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Abstract. In view of the lack of a global regularity theorem for the solutions (v, p) of the Navier-

Stokes equations there has been a great deal of activity in establishing sufficient conditions on

the velocity v in order to guarantee the regularity of the solution. FHlowever, nontrivial conditions

involving the pressure scem not to be available in the literature. In this paper we present a sharp

sufficient condition involving a combination of v and p. The proot relies on the truncation

method, introduced in reference [3] for studying scalar elliptic equations and developed further

by many authors (see, in particular [6] and [4]). In the sequei we use some basic results proved

in [4].

1. Introduction and results. In the sequel €2 is an open connected subset of IR,
n > 3. For convenience we assume that €2 is bounded and locally located on one side
of its boundary T, aregular manifold. Weset Q7 = x(0, T)and Xy =I'x(0,T)
where 7 is a fixed positive real number, We denote by {jv||, the canonical norm in the
space L¥ = LP(Q2), I < p < oo, and set ||v] = ||vilz. The symbol [ v}, , 7 denotes
the canonical norm in the space L"(L9) = L7(0,T;L9), 1 < r,qg < oo. The
symbol [[v|l¢,, denotes the canonical norm in the Sobolev space Wb = Wha ().
We use the same notations for scalar and for vector fields defined in Q orin Q7. The
same convention holds for functional spaces and norms. We also use some obvious
notations like |V}l = || |[Vu| . If v = (v, ..., v,) we define

Voi=[ 3 @u]".
i.j=1

Einstein’s summation convention on repeated indices is used throughout the paper.
Finally, | E| denotes the n-dimensional Lebesque measure of the set E.
This note is concerned with the solutions of the Navier—Stokes equations
B pAv+(v-Vv+Vp =0,
dive=0 in Qrf,
v=0 on Zy,
vix, 0} = vo(x),

(1.1)
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where diveg = (0 and vy € Hol (€2). The introduction of an external force f in
equation (1.1}, can be treated in a straightforward way. We leave it to the reader.

We are interested in studying sufficient conditions for regularity of solutions.
Since bounded solutions are regular we are concerned with sufficient conditions for
boundedness on Q7. Hence we assume in the sequel that

lvolloe = ko (1.2)

for some positive real kg. There is no difficulty in replacing the boundary condition
v = 0 by v.= v on Xy, provided that v; € L*®(Z7). In this case ko also must
satisfy

folloo, 2, < koo (1.3)

We start by recalling some classical results and by showing the close connection
between these results and our work. We will refer to [4] since we follow similar
- methods. We note that in Chapter VII of this reference the authors also treat systems
of equations, However the system (1.1) is not included there. Hence we will just
refer to some results for linear scalar equations since this is sufficient to get a better
understanding of the known results for the Navier-Stokes equations and to suggest
new ones. Consider the scalar equation

ov av af;
A b = 1.4
ar " AVtOi = T (14)

with initial and boundary conditions like (1.2), (1.3). Clearly, this particular equation
can be treated by more classical methods. Assume that

bi, fi € L'(LY) f e LV%(L3/%), (1.5)

where 5
S+ <1 re@ool, g e (n ool (1.6)
roq

The pairs (r, ¢) can be different for distinct coefficients. Under these assumptions

the solution of (1.4) is bounded in Q7. See [4], Chap. I1L, Sect. 7, Theorem 7.1,

Moreover, just for the coefficients b;, (1.6) can be replaced by

2 n .
—-+-=1 gen o0, (1.7)
r q

as follows from the Remark 7.3, loc. cit.

Next we apply, in a formal way, the above results for solutions of (1 .4) to solutions
of (1.1) and we compare these (fictitious) results to the real known results for (1.1).
We remark right now that we are interested here in obtaining sufficient conditions
on the pressure to guarantee the regularity (boundedness) of the solution (the typical



THE SOLUTIONS TO THE NAVIER—STOKES EQUATIONS 1151

results concern conditions on the velocity alone). We show in the sequel that we
can obtain better results than those directly suggested by the regularity results for
(1.4). Let us start by assuming that the solution v of (1.1) satisfies |v|* € L"(L9),
for some values r, g. Since (v - V)v = d,,(y;v), |v|? plays the role of the f;’s in
equation (1.4). This suggests that v should be bounded whenever |u]> € L"(LY)
for a pair (r, g) satisfying (1.6). However, the known results for the system (1.1)
establish that v is regular if v € L"(LY), (r, g) satisfying (1.7). This stronger result
is suggested as well by the results for equation (1.4) by considering the equation

%_?——‘Auwk(v-V)u%—Vp:O (1.8)
and by associating the v;’s to the b;’s (and by treating ¥ = v as an “unknown”). The
main point here is changing |v|* by |vi and not (1.6) by (1.7). However, it is not
out of interest remarking that also this last substitution entirely fits with the results
obtained for (1.4) (see the Remark 7.3 quoted above).

Let us now consider the pressure term as the “known regular term.” In this case
the device consisting of using the equation (1.8) has no counterpart. This is a cruciai
point to keep in mind. On the other hand, comparison of (1.1) with (1.4} shows that
p corresponds to the f;’s. This suggests that the solution of (1.1) is regular if

pe (0T, LY (1.9)
with (r, ¢) satisfying (1.6). However the well-known equation
—Ap = 8;8;(v;vy) (1.10)

suggests some correspondence between | p| and [v|?. The sharp result would be to
prove that the solution v of (1.1) is regular if p satisfies (1.9) with r and g satisfying

2
ATISLAYY (1.11)
F q

We ignore if this result holds. However, it is worth noting that the equation (1.10)
only “shows” that |p|<|v|?. There are even no heuristic reasons to believe that

Iv|><|p| (hence, sufficient conditions on the pressure seems harder to prove). Nev-

ertheless we are able to prove that v is necessarily bounded in Q7 if

|p
I+ |vi

€ L'(0, T; L (1.12)

with (r, ¢} satisfying (1.6). The assumption (1.12) still corresponds to the strong
sufficient condition v € L7(0, T; L) with (r, gq) satisfying (1.6}, if we suppose
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that | p| =~ [v|2. However, as claimed above, there are no arguments supporting that
|p1<|v|?; hence, our condition (1.12) looks stronger.

Actually, our sufficient condition is stronger than (1.12). We prove that v is
bounded in Qr if (1.12) holds just on the subset where |v(x, )| > k for some
arbitrarily large k. More precisely, let k be any positive real and define

{ PO, O/ + lu(x, 01)if [u(x, 0)f > &,
0

1.i3
otherwise, ( )

d(x,t) =

We prove the following result.

Theorem 1.1. Let v be a weak solution of problem (1.1), where v, satisfies (1.2).
Assume that for some positive real number k the function ¢y belongsto L' (0, T': L4 )
for some pair (r, q) satisfying (1.6). Then v is bounded in Qr. In particular. v is
bounded in Qr, if (1.12) holds.

2. Proof of Theorem 1.1. Without loss of generality we assume in the sequel
that ¢ and r are finite. Theorem 1.1 will be proved by using the truncation method,
introduced in reference [3] by E. De Giorgi and further developed by many authors,
in particular by G. Stampacchia and by O.A. LadyZenskaja and N.N. Ural’ceva {(see
[6] and [4]). This method was first applied to variational inequalities in reference
[2]. On the other hand, in reference [5], J. Moser gives a different proof of De
Giorgi’s theorem. One can prove results similar to those obtained by the truncation
method by using Moser’s approach. This was done, in particular, by D.G. Aronson
and 1. Serrin (see [1]) for parabolic equations.

We set, foreach & > 0,

k .
0 _ { (1 -— m)v if lv] > k,

) (2.1)
1] otherwise,

where v is a vector field defined in some suitable domain. Note that in reference
(4], Chap. VII, a different truncation is used. Definition (2.1) corresponds to sefting

v
v® = |v|("‘)}—v—|, (2.2)

where the truncation of a scalar function S is defined by
F® = max{f —k,0). (2.3)

Note that
P IEN O (2.4)

On applying the truncation method, the first step consists in using the function »*’
as test function in the weak (variational) formulation of the problem under consider-
ation. The justification of the necessary manipulations is standard. However, since
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the solution of problem (1.1) is locally (in time) regular for an L= N Hy initial data
and, moreover, is regular as long as it is bounded, it is sufficient to prove here that
solutions in Q that are regularin Qy_, foreach e > 0 and satisfy our assumptions
in O are necessarily bounded in Q7. Concerning the regularity of the truncated
functions, it is well known that if a scalar function [ belongs w WOI’2 then the trun-

cated function £ still belongs to the same space (see, for instance, [6], [4]). The
equation (2.2) shows that the same result holds for vector fields, since k > 0. Here

8v® = gy — ko, I% in A, 2.5)

and 3;v™ = 0in Q/A,, where
Ay ={x e Q: o, 1) > kj}. (2.6)
If divv = 0 in R, one gets from (2.4)

divp® — kﬁ%ag vy in Ay, @7

dive® = 0in Q/A,. In particular
vo® < X o
|div o™ | < HIVUJ in Ay, (2.8)
v

By multiplication of both sides of (1.1}, by v® followed by integration over 2 one
gets

f(a,u)ukdx+ufVv.vukdx+/(v-V)y-u’<dx+/ Vp v*dx =0, (2.9)
Q Q Q 2

where, for convenience, we set from now on v* = y®. Let us study separately
each of the above integrals, From (2.2) it follows that Ve = | ® /s, =
[0}, [v]in A;. On the other hand 3v]® = 8,Jv| on Ay since the scalar field [yt
is the truncation of v/ (see [4] for details). It follows that

1d 1d
fg(&,v)vkdx = Ea;/gﬂv}(k)]zdx = EEEfQ [v® 2 dx, (2.10)

by (2.4). Note that integrals over §2 /Ay vanish. Next we show that

va-Vv"a’xzf Vv 12 dx. (2.11)
Q2 191
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Since both integrals vanish on /A, we only take into account the domain A;. One
has, almost everywhere in Ay,

k
Vo Vb = Vo2 4 kv (- ) - Vo, (2.12)
vt |

where (2.5) was used together with v/|v] = v*/[v*|. Denoting v* simply by w,
straightforward calculations show that

vuw.v-2 = Ly Z( aw, 2.13)

|w] iwl

Since

(o)’ = Y (G

Xj ij

it readily follows that the left-hand side of (2.13) is nonnegative. This fact together
with (2.12) proves (2.11).
Next, we consider the “nonlinear term.” We will show that

f(v-V)v-vkdx: (v- Vv - vdx =0. (2.14)
Q Ap

One has, almost everywhere in Ay,

v (Bv)vf = 0 (uf 4+ Jeu /ool = (/20108 + kwidi (o] /10 o). (2.15)

f v,-a,-lv"‘lzdxzfU53;|vk|2dxx()
A Q

since divv = 0in Q and v € H, (). By taking into account (2.15) and the identity
w; 0; (w;/lw]) = 0, we prove (2.14). From (2.9), (2.10}, (2.11) and (2.14} it follows
that

Moreover

flvlderufinIdeerp v dx =0, {2.16)
2d1‘ Q

foreach k > 0. Clearly,

|/Vp-vkdx|§f Ip| IVv¥|dx.
o A

However this estimate is too crude for our purpose. We will improve it by showing
that

|pr.vkdx|§k/ 1Pl G0 . 2.17)
Q Ay %Ul
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One has, from (2.7),

k Vi V;
/ Vp vdx = —k P50 dx. (2.18)
0 A 1Y

k

Next
o™ vsd; = o) = 8(vh| + 1) = & v = v ) vk ;v

in A, It';fcf::adily follows that

' '-':'--jﬁ[é!f]v,—vja,-vj[ = [l kgt < ) vt).

2 2
0¥ dx + ﬁf (Vo2 dx < -«sz %dx. (2.19)
' 2 Jg s A (Y]

'-;'where w is a vector field, and [v¥)? = (1v[%M2 one has
Zdx + ﬁf VI[P Pay < 22 | 2L 50 (2.20)
2 Jg M X

1_i1e that the real parameter & satisfies k> k= max{ky, ky,1}.
0f(2:20) on (0, T)™ it readily follows our main estimate

s , 5
i S Hv!(k}!é‘ < _6ik2f / %ﬂh_dx dt, (2.2
F T i o Ja 1+ v?

where |-_-I : ér IS defined by (see [4], Chapter I, Section 1, Equation (1.5))
| \flar = 1 laoor + 1V Fllaor.
By denoting the function & (see (1.13)) simply by ¢, by taking into account the

hypotheses made in Theorem 1.1, and by using Holder’s inequalities, one easily
shows that

*))2 E‘Ekz 2 g sl N5
Hul®)G, < p 60g,nr( [ 1A= dr) ™ (2.22)
¢
Hence, for each & > !:t,

8 T fdyy 4
1Vle, < =1l fo A ()50 1) A5 (2.23)

*More precisely, we integrate on (0, T — €) and we prove boundedness in O7-c, uniformly with
respect (o ¢,
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where x = 2¢/n, e = 1—2/r +n/q),and 7 = 2r/(r —2), § = 2q/(q — 2).
Note that ¥ € (2, oc). Moreover,

1 + n n
F+x)  2g(1+x) 4

(2.24)

Since 7 (1 + x) € (2, 00), (2.24) shows that g(1 + x) € (2, 2n/(n — 2)). Theorem
6.1, Chapter Il in [4] shows that |v| is bounded in Q.
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