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H. BEIRAO DA VEIGA (%)

On the Periodic Solutions to the Kirchhoff-Bernstein
Nonlinear Wave Equation (**).

Ahbstract. ~ We prove the existence of periodic solutions to a class of nonlinear
wave equations which contains, as o particuler case, a classical equation
proposed by Kirchhoff and studied by Bernstein. The very elementary
method used here gives, however, o concrete and significant description of
the solutions. On applying our result to the linear case one gets oll the peri-
odic solutions to the problem under consideration.

1. ~ Introduction.

In his Vorlesungen diber Mechanik ([Kil, 1883), G. Kirchhoff propo-
 sed the equatio

. =
Wy uu—(lﬂ’z f uﬁdm)um=0, y=>0,

- 'to describe the transverse motion of an elastic stretched string. In 1939
8. Bernstein [Be] proved local solvability for regular initial data and
- global “solvability for analytic data, for the Cauchy problem. After
Bernstein’s paper a large number of authors have studied the above
equations. See, for instance, [AS], [Ca1,2], [DS 1,2], [Dil,2,3], [GH],
[Li], [Na), [Ni],[Po]. However, the problem of the existence of global
solutions for arbitrarily large infinitely differentiable initial data is still

(*) Dipartimento di Matematica, Universita di Pisa, 56127 Pisa, Italy.
(**) Nota giunta in Redazione I'8-VI-1994,
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open. Here, we want to construct time-periodic solutions to the
problem

Yy — (J |Vu|2dm)4u=0 in Q,
Lo

(2)
B’Hr|£=0,

where £2 i an open subset of R”, % = 1, and I' iz its boundary. Moreo-
ver, g = R x Q2,2 =R X T, and me C(Ry ; R). Ry denotes the set of
nonegative reals and C(X, Y) denotes the set of continuous functions on
X with values in ¥ We denote by IR* the set of the positive reals. In
equation (2) Bu z =0 denotes a suitable, homogeneous, time indepen-
dent, boundary condition. Examples are: The Dirichlet boundary condi-
tion %z = 0; The Neumann boundary condition (Su/9v)x = 0; The mi-
xed Dirichlet-Neumann boundary condition wz, =0, (du/dv);5, =0,
where MU= I NI=8 2,=R xI;,i=1,2; The space peri-
odic case; The case 2 =R,,.

The solutions are constructed by following the elementary method
of separation of variables plus suitable reflections. However, this con-
struction will be not presented below since it is more convenient to
check that the «solutions» obtained solve the equations rather than ju-
stify rigorously its construction, step by step.

We start by considering the following generalization of problem (2).
Let A be a linear or nonlinear operator, whose domain D(A) and range
are sets of real functions ®(x) defined on 2. We assume that, for each
¢ e D(A) and each u e R, u¢ € D(A) and A(ug) = |u|?(signu)Ag, for
some g € R*. In particular A(—¢) = —A¢. If ¢ is a real function of the
real variable {, we define

A(ypp)(t, x) = |p(2)|? (sign p(DINAP) () .

For instance, if A4 is the differential operator defined in equation (22)
then ¢ =p — 1 and AQW() B(x)) = |W(E)|P 2 W) AD(w).

In the sequel we denote by A2 and ¢ a fized positive eigenvalue and
a fixed eigenfunction of the operator —A, ie,

(3 -Ap =1%p.

The argument below is developed for each fixed couple (1%, ¢).
Next, let F,, i=1, ...,k be real functionals defined on D(A4)

satisfying
4 Fiug) = |uliFi(¢),
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for each ¢ R and each ¢ e D{(A). Here [, e Rj,i=1, ..., k. For instan-
ce, if F(g) = J. |VP|2 dx then [ = 2. Hence, if ¥ is a real function of the

9 _ : _
real variable ¢, one has F)(yp@)t) = |w(D)|2F,(¢). Finally, let
m e C(RE; R) be given.

Consider the equation

Jlutt - m{Fy[u], ..., Fplu)Au =0,

2 w(t)e D(A), VieR.

«Boundary conditions:::' if some, are included in equation (5),. Define
(6) M(s) = m(sh Fy{¢], ..., s"F, (],

for each s € Ry . Note that M(:) depends on the particular eigenfunction
¢. Next let a be a fized positive real number such that

M jsqms)ds >0, Voeld,a),
4
and
af a -1/2
8) = J (JSQM(S)dS) do < + o,
g \e

The assumption (7) is satisfied in «almost all» cases, The assumption (8)
is satisfied whenever hm M(e)/(a - o) "¢ < + w for some £ > 0. No-

te that this holdg if M(a) # (. In particular, il m(y) > 0 for each y =
=1, .y Yz) € (RT)Y then each a e R* satisfies (7) and (8).
Now, we show that to each fixed triplet (1%, ¢, a) it corresponds a
periodic solution w«(f, x) to problem (5) with period given by (13).
Define

¥/ a -1/2
(9) 2(y) = j (jqu(s)ds) do, Vyel0,al.
[t} @

Clearly, z € C([0, a]) N C*([0, a]). Moreover,

¥

@ -1/2
10) z'(y)=( stM<s)ds) ,  Yyelo,a),

and z'(e) = + . Let y =g(z) (ze [0, t]) be the inverse function to
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#(y). Tt readily follows that geC2([0,7]) and that, for each
ze[0, 7],

a 1/2
g'(z)=( Is"M(s)ds :

glz)

(1D
7@ = - 3 (@) Mg

Moreover, g(0) = 0, g(x) = a, ¢'(2) > 0if 2 € [0, 7), g'(r) =0,9"(0) =0,
g"(zr) = —(1/2)aM{a). We extend the funetion g to the whole R as fol-
lows: first, define g(r +2)=g(r —2), for each ze[7, 2r]. Then set
g(z) = —g(—=) for each z € [ —27, 0]. Finally, extend ¢ to the whole BB
as a periodic function with period 4z. Note that g e C*(R).

The functions

(12) ult, ») = = g(V2AD) $(@)
are periodic solutions to the problem (5) with period given by
(13) T = 47/\/24.

The verification is left to the reader. u

ExaMpLES. Assume that £ is an open, bounded, subset of R™ and
consider the problem (2). Let A% and ¢, (x) denote the (positive) eigen-
values and the corresponding eigenfunctions to the problem

{ _‘dqbn:’li@n in 9#

4 qunff‘ =0.

Assume, for convenience, that ernq)m dx =8y, 5 Here, A= —4,9= 1,
k=1, Flul= [ |Vul® ds, 129, Choose P, () = Az ¢, (x). Assume

j#]
that m(s) = 0 for each se Ry, and that m(b) > 0 for some b.
The above construction shows that to each couple (a,n)e(b,
+) X N it eorrespond two time periodic solutions

(15) Uy, m(t, @) = £ A7 ga(V2A,8) $5 ()
to problem (2), with period given by

@ -1/2

4 2 d
(16) Ton \/Ean’ gJ'sm(s Yds do .
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The function g, (z) is defined as done above for g(z) (see eq. (9)) by re-
placing s9M(s) by sm(s?).

It is worth noting that equation (15) furnishes all the periodic sol-
utions to the linear wave equation. In fact, if we set m(s) = 1, Vse Ry,
the formulae (15) gives

an Ug, 1 (t, @) = = ad; sin(1,1) @q ().

Note that A = +1;'a is an arbitrary, non zero, real number. Variations
of the parameter a give rise here to variations of the amplitude A but
not to variations of the period 27/A,. On the contrary, for the Kir-
chhoff-Bernstein equation (i.e., m(s) = 1+ y?s) the period
1

W — a7 -1 2y-1/2 | ay |72
(18) T, = 44" [(1—8%) 1+§ya(1+s) ds
0

depends on the parameter a. Note that (independently of y) the period
T¢), runs from 27/4, (which corresponds to the linear wave equation)
to 0, as the parameter a runs from 0 to + .

Another example is given by the problem

Uy —m([uzdm,f |Vu]2dm)4tu =0 in @,
2 2

19
B’Mw =90,

where m e C(Ry x R¢ ; R). In this case the above result holds if we re-
place m(s?) by m(A;%s?, s%). Here, 7, and g,(y) depend on n.

Finally, we consider an example in which the operator A is nouli-
near. Let © be an open, bounded, subset of R* n=z1, and let
p > 2nf(n + 2). Consider the Dirichlet boundary value problem

- S p-2 o 3
@0) Ty m[u]igl(!VM U )y =0 iIn @,

u§z=0,

where

(21) mlu} Em(j |]4 de, ,J |u|1’da:;J |Vae |+ dee, ,J |Vu|l'=dx).

2 £2 2 2

We assume that 1s < p*=np/(n—p)forj=1,...,7; and that 1 <
sh<spforj=r+1, .., k. Above, m(y) is a real continuous function
over (R ). Assume, for convenience, that m(y) is positive if y e (R* Y.
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Set
(22) Au= = 3 (|Vu|uy,),,

j=1

and D(A) = W} ?(2). Moreover, let

Filu] = j [ulide i=1,.., r,
2

 Filul= f IVulbde ifi=r+1,.., k.

2

Here, ¢ = p — 1. The above general result applies. To each a > 0 and ea-
ch couple (A%, ¢) such that —Agp = 12, ¢ € Wi?(R), it corresponds a
couple of time-periodic solutions of problem (21), given by the above
construction. Note that the eigenvalue problem —Ag¢ = 12¢ admits
nontrivial solutions since the embedding Wg P (£2)c L2(LQ) is com-
pact.
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