7oy + T|lﬂt|liﬂ(g,qgg5/2(1)))|“V’UIH- (6.19)
Note that under the assumption T < 1 the right-hand side of (6.19) is bounded
hy that of (6.17). Consequently (3.15) follows from (6.17) and (6.19). d

Finally we estimate the L*(0,T; H -=1/2(]}} norm of the solution 7,; of equation
(2.20). From (2.20) it follows that
el 2 o,m 220y = Ml 2o, r;merzy) + €01 bl 220,79
+ | @[7, T, Pollt 20,7y —12(T)) -
From (3.16) and (6.19) it readily follows ihat
Wucll oo a2y < T2 + e pa TR+ 19012 oy + T )0

@0, 7, Bolll 2 0,75~ 12(1))-
(6.20)
On the other hand
1807, 9, B}l 2052200y < 1011 VBollez0,25020))

Ao 2475
N Uz + U2,z — 1+2;: U2,z

+cpz .

L2 ((},T;Lz(l‘))
(6.21)

Note that the H~3/2(I) norm was replaced by the stronger L?{I') norm. Next

247 H 2 + 72 _
— U2,z A | g [{o2 - |l 20,7, L1y (6.22)
L+7 L2(0,75 L2 (1)) L4+7 ll po (0,7 0400)) i ()
Since )
247 1
“ 1 = < 2+ n2 Lo msn8 (1))
+ 0 lgomipeay %0
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it readily follows that

|5

— 2
147 =¢ (1 + |IanL°°({)_T;H1.t"2(I)}) ) (6.23)

Lo (0, T, L ()

as HY2(I) — L*=(I).
On the other hand, by interpolation, one shows that

_ _7/8 /8
190 s s5 0,177 ey < €I oozl @y

Hence
VB rago,myaary) < cliielil,

and, by well-known embedding theorems, it follows

VT Loss o mzairy < il

Consequently
193l 2 raay < T (6.24)
From (6.22), (6.23), (6.24), it follows
2475 1/8 2 .
Sy, < T3+ [l 00 0,17, 11372 WP
H 1+7 12(0,7%L2(1}) L= (0TI

The other two terms that compose the last term on the right-hand side of (6.21)
are treated in a similar way. Hence, from (6.21) it follows that

137, 9, Bolll 2o mseacey < eo1l Vool 2@

/s 5 (6.25)
TN LN a1
Finally, turning back to (6.20), one gets
W7l omrz2ey < et VPollLz(or)
oo T3+ [0 3oy + NTNIINTL (6.26)
+ T2
0O

References

1] H. BEIRAG DA VEIGA, On an Buler-lype equation in hydrodynamics, Ann. Mat, Pura.
Appl. (4) 125 {1980), 279-294.

[2] B. DESIARDINS AND M. J. EsTERAN, On weak solutions for fuid-rigid structure interaction:
compressible and incompressible models, Clomm,. Partial Diff. Eq. 256 {2000), n. 78, 1399~
1413.

i3] B. DesiarDINS, M. J. EsTEBAN, C. (3RANDMOMNT AND P. LE TaLEc, Weak solutions for
a fuid-elastic structure interaction model, Rev. Mat., Comput. 14 (2001}, n. 2, 523-538.




52 H. Beirdo da Veiga JMFM

[4] D. ERRATE, M. J. ESTEBAN AND Y. MADAY, Couplage fluid structure, un modgle simplifié,
C. R. Acad. Sci. Paris, Ser. I. Math. (1994), 318.

[5] R. Farwic aAnp H. SoHR, The stationary and nonstationary Stokes system in exterior
domains with non-zero divergence and non-zero boundary values, Muth. Methods Appl.
Sci. 17 (1994), 260-291.

[6] L. FormaGaIa, J.-F. GERBEAU, F. NOBILE AND A. QuarTERONI, On the coupling of 3-D
and 1-D Navier—Stokes equations for fow problems in compliant vessels, Comp. Methods
in Appl. Mech. Engng. 191 (2001), 561-582.

[7] A. V. Fursikov, M. D. GUNZBURGER AND L. S. Hou, Boundary value problems and
optimal boundary control for the Navier—Stokes system: the two dimensional case, STAM
J. Contral and Optim. 36 (1998), 852-894.

/8l A. V. Fursikov, M. D. GunzBURCER AND L. 5. Hou, Trace Theorems for three-
dimensional, time-dependent solenoidal vector fields and their applications, Trans. Amer,
Math. Soc. 354 (2002), 1079-1116.

[9] C. GRANDMONT AND Y. MaDAY, Existence for an unsteady fiuid structure interaction
problem, RAIRC, M2AN Math. Model. Numer. Anal. 34 (2000), n. 3, 609-636.

[10] C. GRANDMONT AND Y. MaDpay, Fluid-structure interaction: A theoretical point of view,
Revue Européenne Elem. Finis (to appear).

[11] J-L. Lions AND E. MACENES, Problémes auz limiles non homogénes et applications, vol.
I, Dunod, Paris, 1968.

[12] J-L. Liows aND E. MaceNES, Problémes cux limites non homogénes et applications, vol.
11, Dunod, Paris, 1968,

[13] A. QUARTERONI AND L. FoRMAGGIA, Mathemalical modelling and numerical simulation of
the cardiovascular system, MOX-Report No. 01 — January 2002, Diparlimento di Matem-
atica, Potitecnico di Milano, Milano (Ttaly).

[14] A. QUARTERON], M. TUVERT AND A. VENEZIANI, Computational vascular fluid dynamics:
problems, models and methods, Comput. Visual Sci. 2 {2000), 163-197.

[15] V. A. SoronNikov, Coercive L-p-estimates for solutions to the initial-boundary-value prob-
lem for the generalized Stokes equations in a half-space, Probl. Mat. Anal. 20 {2000},
243-270. English translation: J. Sei. (New York) 102 (2000), no. 5, 4523-4543.

[16] V. A. SOLONNIKOV, LP-estimates for solutions to the initia} boundary-value problem for
the generalized Stokes system in a bounded domain, Probl, Mat. Anal. 21, (2000}, 211-263.
English translation: J. Math. Sci. {New York) 105 (2001}, no. 5.

H. Beirdo da Veiga

Dipartimento di Matematica Applicata “U. Dini”
via Bonanno 25/B

Pisa

Ttaly

e-mail: bveiga@dma.unipi.it

(accepted: September 9, 2002)

To access this journal online:
http://www.birkhauser.ch




