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A NEW REGUIJARITY CLASS FOR THE
NAVIER-STOKES EQUATIONS IN R~

H. BEIR30O DA VEIGA™
Abs'tract

Consider the Navier-Stokes equations in R" x (0, T),forn > 3.Let 1 < o < min{2, nf(n—2)}
and define § by (2/a) + (n/8) = 2. Set o' = af(a — 1). It is proved that Dv belongs to
C(0, T;L>') 1 L*'(0,T; L*#/(n~2)) whenever Dv € L*(0, T; L?). In particular, v is a regular
solution. This results is the natural extension to o € (1, 2] of the classical sufficient condition
that establishes that L>(0, T; L) is a regularity class if (2/«) +(n/~) = 1. Even the bordertine
case a = 2 is significant. In fact, this result states that L%(0,T; W) is a regularity class if
n < 4. Since W1 « 1 js false, this result does not follow from the classical one that states
that L2(0, T; L*) is a regulanity class. :
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§1. Introduction

In this paper we shall consider the initial value problem for the Navier-Stokes equations
mm R" x (0,T), n>3, _ '
Gv+(v-V)v— Av=Vr,
divey = 0, (1.1)-

v(z,0) = vo(z).

We assume, for simplicity, that the external forces vanish, é.lthough it is an easy exercise
to include non-zero external forces. We are interested in the classical problem of finding, in
the framework of Sobolev spaces, sufficient conditions for the existence of a regular (unique)
solution. '

If v € 1,400}, we denote the space LY(R™) simply by- L7and the canonical norm in
this space by || -||,. We use the same symbol to denote functional spaces consisting of scalar
functions or consisting of vector functions. For instance, we denote the space LY x---x LY {n
times) simply by L7, This convention also applies to other symbols as, for instance, norms.

Many authors proved that uniqueness and regularity for solutions of the Navier-Stokes
equations hold under the assumption that v belongs to L® (0,T; L") where

' 2 n
E + ; = 1, (12)
Y > n. See, for instance, the classical references [11, 18] (for n = 2, [10, 7, 12]); see also
[7, 9] and the more recent developments in 13, 4, 6, 14, 16, 15]. More precisely, under the
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above assumption (1.2), the uniqueness of the solution was proved by Prodi in reference [11]
for n = 3 and by Sather and Serrin (see [13]) for n > 3. In [13] regularity is also shown
if n < 4 and (2/e)+ (n/7).< L Sohri) succeeded in proving that the above class (1.2)

is even a regularity class. This last 7esult was also proved (independently) by Gigall. For

n = 3, a simplified version of the proof is given in [17]: Ttis a]s;éi known that C(0,T; L™) is

a regularity class (see [16]) and that L*(0,T; L") is a uniqueness class (see [14]). We are

interested in obtaining results in this same spirit. ' -
' Let 1 < @ < min{2,n/(n — 2)} and define 8 by

2,n_, 3

| s t5=? | (1.3)
We prove that if o o , , ,

pvel*@©T:L%, . . .. @4

then Dv € C(0, T; L¥)NL*' (0, T} Lzﬁ'/(_,'f_""’_)_)‘. In particular v is a regular solution. Moreover,
the sharp estimate (2.6) holds. See Theorem 2.2 below, where o = p’ and § = pfn./2 (the
assumption p > max{2,n/2} is equivalent to the above assumption on a). - o
Let us show that our result is the natural extension of the above classical result to values
@ < 2. For convenience let us denote by W18 the completion of C§°(JR™) with respect to
the norm || Dv||s. Note that, in the classical condition, a 2 2 and v < n. In our condition,
a < 2 and 8 > n. Nevertheless, in order to comp'a.ré with the classical result, let us overlap
both situations by assuming a > 2 in our theorem (in fact our theorem holds also for o > 2).
Since 8 < n, the Sobolev embedding theorem W% — LF holds, where §* = wp/(n— B).
Consequently, our assumption (14) yields (exactly) v € L*(0,T; L#). But this is just the
classical assumption, since the pair (a,8*) satisfies '(1.2).'- This argument shows that our
result is just the natural extension of the classical one to values o < 2. In this last case, less
regularity in time.is balanced by additional regularity in space. In the classical situation the
regula‘ﬁty assumption in space, L7, reaches its maximum 7 = 00 for « = 2. Hence, if @ < 2,
one has to go-beyond -L™. In our Sobolev spaces framework, this means starting to use
W8 gpaces. For o = 2 (common to both:conditions) our condition (1.3) gives 8 = n. This
' borderline case is particularly interesting. Our result shows that (if n < 4) L*(0, T; W) is
a regularity class. This does not follow from the classical result, that states that L?(0,T; L)
" is a regularity class, since Wl oy [ is false (if n > 2). e
Next, consider the case & € (1,2). Now the value of the classical index 2/a+ n/~, applied
to our regularity class L*(0, T;W#), is 2/ (since ¥ = o). Since 2/a is larger than 1, the
classical theorem does not apply. On the other hand, our result shows that, in this new
situation, the significant index is (2/e) + (n/f*), which is ‘equal to one if the assumption
(1.3) holds. Here 8* = n3/(n ~ ), independently of the fact that the Sobolev’s embedding
theorem W€ «— LA is true or false {we could also consider fractionary Sobolev spaces).
Curious enough, for a = 1 one gets L1(0,T; Whe), which is a regularity class for the
Euler equations. In fact, it is the sole (among ‘the above classes (1.4)) to be a regularity
class for the Euler equations (according to what is known at present). In this regard, note
that in equation (1.4) one can replace Dwv by curl v. o -
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§2. Proofs

Let us introduce some notation. We set &; ='8/0z;, i = 1,2,--- ,n, and 8, = /ot
The symbol 8 denotes indifferently Oz, for any 4, or 3;. Moreover Dv denotes the tensor

a,;‘Uj,r Z,J:— 1,"' y T, and
n
[Du(@) = 3 18:5(a)l?,
4j=1
where v = (v1,--- ,u,) is a vector field over IR". We define
1Dkl = (5 1003/ 0] )"
! - IQI k i1

where o = (a;, -+ ,a,) is a multi-index. A similar definition holds for scalar fields. We

denote by C(0, T; X) the Banach space of bounded continuous functions on [0, T] with values
in a Banach space X. Finally, if p € (1, 00), we denote by p’ its dual exponent p’ = p/ (p-1)
~and, if p € [1,n), by p* the Sobolev embedding exponent p* = pn/ (n = p).

In the sequel we prove the following a prlon estimate.

Theorem 2.1. Let p € {2,00). Assume that v is a regular solution of problem (1.1) in
some interval {0,T). Then, if

Dv e LZ (0, T; LP™/?), B (21
one has '
Dv € C(0,T; LP) n LP(0, T; LP™/(»—2)), (2.2)

Moreover,

: T
sup [IDu(B)]2 + / D) P dr
0<t<T 0 n~2

< dDuOE 1+ exp(e [ IDNEpar)]. e

Here, and in the sequel, we denote by ¢ (or by cg,c1,- -+ ) positive constants that depend,
at most, on n and p. The symbol ¢ may be used, even in the same equation, to denote
distinct constants.

Remark. It is already known that (2.1) is a regularity class if p € (1,2), since in this
case one has 2/p’ 4 n/(pn/2) = 1. For that reason, we assume here that p > 2.

In order to avoid argumentations of secondary importance in our context, we shall state
the following application of the above a priori estimate in the fra,mework of the classical
Leray-Hopf solutions {8, 5] (defined as in [3], section 5).

. Theorem 2.2. Suppose vy € L? and is divergence free. Assume moTeover, that Duvg € LP
for some p > max{2, n/2} Suppose v 15 a Leray-Hopf solution of problem (1.1} in [0,T). If

Dv e L (0, T; LP™/?), (2.4)
Then
Dv € C(0,T; L) n LP(0, T; LP™/ (n=2)y, (2.5)




410 CHIN. ANN. OF MATH. Vol.16 Ser.B

Moreover,

sup [|Du()|2 + / 1 Dv(e) e dt
o<t<T 0 n=2

< o\ D)2 [1 + exp(c /0 . an(—r)ng;sz)]. 7_ (2.6)

In particular v is a regular (unique) solution in [0, T).

Proof of Theorem 2.2. Since vp € L? and Dvg € L? with p > n/2 it follows (by
Sobolev embedding theorems) that vy € LY for some g > n. Hence, the solution v is regular
and unique (for instance, in the Hopf-Leray class) on [0,73}, for some Ty > 0. See [3, 6,
16, 14, 4]. By the a priori estimate in Theorem 2.1, together with the assumption (2.4), it
foliows that (2.6) holds in {0, 7] (together with the energy inequality, etc.). This argument
shows that as long as (2.4) holds (i.e., until the time T') the regular solution v satisfies (2.6),
and can be extended by a continuation argument.

Let us show, in a more direct way, that (2.5) is a regularity class. If p > n/2 it follows
that v € L°°(0,T; L9) for some g > n, since Dv € L0, T; L?). Since 2/o00 + n/q < 1, the
result foliows. If p = n/2 (hence n > 4} and if, moreover, n > 4, then pn/(n —2) < n. By a
Sobolev’s embedding theorem v € LP(0, T; L9), where ¢ = [pn/(n—2)]*. Since 2/p+n/q = 1,
the result follows. Finally, if p = n/2 and if n = 4, one has Dv € L*(0,T; L*)n L%(0, T; L*).
Consider any f-interpolation space, 8 € (0,1), between L>(0,T;L?) and L?(0,T;L%).
Choose, for instance, § = 1/3. Then

1/3 2/3
|1Dvlis < (| Dol Dv|[3°.

Hence Dv € L3(0,T; L?). In particular v € L3(0,T; L*?), which is a regularity class since
2/34+4/12 = 1. Note that we use the classical regularity result under the simplified condition
2/a+n/y <1 (except when n =4 and p = 2).

Proof of Theorem 2.1. The folldwing identities will be usefull in the sequel.

a(fIP2F) = (p - DI fIP~281, (2.7)
V- V(S = (= DIV AR, | (2.8)
V(A1) = BirE vy, | (2.9)
From (2.8) and (2.9) one gets
vr v = 2w e, e

Apply 0 to both sides of equation (1.1);, multiply by |8zv;|P~?8,v; and integrate over
IR". By taking into account that v is divergence free and by doing suitable integrations by
parts one easily gets :

1d
S 10z + [ V@) T (0k7~20k0) iz

<c / VOrl| DulP~ldz + ¢ f | DufP*dz, (2.11)
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where integrals are over JR™. By using (2.10) we show that

1d 4p—-1 -~
*a,'-tllak‘vjlig"'7‘(‘“1,2_)/IV'(lf'-‘)ﬂchf'::T *0v;) P dz

- 1
< o| D2l [l DullE™ + | Dullp,
where Holder’s inequality has been used in order to estimate the first integral on the right

hand side of (2.11).
Next, we apply the Sobolev embedding theorem

[wira > of [157ae)"

in order to estimate from below the integral that appears in the last equation. This yields
1 d 1 -
g 1%villy + clldwvill:, < el Dollpis + el Dx ||| Dollp~.

By adding with respect to k and 7 we show that

1 d
GIDVIE + cull D, < call Dollsh + call D2l Doz, (2.12)

"~ Next, by applymg Holder’s mequahty (with exponents 2*p/2,p’ and pn/2) to the integral
on the right hand side of the identity

|Do|rt? = f |Dv||DofP/¥ | Dvldz,

one proves that’

1 i
[1Dvlip31 < 1Dvll s |1 Dol[/P (| Do 2
Hence, by Young’s inequality,

CzIIDvIlﬁii<(01/4)|le””- +CIIDvll - [| Dol (2.13)

On the other ha.nd since v is divergence free,

An = Z(ﬁlvj )(85v;).

Hence, by Calderon-Zygmund inequality!? it follows that
[ D?nllp < cl| Dolf3, (2.14)
Next, note that
1 12 1)
2p  2*p/2  pn/2’
Hence, by interpolation, one shows that
1Dvll2p < 11 Doll 23 Dol (2.15)
From (2.14) and (2.15) it follows that
1Dl Dol <
By Young s mequahty o ' .
C3[|D27T”p”D'U”p_ < (61/4)||D'UI| +-CI|D0I|3;;I|DUII§- (2.16)
From (2. 12) (2.13) and (2.16) it readily follows that
1 d ' -
= 1Dvllz + "-IID?JIIP_;}1 < ¢f| Dol [ Dv]3. (1.17)
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This shows (2.3}, since %E = .
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