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Abstract. The well known differential relation —Ap = div (v-V}v concerning the
solutions (v, p} to the Navier-Stokes system of equations suggests the possibility
of more strict links between the pressure p and the velocity v. Here we prove
some Tigorous results in this direction which aiso have applications to the study
of the regularity of solutions. The starting point is an integral estimate (see {2.8))
below, proved in the first part of this work (see the references). :
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1 TIntroduction and resulis

In the sequel {) is an open, connected subset of R™, n > 3. Our assumptions on
Q) are particularly weak. We assume that  is bounded, locally located on one
side of its boundary T and such that H3(2) — L2 (2),1/2* = 1/2 - 1/n. We set
Qr = 0% (0,T) and Ty =T x (0,T) where T is a fixed positive real number. We
denote by ||v||, the canonical norm of v in the space LY = L2(0)), 1 < g < +o0.
The symbol ||vflg - denotes the canonical norm of v in the space L7(0,7;19), 1 <
r,g < +oo. Hf = H}(€) denotes the ciososure of CZ°(0}) with respect to the L2-
norm of the gradient. The space Hj is endowed with the norm ||[Vu|lo. We use
here the same notations to indicate functional spaces and norms for scalar and
for vector fields.

In the sequel we will use the classical Marcinkiewicz spaces LI(FE), where E
is a measurable subset of R™ and 1 < ¢ < +oc. In general we denote by |E| the
Lebesgue measure of a set E. Let us recall the definition on LI{E): A measurable
function f(y) belongs to LI(E) if there is a constant [f], such that

(11) werwi>as (L), v

The smallest constant [f], for which (1.1) holds is called the “norm” of f in LE(E).
Important properties of these spaces are the following slgebraic and topological
embeddings:

(1.2). LYEYCLI(B)CLY (), ¥Ye >0,
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which shows that LY is “very close” to L4,

The existence and uniqueness for solutions of the Navier-Stokes eguations
{and related questions) are among the major problems in the theory of partial
differential equations. Fundamental contributions are due to various authors, in
particular J.-L. Lions to whom this paper is dedicated (see, for instance, [8],
chap. I, commentaires).

Let us start by explaining the motivations that lead us to study the Navier-
Stokes equations by the method followed here and in reference [3]. After a long
time, the only totally satisfactory estimate that one has been able to prove for
solutions of the Navier-Stokes equations (1.3) is the energy estimate, obtained by
multiplication by v followed by integration. Hence it seems to us quife natural
and (we believe) promising to try to improve the known regularity results by
using method which have shown to be sufficiently strong in proving L” estimates
and, in addition, that are based on devices similar te the one providing the energy
estimate. These two conditions are satisfied by the truncation method, introduced
by E. De Giorgt [5] and further developed by other authors, in particular O.A.
LadyZhenskaja and G. Stampacchia (see [7], [12] and references).

This note is concerned with the solutions of the Navier-Stokes equations

%— Av+{v-Viv+Vp=0,

(1.3) dive =0 in Qr,
v=20 on Tp,
v(z,0) = vo(z).

We assume here that v € Hj and divoy = 0 in 2. We point out that the boundary
condition v = 0 on v is not at all essential. Similarly, the introduction of an
external force f in equation (1.3); can be treated in a straightforward way as
dene in section 3 for the stationary case. We assume here thai vy € L and
denote by ko a constant such that [Jug|lee < ko. For convenience we assume that
kp = 1.

In reference |3] we proved that if

2
2l crrorrey, 24T o
1-+|'U| " qg

(1.4)

then the solution v of problem (1.3) is bounded in @p. Actually the result
in reference {3] is stronger since the assumption (1.4) is replaced by a weak-
er condition (see [3], Eq. (1.6)). It follows that (v,p) is “smooth”. It is worth
noting that by replacing in the assumption {1.4) the function |p|/(1 + |v|) by
|v| one gets the well known statement (pioneering papers are 9] and [10]; for
the sharper results see [11]) which establishes that solutions v that belong {o
70,7519, (2/r) + (n/g) < 1, are “smooth™ (the result for v is a little more
general, since we may have (2/r) + (n/g) = 1, r > n. However the same result
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holds for [p|/{1 -+ |v]}: see [4})..This fact suggests that |p| = |vf*, in formal agree-
ment with the well known equation

(1.5) ~Ap= ) 8ib;(vivy).

i,5=]

Actually, the lack of a suitable boundary condition on the pressure P prevents
from using the equation (1.5). Moreover, the equation (1.5) suggests, at most,
that p may be estimated in terms of v but not the opposite, which is just the
interesting point. In any case, the formal relation ip| ~ |v|? is significant only
at the “level of regularity” thet corresponds to v € L7(0, T; L9), 2/r+ njg = 1.
In the sequel we analyse these and other related problems, in a rigorous way, by
turning back to the Navier-Stokes system (1.3).

In the sequel we study the above problems in the particular framework of
the spaces of type L"(0,7;L¢) for which r == g. We believe that this restriction
can be easily droped, however we did not investigate in this direction. Moreover,
the basic results will be expressed in the framework of L3(Q7) spaces. Then,
the embeddings (1.2} provide results concerning the usual 19 spaces. Sufficient
conditions for smoothness envolving p and v (case § # 0) or p alone (case 6 = ()
follow immediately. For convenience we set

(1.6) ' Ne=mn42.

This is & significant constant. In fact it is just the minimal exponent (at the light
of the results knowr at present) that guarantees the regularity of solutions. More
precisely, it is known that a solution v is regular if it satisfies

{1.7) v e LN(Qr),

but & similar result is not known for any exponent less than .
Our basic result is the following (the proof is postponed to the next section):

Theorem 1.1 Let (v,p) be a weak solution of problem (1.3). Assume that for
some 6 € [0,1] and some v such that

IN

7
(1.8) 26‘+(1-~9)N<7<J\
one has v
1.9 =17
( ) (1 ‘i" f’Ui)g *(QT)
Then
(1.10) ve Ll Qr)
where

Ney

(1.11) g (1—8)
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Moreover, if

(1.12) — S E€L@n), >N,

then v € L™= (Qr).

Remark 1.2 The solution v is “smooth” if v > N/(2 — 68), # € [0,1], since in
this case u > N. —

Remark 1.3 From our proofs it follows that in the assumptions (1.9} and (1.12)
(as well as in (1.13) below) the set Q7 can be replaced by a set B(k;) (see
definition {2.12)) for an arbitrarily large value k1. —

Remark 1.4 The case v > N falis within the range of application of the Theorem
I in reference [3] by setting there ¢ = r = N (see also {4]). However, the proof
here is much easier to handle. —

Remark 1.5 The condition v > 2N/[20 4+ N(1 — 8)] is assumed here only in
order that g > m, where m = 2(1- 2/n). In fact, by {2.9), weak solutions of
Navier-Stokes equations necessarily beiong to L™(C7). Hence (1.10) is obvious
when p < m. —

Remark 1.6 At the light of the formal relation p =~ |v|*, the assumption (1.9)
corresponds to :
v e L (Qr).

Hence there would be an increase of regularity if 4 > (2 — #)y and a loss if
u < {2 — 8)y. This means N/(2 — ) < v and v < N(2 — 6}, respectively. There
would be no change in the level of regularity if v = N/(2—6). In this last case one
has g = (2— @)y = N where N = n + 2 is the minimal exponent that guarantees
smoothness of solutions. —

At last, let us consider by itself the case 8 = 0 since this is just the case in
which the pressure p appears alone in the hypothesis (1.9).

Corollary 1.7 Let (v,p) be a weak solution. to problem (1.3). Assume, moreover,
thal
(1.13) p € LI(Qr)

for some v €12, N[. Then

Nry
N -~

(1.14) v eLMQr), p=

In particular if p € Liwz(QT) then v € LY (Qr) and ifp € LZ/"?(QT), v > N,
then v is “smooth”.
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It would be interesting to know if p € LN2(Qr) (or even if v € L¥(Q7)) is
sufficient to guarantee the “smoothness™ of the solution.

Remark 1.8 It is worth noting that, in spite of the presence of the nonlinear
term {v-V)v, the regularity result stated in the Corollary 1.7 is just that obtained
for solutions of the linear equation dv/0t — Av = Vp, where p is given. However
this comparison with the heat equation is still not compietely satisfactory, since
in equation (1.3) p is an unknown. For instance, if p € L?(Qy) the solution of the
above linear equation belongs precisely to L*{Qr), p = 2 + n/4 (which formally
corresponds to the limit case v = 2 in Corollary I). However this same result
holds for the Navier-Stokes equation whether knowing if p belongs to 12(Qr) or
not.

Remark 1.9 In reference [6], S. Kaniel proves that ¥ p € L%(0,T,1¢) with
g > 12/5, then the solution is smooth (here n = 3). This result looks weaker
then ours since it requires 2/r 4+ 3/g < 5/4, although 2/r + 3/¢ < 2 should be
sufficient. A result in this last direction was recently obtained by L. Berselli. —

Finally, for results concerning the stationary case

{—MAU-F(’U'V)U**-VP:L

(1.15) dive =0 in Q,

U= on' I,

the reader is referred to section 3.

2 Proof of theorem 1.1

We start by proving a lemma that extends a result due to G. Stampacchia [12],
where 6 = (. The proof is similar.

Lemma 2.1 Let ¢ : [k, +o00{—= [0,400], ko > 0, be a decreasing (not necessorily
strictly) function such that

kt?
(2.1) plh) < o lelk), V> 2k,
where ¢ and o are positive constants, 0 <8 < a and 0 < 8 < 1. Then
2.2 By < ¢ E>k
(2.2) ‘P()_@a k2 ko,
where

a—*f

and

O = op/(1-8) [cl/(l—ﬁ) - (2}90)”90(130)] _
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PrOOF :
For each h > kg set
(2.4) wir) = (3] wetn)
From (2.1) it follows that
e R+
p(h) < K ﬁ“m[@(k)]ﬁ,

for h > k > ky. By setting h = 2k one easily gets
w(2k) < 2¢[p(k))°.
Hence _
B .
v < (277w,
for each positive integer 7. It readily follows that
(2.5) $(27k) < 27F [+ (k).

Hence ¢ is bounded. Since any real M, M > kg, can be written as M = 27k,
where k) € [ky, 2ko] and 7§ is an integer, it easily follows that

(2.6) Y(M) <2 [1+ (k).

On the other hand

1

b(k1) < LS D) < (_15) =3 e )
Hence ]
(2.7) Yik) < G) P (2ho) (ko).
From (2.4), (2.6) and (2.8) one gets (2.2). | —— QED (Theorem 1.1)

In the sequel we assume that the hypotheses in theorem 1.1 are satisfied.
We start by introducing the fundamental estimate (2.8) below. We set

Aty ={z € Q: u(z,t)] > k}

and define
v¥ (1) = max{|v(z, )| — k, 0},
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for each k > 0. In {3] (see [3], Eq. (2.21)) we prove that

' 64 5 (T 1 |pf?
2.8 2 o IV, < mi\«%/ / da dt,
( ) | 112.0._,7 |I H2‘2,T U Jo Jaww 1+ |,Ul2
for each k > ky = max{l, juy|oc}. We note that there is a slight difference
between notations here and in part I, where the scalar quantity v* is denoted by
jv|®) and the symbol v* is used to denote the vector field v = (1o]%* /jv))o.
One easily shows that

(2.9) fulgrr £ clluld oz + Vel 2r),
where
2.10) 2, n_mn
(2. ST
See |7], chap. II, Eq. (3.4). From (2.8) and (2.9) one shows that
(2.11) k2, < d~2f Lclscdt
| ST Uy (T Tl
where '
(2.12) Blk) = {(z,t) € Q7 : |v(z,t)] > k}.
In particular, by setting m=g¢=r, ie
2
m o= 2(1 + E)
one gets
(2.13) 1512, o < ck? / bl
' | ™= e (LD

On the other hand
2/m :
[ 2 > (/( )I'vklm dz df) > (h— k)*|B(h)2™,
B(h

for h > k. Hence

m/2
L™ IPF
B < o K" / e dz dt
|B{ )i—c(h_}g)m (B(k) (1+ |u])? ’ ,

where (here and in the sequel) ¢ denotes any positive “numerical constant” . Since
k < |v] on B(k), it readily foliows that

mé Iplz m/2
JB(h')‘ < CW (/B(k) W dz dt) .
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Next we prove that (1.9) implies

2 2
(214) /B -—ﬂ—dzdt<_7_'}’_~szB(k)l—ﬁ

where, for convenience, we set M = [|p|/{1 +.|v])3].r. In order 10 prove (2.14) we
show that if g € LY(E), where v > 2, and B C E then '

(2.15) /Bg2 dy < ColBI* 3,

and we apply this result to g = |p|/(1+ [v|)¢, B = Qr and B = B(k). This yields
(2.14). |
Let us prove (2.15). One has

2 Foo
/Bg dy =2f0 {y € E: gl >0} NBlode

ra +oo /1l \7
52] |B|0d0+2f (—i'l) odo
0 a G

— a?B|+2[g3a> (v~ 2.

By setting a = [g},|B[7/" it follows that
2 4y < 12— 1B 2
fBg dy < [9]77_21 .

Next, from (2.12) and (2.14) one obtains

e
h—k)m

for h > k > ko. Now, we apply the lemma 2.1 to the function ¢(k) = |B{k)|, with
8 replaced by.fim, with @ = m and with § = m{y — 2)/2v. This shows that

Co

(2.16) B(R)] < cM™ |B(E)[™E),

217) BHIsTe >k,
where X
(2.18) Cp = 2#* (cAMN_-% + (%o)“lﬂi) ;

and X = (1~-8)71 = v(N—2)/2(N—~). Recall that M is the norm of |pl/(1-+|v])¢
in the space LI {G1).

The first part of theorem I is proved since (2.17) means that v & L{{(Qr).
Moreover [v], = é/ '”.
Remark 2.2 It is worth noting that the basic estimates (2.8) can be improved.
In particuiar (2.16) holds with B(k) replaced by B(k)\B(k). We have not yet
investigated on the possible consequences of this fact. —
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Finally we prove {1.12). Let us recall the following result proved by us in a
previous paper. For the readers convenience we present here the proof.

Lemma 2.3 Let : [kg, +oo[— [0,+00|, ko >0, be a decreasing (not necessarily
strictly) function such that (2.1) holds, where ¢, 0,0, 8 = 1+ are constants such
thatc 2 0, 0 < 6 < off and § > 1. Then p(2d) = 0 where d > kg is the root of
the egquation

(2.19) d = ko + Ak ®d®—e)/x®
.and

otf | o 1
(2.20) A =2 % TR [ (o).
PROOF :

Set k; = 2d(1 — 277), j positive integer. We want to show that

| Ry < |9 "
(2.21) o) < e

Since lim k; = 2d, (2.21) implies (2d) = 0.
00
Equation (2.1) for h = kj and k = ky shows that

g
(2.2 plkr) < 2L o(ho) .

(d — ko)

By replacing (d — ko)® by the value obtained from equation (2.19) it readily
follows that the right hand side of (2.22) is equal o the right band side of {2.21)
for j = 1. Next, by assuming that (2.21) holds for some 7 > 1 and by using (2.1)
we prove that _ '
(223) . (P(kj-l'l) < do—8

da_g l+1/}(
2“(.’1‘.“*'1/‘1’)"*'9(::|

Straightforward calculations show that the right hand side of (2.23) is equal to
that -of (2.21) if here we replace 7 by 5+ 1. QED (Lemma 2.3)

Next, we consider the equation (2.16) for 6 = 1, i.e.

km

=)
e BB,

(2.24) |B(R)| < cb™

where v > N, and we apply the lemma 22 withé = a=mand 1+x = m(l— %)

2
This yields |B{(2d)| = 0, hence {|v|lpeg,) < 2d. QED (Theorem)
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3 The stationary case.

For the stationary casé {1.15) the same techniques apply. Instead of eguation
(2.20) in [3] one has

o k2 2,2 ) g
(3.1) Q/Sz[vwdmg#kfklvlgd -I—fffu

Moreover,
(3.2) [/ﬂf-'v“‘) dz| < -‘i/ﬂ ’V|u|'=;2 d:t:—:——E UAk [f|sdm)2/s,
where § = (2*)’ = 2n/(n+ 2). By assuming that

(3.3) Felf(Q

where § > 3, one has

84) ([ 1seee)™ < szt

As in section 2, we may replace (3.3) by

(3.5) | ' f e L.

From (3.1), (3.2) and (3.4) it follows (this corresponds to equation (2.13)) that
¥ 3. < ok f TR |
T Ja (Aol ?

By arguing as in section 2 with Q@ replaced by €2, B(k) replaced by Ak, N =n--2
replaced by n and m = 2* we get (in correspondence to (2.16))

kmﬁ'
h— k)™

(L1
5)

n~

1_1
(3.6) |45 < C 4™ 4 | Ag|™

C
(h— k)™
where, for conveniehce, the dependence on M and on the norm of f is contained
in the constant . Next, we choose § such that

on _
n»~25ﬁ+lIu

(3.7)

where now 4 is defined in eguation (3.10) below (compare to (1.14)). Note that if
g == 0 the exponents of |A;| in equation (3.6) coincide. Moreover 1/p=1/6—2/n
as expected, since W20 — LE

Next if # = 0 we apply the lemmas 2.1 and 2.2 {o the inequality (3.6). If 6 % 0
a generalization of these lemmas is needed. In this way the following result holds:
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Theorem 3.1 Let (v,p) be a weak solution to problem (1.15) where the boundary
condition is given by assuming that v — @ € HF{Q), for some ¢ € HY{(Q) N
Lo(8), llelloo < ko. If T s sufficiently regular this means that v € HY2(T) N
L2(T), llellLeeqry £ ko. Assume that for some 0 € [0,1] and some v such that

8 "__'_2_?'?'__ <yv<n
(8:8) Wri—on <™
one has P
3.9 7 € LI()
(89) L
and, moreover, that I satisfies (3.5) where § is defined by (3.7). Then
, , o
(3.10) vel®), w=(-0L L.
If p
LI

and if (3.5) holds for some d > n/2 then v € L=(Q).
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