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Singular Limits in Fluidynamics.

H. BEIRAO DA VEIGA(Y)

Introduction.

In this paper we consider the equations of metion of a compressible
fluid depending on the viscosity coefficients » and x and on the Mach
number A 1. We assume that 1 = 1 (we are interested on letting 4 go to
) and that v € [0, vy], £ €0, #o], where the constants vy and g, are
fixed. Viscous and inviscid fluids are treated indistinetly, since 0 iz an
admissible value to the parameters v and u.

We denote by v the velocity field, by ¢ the density and by
p(4, ¢) the law of state that links the pressure p to density g.
We are interested on studying the behaviour of the solution {o, V)
as, simultaneously, the Mach number goes to zero (le., ag Ai— =)
and v—v 2 0. Our proofs hold if p(i, o) satisfies the general as-
sumptions described in our previous papers[BV1,2]. The erucial point
is to assume that lim p' (4, 9,) = ©, as 1 — », where Q¢ denotes
the «mean density» of the fluid. Nevertheless we will consider the
particular case

(1.1} p(i, 0) = A%p(0),

where p(-) is a fixed function. The extension of our results to general
p(d, 0’s can be done by following devices similar to those used
in references[BV1,2]. For convenience we assume that the external
forces vanish since the manipulations needed to treat the corre-
sponding extra terms are quite obvious. We consider the case where

(*) Indirizzo dell’A.: Mathematics Department, Pisa University, Via F. Buo-
narroti 2, 56127 Pisa, Italy.
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& belongs to the n-dimensional thorus, » = 2, identified here to the
set &2 =0, a[*. Without loss of generality we set a = 1,

In the sequel R+ denotes the set of positive reals, moreover Ry =
=R" U {0}. We denote by k, the smallest integer larger than n/2
and by k a fixed integer such that k =k, + 1. We assume that pe
e C**I(R*; R) and that p’ (s) > 0 for each s e R*. We denote by |-,
and |-[; the usual norms in L? = LP(Q), 1< p < o, and in the L2
Sobolev space H'= H'({2), respectively. We set ||-]| = |-|,. By Il 7
and [-}, 7 we denote the canonical norms in L~ (0, T, H') and
L*(0, T; H') respectively. A funetion £(t, ) of the space variable x (for
a fixed t) is sometimes denoted by f(¢).

The equations of motion of a compressible fluid in € under the costi-
tutive relation (1.1) are

or+tvVo+oVw=0,
(1.2) ol + (v V)v) + A%p (o) Vo = vdv + uV(V ),
0(0) = g4 + 0y (), w(0) = vy (x),

where g, is a fixed positive constant. We assume that, oot o) Z ey,
where ¢) is a fixed constant. We study the above problem by making
the change of variable

(1.8) g =logo/o,.

Since the general case ean be brought back to the case 00=1, we as-
sume, for convenience, that g, = 1. The equations (1.2) are equivalent to
the equations

g+tvVg+Vo=0,
(1.4) vt+,12¢’(g)Vg+(v-V)v:e*g[vAvtuV(V-v)},
g({)) = 9'0(55'); ’U(O) = T}g(ﬂ?),

where, by definition ¢'(s)= p'(e’), for each seR. Hence ¢'e
e C*(R; RY),

Our results will be expressed in terms of the unknown g. In order to
get them in terms of g the only rules to keep in mind are that lg]w is
bounded if and only if |g|,, and |o " |, are bounded and that conver-
gence of g to 0 in H™ is equivalent to convergence of ¢ to ggin H™; see
Lemma 3.5, in appendix.
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Finally we recall the equations of motion of an incompressible
finid

Vw=0,
(1.5) wy + (w-Viw + Vo= v 4w,
w(0) = wy(w),

where V-, =0 and v 2 0 is.a constant,

The Lemmas 1.1 and 1.2 below are just minor improvements of re-
sults stated in[KM1]. In spite of that, we give here complete proofs of
the a priori estimates. The Theorem 1.5 improves, in some aspects, the
Theorem 2 in reference [KM1] (these improvements are due to a careful
use of the standard techniques). As a matter of fact, this paper is in-
tended just as a preparation to reference[BVT7]. One has the following
results.

LeMMma 1.1. Assume that
(1.6) Mgolls,+1 < €1 oo llky +1 < €1 -

Then, there is a positive constant T, that depends only on ¢, such that
the problem (1.4) has o (unique) solution (g, v) e C(0, T; H ko + 1y, More-
over, g, C(0, T; H") and v,e C0, T; H*~1). If v=p =10 then ve
e C(0, T; H*). Furthermore,

LD A%l vt ol s 2 + v[Volk, 10 + 4V vl 1, r s Cp
where C) depends only on c.

We point out that k, n, uy, and v, are fixed once and for all (hence,
eventual dependence of other quantities on these constants is under-
stood). Constants that depend only on the above fixed parameters are
denoted by c¢. Constants denoted by C; depend only on ¢,. As a rule, the
same symbol is used to denote distinct constants provided that they are
of the same type (ie., depend on the same parameters).

In the sequel the constant 7' is always the same one appearing in
Lemma 1.1, hence it depends only on ¢.

LEMMA 1.2. Assume that the hypotheses of Lemma 1.1 hold and
that gy and v, belong to H k(k = ky+ 1). Then, the solution (g, v)
of (1.4) belongs to C(0, T; H*), moreover g,e C(0, T; H*~ 1) and v, e
eC0, T; H*"2), If v=p =0, then v,e C(0, T; H* ™). Finally,

(1.8)  A%glf ¢ + IR ¢ + VoK 7 + [V 0E, S C (A%(|gol + kol .
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In particular, if

1., Mlgolls < 24 loolle < c2
then
(1.10) A2||glB 7 + ot r + Vol ¢+ ulV 0T < G

where Cp depends only on e, and Ca.

Note that the above lemmas show that ¢, and v, are regular on [0, T
but do not furnish uniform estimates with respect to the parameters. In
this direction, one has the following result.

LEMMA 1.3. Assume (1.6) and (1.9). Lel I be an integer, 0 1=
<k-1Ifl=k- 1lalso assume that vV vy and p ¥V - v belong to H® Un-
der these hypotheses one has

(1.11) ﬁzl\gtll?, 7t “Ut “§ pt V[V’”s]%, r+ulV 'T’t]lz, s
< Cp(A* Vel + ARVl + lhwg 7 + vV 41 + 7 A 7, 1)

The symbol Cy denote (possibly distinct) constants depending only on
¢, and Ca.

COROLLARY 1.4. Assume (1.6), (1.9} and

(1.12) AV wlse,  AlVgl<e.

If 1=k — 1 also assume that

(1.13) V[Tl + 4V 0 le < €4 -

Then

(1.14} ABgllf - + g | 7 + VIV 2 ulV wlir<Cs,

where Cy depends only on ¢, Cz and ¢y (amd on ¢y, i 1= k—1).

In the sequel we drop the symbol (0, T) from the notations denoting
funetional spaces. For instance we write C(H*) instead of C(0, T H"),
and so on,

To each set of fixed constants k, 1, vy, thos C1s C2s C3» where k = ky +

+1,0sl<sk—1,v920, o ? 0, ¢y, ¢z, €3 € RT, we associate the set
(115) xX= {(”05 o ’L v, .!u) €
c H* x HE x [1, o[ X[0, v} X [0, mol: (1. 6),(1. 9),(1.12) hold} ;
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If 1 =k — 1 we also fix a constant ¢, e R* and assume that (1.13) helds.
The results stated above show that to each (v, gy, 4, v, #) € x it corre-
sponds a solution (v, g) = S(vp, go, 4, v, #) of problem (1.4) that satis-
fies the estimates (1.7), (1.10), (1.14). One has the following result.

THEOREM 1.5. Let (v, go, A, v, #) run over y and let (v, g) =
= S(w, o, A, v, pt). Then

(1.16) lim (0, g, %, go, V-0, A2VG(g)) = (w, 0, w,, 0, 0, Vix)

(o, A, ) — (g, o, ¥)

where w 18 the solution of problem (1.5) and the convergence of vy to wy
is in the H® norm (hence, by (1.12), it must be V- "Wy = 0). In (1.16) the
convergence of the six terms on the left hand side is, respectivelly, in:
L= (H*) weak-* and C(H® ), £ > 0; C(H*); L™= (H") weak-*; C(H");
C(HYY); L™ (H*"2%) weak-* if L=k — 1 and L” (H") weak-* 1'f0<l<
=k -2

In addition: If v > 0, then v—> w weakly in LE(H**') and (strong-
Lyy in LE(HP*177), and v,—w, weakly in LE(H'Y If p runs over
L4, ] for some ji > 0, then V-v— 0 weakly in L2(H"), and (strongly)
in LE(H* %), and V- v, — 0 weakly in L¥*(H").

It is worth noting that convergence with respect to topologies
stronger than the above ones, for g, for g,, for V-, and for V¢(g), fol-
lows now immediately by using the equations (1.4). For instance, g, con-
verges in C(H k-1-ey moreover (for each & > 0)

(110 Jim A1 (lgll, 2 + gl 2 + 19 -0, ) = 0

Let us just prove the estimate (1.18) below, useful in the part IT (see
[BVT]} of this work. Equation (1. 4),, together with (1.8) and (1.14),
shows that 12[[Vgll, r < Cs. Since AVglix -1, r < Cs it follows, by interpo-
lation, that

(1.18) /‘LI -1 !IVg"Iﬂ —g = 03 .

The Theorem 1.5 follows easily by using the uniform estimates (1.7),
(1.10), (1.14), well known compact embedding theorems, the uniqueness
of the solution of problem (1.5) and the equation (1.4). Note that » is
bounded in W * (H°), since {jt], » and [lv; |lo, » are bounded. Moreover v
is bounded in L= (H*) and H* is compactly embedded in H". 9. Hence,
compactness in C(H°) follows by Ascoli-Arzeld’s theorem. Comp act-
ness in C(H"* ¢) follows immediately since |-[ls_. »< '/ 7| Hk T,

= ¢/k. Details are left to the reader. The estimates (1.7), (1.10), and
(1.14) will be proved in section 2.
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The incompressible limit for compressible fluids was studied by
many authors under different hypotheses. In references[Ebi,Z2],
[KMi, 2] [Ag], [M],[Scl, 2,8],[U], [As],[BV6] the authors consider in-
viseid fluids. Viscous, stationary fluids were studied in[BVI1,2]. Vis-
cous, nonstationary fluids were studied in[KM1). In this last reference
it is assumed that k = ko + 2, that Ay — wy i + A%ligol; < ¢; and that
vAllog — wy | + 1 < ¢, hence that AV vy, < c5 (see (1.12);) and that vy —
— woll, + Aligo |l < €5 /4 (which implies that (vy, Agy) — (wy, 0) in H* as
1— ; see eq. (1.19), below).

It is worth noting that the above results are not completely satisfac-
tory. In fact, the solutions (v(t), g(t)) describe continuous trajectories in
the Hilbert space H* (the data space). Hence, the natural and optimal
result is to prove convergence in the strong norm C(0, T; H*). Note
that convergence of g to 0 (hence of the density ¢ to o) follows from
(1.17). However, the convergence of v to w is still an open problem ex-
cept if » and y vanish identically, ie., if v, = g = 0 (see[BV6]). In the
part IT of this work, see[BVT], we prove the convergence of » to w in
the C(0, T; H*) norm whenever (vy, dgy, A, v) converges to
(w0, 0, o, ¥) and g remains bounded. If, moreover, v # 0, then we also
show convergence in the L2(0, T; H**!) norm. On the other hand, if
u—pn#0, then V.o V-w in L%(0, T; H*). We also prove that
AlVgll 1 r converges to 0 (the sharper convergence result under the
natural hypotheses made here). More precisely, in reference[BV7] we
prove the following result:

THEOREM 1.6 (). Under the assumptions of Theorem 1.5 one has

(v, Ago, A, v} — (awp, 0, o, ¥

(119 lim )(Ilv =wlf r + 22[VglR- 17 +

+lv—why1,r)=0.
If; in addition, g — ji = 0 then [V-(v —w)], »r— 0.

We point out that in spite of the uniform boundedness of the s in
C(0, T; HY) it is false (in general) that v, — w, in the C{O, T; /') norm.
Analogously, if »> 0, then the #’s are uniformly bounded in
L2(0, T; H'). However, it is false (in general) that v, — w, in the
L2(0, T; H') norm. The convergence of v, to w, in the strong norms can
be proved if additional assumptions are done on the initial data. How-
ever, these additional assumptions look quite artificial

(1) Here, we assume that ¢' e C**1(R; R*) (ie. pe CFYH{R*; R)).
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Finally, we note that the main points in the proof of Theorem 1.6 can
be easily extended in order to cover the general class of problems treat-
ed in reference|KM1] (in this direction, see[BV6], Theorem 2.2).

Proofs.

We will prove the a priori estimates claimed in the previous section.
The proof of the existence of the solution follows then well known de-
vices: Linearization of equations (1.4), proof of the fundamental a priori
estimates (obtained just as done below) and construction of a fixed
point.
In the sequel we denote integrals j f{z) da simply by J f{x) or even

by I f. If D* denotes partial differgntiation, a=(ay, ..., a,), we set
D={fg} =D*(f9) - fD°g).
As usual, |D™f|* = |aT§—:—-m |Def|2 For brevity, we set
dfr=e.
We start by applying the operator D“ to equation (1. 4);, by multi-
plying by 12¢ ' (g} D*g the equation obtained (this corresponds to sym-

metrization; see[KMI1]) and by integrating over . This shows
that

2 2
en 2L [yunigr+ L [ @0 v+ V-0 P -
[V ok + i [ D {4 (@099} D -
—EZJ/QB'(Q')D“’EJ‘V(D“Q) - lzjqb"(g)Vg'Dﬂquag =0,

Next, we apply the operator D® to the equation (1. 4);, we multiply it
by D%v and integrate over £. This shows that

@2) %%!]D“vllz—klzJ¢'(g)VDag-D“v+112Jﬁ“{qﬁ'(g)Vg}-D”v—
—%J(V'v)lD“'uiz+ Jﬁ“{(?)-V)v}-D“v=

= —vIE(—g)|VD“v|2 + vJé’(—g)Vg-VD“'u-D“'u +
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+Vfb“a{é‘(—g)m}-pav—
“#J’E(—Q)ID“(V-?))IZ +#J§(—9’)V9"(Dav'?))l)“v +

+u Iﬁ”{é’(—g)V(V-v)}-D“v.

Now, we add, side by side, the equations (2.1) for 0 < |a| < m to the
equations (2.2) for 0 < [a| < m. Then, we estimate the L*-norms of the
single terms according to the following devices: Estimate the D¢ terms
by using (3.5). Take into account that |- |.. < cf-|,,. Take into account
(see (3.7) that [[D*9 ' (9)l| < B(flgl,IVal. - - Use the Cauchy-Sehwarz
inequality in order to split the v and the x4 terms according to a stan-
dard and well kknown device. This shows that
1 d

1d e 1o 2 ol
@3) 5 B+ SE =gl )Vl + alV o) <

< 2Bl IVt + el + Dol + 42 BlI0g ke, Hell Nl + el + 1 [, +

v Bl + 190l + 2 Bolba gl + e BRI + 19 - Dl 2 ol Il

where, by definition,
@4) BR =49 @) 2 |DIgl + o,
j=

and § = B([glly,). Here and in the sequel we denote by 5(-) increasing
functions that belong to the class C* (R ; R*). The same gymbol f is
used to denote distinct functions. These functions depend only on ¢’, on
7 and on k (we will use (2.3) only for m < k).

The estimate (2.3} is not sufficient to furnish an a priori estimate for
E}(t), except if one assumes that ¢'(r)=c>0 for each zeR, a too
strong hpothesis (for instance, if p(g) = ¢” this hypothesis is satisfied
only when y = 1).

Let us turn back to equation (1.4). Apply to this equation the opera-
tor D¥, for each a such that |a| < ko, multiply by D*g the equation ob-
tained, integrate over £, and use the estimate (3.4) with % and [ given
by %o+ 1 and ky, respectively. After same manipulations one shows
that

|2

25) gl < cllvlly + < llglR, + llgll,)-

DO | P
2

t
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On the other hand, we also note {for further use) that, since ¢'is a con-
two f functions such

tinuous, strictly positive function, there are
that

(2.6) B liglk,) < ¢ (o)) < Bllgl,),

Note that |g|., < ¢]|g],,. In particular, 1%(|g[, <

m = ky.

Proor or LEmma 1.1. Set

G2y = EE () + (g, .

From (2.3) and (2.5) it readily follows that

@ 526+ Lo g1 0ol .+ ¥ o, ) <

2 d

< A% BCll gl + 1 + ol + 1 Mgl 4 1) +

Felolly o+ Bl « 1+ o+ o) BB, 1 1 lgt, -+

where £ = B({lg[l.). Equation (2.7) shows that

1.d e
(2.8) 5 dtG (t) = ®(G(t))

where

D7) = Po)zt + 1) +er® + o) 2 + {vo+ ug)Blz) et

belongs to €= (R : R*). Since

kg +1 )
G2(0) = flgo i, + 4* f ¢'(0) 2 1D7go | + |

is bounded by ¢f + f(c;) e + ¢, for a suitable B, it readily follows from
and T depend only on

¢(”9‘”ch

(2.8) that G*(£) < C, for each ¢ € [0, 7], where Cy

¢; (dependence on n, vg, u, is not taken into account). Finally,
tion of (2.7) on [0, T] completes the proof of (1.7).

Proor oF LEMma 1.2 By (2.3) and (1.7) one shows that

@9 LB < BCL + Vel sy + Vol ) B D).

Moreover, v[Vol} ., r + HV-vE 1 r <Oy

(t) for each
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Proor oF LEMMaA 1.3. From (1.4) it follows that

gu t v Vg +V-ou, +u,-Vg=0,
@10 $ v + 270 (@) Vg, + 229" (@) 9, Vg + (0 V), + (0, Vv =
=e—@lvdv, + uV(V-u)] — e —g)g,[vAv + u V(V-v)].
Next we apply the operator D° 0<ja|si<k-1, to equation
(2.10);, we multiply both sides by 1%2¢'(g) D%g, and integrate over .
This yields

A'd

2
s oo @0tar- L [16° @1 1o-Vg + Vo) -

2 —_
-2 [1v-@ @ol@0r + 22 [ 6" @D o V0.} Dg, -
~2 [ g (@D*0) VD= 2* [ 16" @] V] 1D D] -

mlzj |D*(v,-Vg)| |D*¢;| <0.
By using (1.10), (8.2), (3.4) and (3.7) one shows that
A% d

@iy - f ' (@)D, Y = 22 Cellg D il -

e j 6" (@(D*0)- VD%, — A CylID%g0] < 0

where the constants C; depend at most on ¢; and c,.
Next, we apply the operator D to the equation (2.10),, we multiply
by D% and integrate over Q. This gives

5 e ulp+22 [ 9" @)V D7g) - Dou, +
+/12J5‘1{¢’(g)Vg¢} D%y +

-I-A'lzJ-D“[@"(g)gth]-D“vt— %j(V-vHD“%{z-!—




Singular limits in fluidynamics 65

n fﬁa{(v-vm}-pavﬁ fDﬂ{(vt-V)v]-D%tz

= =v [@=V D * = v [ Vat—g)-VD"0)-(D"00) +
+v[ﬁa{a(—gmt}-ﬂﬂvt&— v [ DelE=g o) D0, -
—ﬂjé‘(—g)wa(v-vt)lz—ujé‘(—g)(V-D“vt)-(D“’vt) +

+ﬂjﬁ“{5(—g)V(V-vt)}-D“v¢ —,uJ-Da[é'(—g)vtV(V-v)]-Davt .

By using (1.10), (8.1), (3.2), {(3.4) and (3.7) we show, after addition with
respect to a, that

@12 1 QII%II% + 2% f ¢'(g) 2 (VD) (D%v,) +
2 dt lel =1
+ 38~ gl OITuE + V-] <
< Co(llg, lbllosll; + e |F + (v + sl |F) +
+Co V[Vl + 4V ol ge ool -
Set

FE(t) = Azjfp’(g) |a;<l [Degy |2+ fulf -

By adding, side by side, the equation (2.11) for each «, 0 < |a| <, and
equation (2.12) one obtains

d

(2.13) 7

FE(t) + -21wé‘(— |9 o YAV [F + 2]V -0} <

< Gy (1 + o[Vl + 4V -olle) FE (2).

By taking into account that v[Vol p+ ulV-v% r < C; one proves that
IFBIE » < ClIF, (0. Straightforward manipulations show (111). m
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Appendix.

For the reader’s convenience we state here some useful results.
Here, Q is the n-dimensional thorus, an epen bounded regular subset of
R", R" itself, or R = {w:m, >0}

LeMMA 3.1, Let be r>n/2 IF0<s <7 then

(3.1) .79l < el £ - llglls -
IFo<1] and OSSS’I‘—}, then
3.2) Ifoll < ell £l - s llglh s -

For the proof, see{BV3], Appendix A, Lemma Al and Proposi-
tion A1,

LEMMA 8.2, Let be r>nf2, 0<i<v, Ish<srfori=1,..,m
and L+ .+l =1+ (m—Dr. Then

(3.3) Sl s ellf oy - £l -

Proor. By induction on m. For m = 2 the result hoids, by (3.2). As-
sume it for some m = 2. Since the result holds for m = 2 one has
”fl --~fm+1“t = c”fi ---fm”erlm””fm+1”.tm+1 .
Let us show that
A livros,, Sclf li, - (1 fra s, »
where {; + ... + I, = | + myr. In fact, by setting I =1+ r— [, ; one has
Osisqy [ +.., tly=l+m—1r, and [} <r for each =

=1, ..., m. Note that if it was {; <1 for some 1 (say, for i = m) then
l+m'r'=(l1+...+lmm1)+£m+lm+1<(m"~"1)1’+l~f-'r. =

LEMMA 33. Let be k>1+n/2 and 1 <i<k If |a| <1 then
(3.4) iD= {fr}l < elDf -1 Jglh - -
For the proof see[BV3], appendix A, Corollary A3

LEMMA 34. Let be |af <1 Then

(3.5) ID*{ fo} < (| DAl gl -1 + 19 ] DAY ).
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See[Mo] or[K.M] Lemma Al. Use the Gagliardo-Nirenberg in-
equalities ({Gal, [Ni]) in the form

(3.6) 1D g|s; < clgl % IDgl
where 0 <j s 7.

LEmMaA 35. Let pyeCR; R), r=1 Then, there are increasing
functions B, C” (Rf; RY) and B2e C7 (Ry x R¢; RY) such that

37 D w(glf < Brllgllalk

and

(3.8) () — D y(HIF < Ballglas |19 = fik
for each a, 1< la| St

For the reader’s convenience we show here the proof {due to Moser
([Mo]). Without loss of generality assume that |a| = r. With abbreviate
but clear notation one has

(3.9 DTylg) = Zeyp®@ (gUDg) (g2 .. (D7g)

where s; + ... + 8, =0, 8 T 28 1 ... +rs,=r,andlsp=rm The s; are
nonegative integers. Set p; = r/js;. Note that it could be p; = ». Since
(p)~ '+ ... +(p) =11t follows that

' . . ‘-'fj/f
1= [ly@@Dgr .. "< 1@ @ ,,-IJI(J Ipﬂglzm)J :
Hence, by (3.6),
T<clyp@@li 11 lg2¢ " gt
i=

This shows that each term I is bounded by B(|g| - lDgliz 1, for a suit-
able increasing function f. Clearly, f§ is hounded from above by an in-
creaging function B, € C* (R} ; R*) obtained, for instance, by applying
to B a translation to the left and a mollification.

Next, by using the decomposition (8.9) for D"y(g) and for D" p(f),
by taking the difference between each pair of homologous terms and by
splitting each one of these differences into a summation of products (ae-
cording to a standard device), an obvious extension of the above argu-
ment shows (3.8).
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