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1 Introduction

We are interested in the construction of time-periodic solutions to the nonlinear
wave equation
Yit — {&(ym))m s <<l 5 (11)

with boundary conditions
y(0,t} = y(1,t) =0, te R, {1.2)

where &(-) is an odd function. As remarked in i4], Keller and Ting [5] have shown
that, if &/(0) > 0, there are no time periodic solutions o (1.1) (1.2) which branch
smoothly from the solutions y(z,t) = asin(y/3' (O)rer(t + ¢)) sinnaz of the linear
wave equation yy = 6 (0)Yze. In [4] Greenberg considers analytic perturbations to
&(y) =" of the form

o) =7 {1+ _oxr™ ), (1.3)
k=1

where the series converges in some neighborhood of v = 0, and shows that there are
time periodic solutions to (1.1) {1.2) which branch smoothly from small amplitude
(0 < @ < 1), time periodic, standing wave solutions y(z,t) = aA(t)U(z) to the
equation i = ((yz)?)s with boundary conditions (1.2). These solutions are of the
form. y(x,t) = aA{H)U(z) + 0O(a3), and the period of oscillation is the same a3 the
period of A(t); see [4].

Our aim is to extend Greenberg’s result to the case in which

&{v) = V™ 1y (1 + B(v)) (1.4)

*Work partially supported by the Italian M.U.R.S.T. National Project “Problemi non
lineari...”




126 Hugo Beirfo da Veiga NoDEA

for arbitrary m > 1, since there are no specific physical reasons to consider only
the case m = 3 (nevertheless, the proof presents some simpler features). It is also
of interest to verify that m can take values arbitrarily close to the singular value
m = 1. We also want to drop the analyticity assumption on K. We will assume
that R is an even function of class C'(] — b,b[) N C3(] — b,b[—{0}) for some b > 0,
such that

[R(Y)| < e+, IR < chl®, iyl <b,
|R7 ()| < ey, IR Scyf®™®, o<yl <b,

\

(1.5)

where
Go=2/(m—1)if 1 <m<3; Bo=(m—1)/2if m>3. (1.6)

Remark 1.1 Note that 3y > 1, moreover Jg = 1 if and only if m = 3. Hence, in
the case m = 3, our assumption is R(v) = O(v?); compare with (1.3). We have
some evidence to see that the hypotheses on o may be weokened. We conjecture
that it is sufficient to assume that Gy > 1/(m — 1) when m € (1,3] and that
Ba > (m —2)/2 when m > 3. For m = 3, both assumptions yield By > 1/2.

QOur proof is strongly based on that of Greenberg in [4], to which we refer the
reader. The general scheme of our proof follows that of this author. These facts are
pointed out here once and for all In the proof given in {4] there are, however, two
points that need more stringent argumentation. See remarks 4.1 and 4.2 below.
We are grateful to J.M.Greenberg for useful discussions on these points.

In order to study the problem (1.1), (1.2}, one scales the variables by setting

y(z,t) = a®wulz, at/v), (1.7)

where @ and w are positive constants and s = 2/(m - 1). Then, equation (1.1)
becames

20 = (wa® Y (5@ wuy ) - (1.8)
By taking into account equation (1.4) one gets
Urr = W™ o (ug))s (1.9)

where o(y) = o(v;a) is given by

o(y) = ™y [ 1+ Rl@™Twy) ] . (1.10)
The boundary conditions are
w(0,7) =u(l,7)=0, TeR. (1.11)

Let us now consider solutions of the problem (1.9) (1.10) in the rectangle
Q={(z,7) : 0<x<1/2, 0<7<n/2} with boundary conditions

w(0,r) =, (1/2,7) =0, 0<r<m/2, (1.12)

uw(z,0) = u,(z,7/2) =0, 0<z<1/2. (1.13)
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Since o(} is an odd function it follows that, if u is a solution of (1.9) (1.12) (1.13)
in Q, then the following extension of v (obtained by reflections, and denoted again
by w) is a solution of (1.9) (1.11) on the whole plane R?. Set, for each = € [0,1/2],
uw(z,7) = ulz,m — 7y if 7/2 < 7 < moulz,T) = —uf{z,~7) if =x < 7 £ 0.
Finally, extend u(z,7) to all real 7 as a 7-periodic function of period 2w (for each
w € [0,1/2]). Next, extend u to all z in [—1,1] by defining u(x,7) = w(l—a,7)if
1/2 <z <1, u(z,7) = —u(—z,7) if =1 <2 <0. Finally, extend u to all real x as
a z-periodic function of period 2. Hence, our aim now becomes that of solving the
problem (1.9) (1.12) (1.13) in Q, where o is given by {1.10).

In the particular case in which the function £ vanishes identically, the above
problem, more precisely, the problem

v 2 = wl T ()™ nQ, (1.9Y
with boundary conditions (1.12}, {1.13) admits the solution
u(m,'r) = AU(T‘)U[)(CL) (1]_4)

where Ag(7) and Up(z) are defined by

Ao(7} da & v
= 0<rT<m/2 1.15
/0 (1 —amt1)1/2 [(m -+ 1)/2]1/2"° sTs7/2, ( )
and
D)y Ml L m
/D (1 u2)1/(mtD) = Sy ) wg e, 0z <1/2 (1.16)
By definition
T ey L 'S L R
o= (m+1) 0 (l_u)Q)lf(m+1) : )
! da
. 1/2_—1
v =[2(m + 1)] 2n /0 (—l———a”?m' (1.18)

Note that 2( A +1}
1 — m
AH 2 a4m — 0 AV — v 0 119
G + v A 1 ( 0) (m+ 1)/2 2 ( )
TR — m m— m m+1
Wt U™ + Vo = 05w (U™ = 5 —(1-U). (1.20)

The functions Ag{7) and Up(z) can be extended to all of R by suitable reflections
(similar to that done above for u(z,7)). After these extensions, the function Ap is
even and periodic of period 27 and Uy is even of period 2.

The function u(z, ) given by equation (1.14) is a standing wave solution of
problem (1.9) on R? and satisfies, in particular, the boundary conditions (1.11).
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Note that Ag(0) = 0, Ag(n/2) = 1, A > 0 in [0,7/2[, Up(0) = 0, Up(1/2) =
1, U§ > 0in [0,1/2[. In particular, 0 < u(z,7) <1 and 1, > 0in Q. In view of
this last inequality, in equation (1.9)' we write ug" instead of ™ Py, We leave
the verification of the above results to the reader. The solution (1.14) gives rise,
by using (1.7), to a family of nontrivial periodic solutions

wolx, £) = am=Twg Ag(at/v)Ua{z) , (1.21)

of problem
vie = (g™ 0 ), 0<z<l1, (1.22)

with boundary conditions (1.2). These functions are ¢-periodic of period 2rv]a.
In the sequel we prove the following result.

Theorem 1.1 Let be m > 1. For each a > 0 the problem (1.22), (1.2} admals
a time periodic, standing wave solution of the form (1.21}, where v is given by
(1.18); the time period is 2nv/a. Let & be given by equation (1.4), where the even
function R sotisfies (1.5). Then, to cach sufficiently small positive value of the
amplitude a the problem (1.1), (1.2) admits o non-trivial time-periodic solution of
the form

y(m,8) = wole,t) + O(a™ 1 ). (1.23)

The period of this solution is egain 2my [a.

Remark 1.2 The reader should note that the function in (1.14) is a solution of
the problem (1.9) (1.12) (1.13) also when 0 < m < 1. Moreover, this solution is
more reqular that those when m > 1. In fact Ag (7) is always of class C2{[0, 7 /2])
but Ug(z) is of class C*([0,1/2)] only f 0 <m < 1. Ifm > 1, Ug{z) belongs to
the Holder class CY/™([0,1/2]).

We did not check if the proofs are adaptable to the case in whichm < 1. It
would be inferesting to consider this problem.

Remark 1.3 Nontrivial periodic solutions, with fized period v, of the problem
(1.1) (1.2) may be seek as critical points of the functional

[ ] 1 -clea, @@=,
0 0

However, this way gives much less information than the method followed here (it
may be suitable for studying n-dimensional problems in general domains).

2 Auxiliary results

The proof of the existence of a branch of periodic solutions to problem (1.1) (1.2)
is strongly based on an accurate study of the corresponding lincar problem (2.28)
(2.29). This study is the aim of this section.




Vol. 1, 1994 Existence of time-periodic solutions to the nonlinear string equation 129

Greenberg; see [4].
For tonvenience, we get

m+1
Lemma 2.1 7y, nontrivial solutions (A%, 85 () of the problem

(cos” 6 S5 () + A2 cos’ Sy (p) =0, < ¢ < /2,

S0 = lim  cos? S\(¢) =0, (2.2)
8O = lim ot .5 (g
are given by
Ao = 4m? 4 29m, Sm(®) = 5% cos?h 4 (2.3)
k=0
where m = (), 1,2,.... The coefficients Sffl are defined inductively by
— k+1)(2k+19+1)
L — Sht1 F=0,...,m-—1, 2.4
(m = %)+ &) 7 ) m @24
and S; is normalized 50 that
/2 )
/ Sel)cos® pdgp = 1. (2.5)
0

Furthermore, one has

/2 LI
/ SmSn cos? ¢ dgp S / 578y, c08” ¢ dep — A2 Brn (2.6)
G 0

and
Ky

(@< 202 ISt (e)] < Kot

cos? ¢’

(2.7)

where Ko = [(2/m)1=0(2(1 — 9) 4 o)) 2,
The proofs of {2.3)-(2.6), left to the reader, follow by standard arguments.
d-
The operator a;(cosﬂ qﬁ(}a) is selfadjoint, in L2(0, 7/2; cog? ¢ ). Moreover, the

eigenfunctiong S (¢}, m = 0,1,..., are a complete system in this Hilbert space,
The proofs of (2.7) and the proofs of the corresponding estimates (2.14) in
lemma 2.2 helow are, respectively, extensions of those of equations (56) and (62) in
[4]. Since Greenberg proves (56) in this last reference, we will prove (2.14), leaving
to the reader the (similar) proof of (2.7).
Finally, we note that Sp(7/2) = 0, m=01,2.. (compare to equation
(2.2)3). See the beginning of the proof of lemma 9.3,
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Lemma 2.2 The nontrivial solutions (i, T, () of the problem

(sin® Y T%, () + p2sin? Y T, () = 0, 0 < ¢ < /2, (2.8)
Tu(0) = Tu{n/2) = 0, '
are given by
p2 = (2n— 1)% + 39(2n — 1) + 262,
(2.9)

Ta() = sin? 3 TF cos® 1,

k=1
where n = 1,2,.. .. The coefficients T* are defined inductively by T° = 0 and

(2k + 1)(2kYLEY = aln, k, 9)TE + b(n, b, 9)T51 (2.10}
fork=1,...,n— 1. The coefficients a, b above are given by
a(nk,d) = —(2n-1)? — 3(2n — 1)9 — 297 — 29+
+ (2k — 1){(4k — 3) + 6k9, (2.11)

bin,k,9) = (2n—1)2 — (26— 3)? 4 60(n —k+1).

The coefficiends T} are normalized so that

%/
] ’ T2()sin? ¢ dyp = 1. (2.12)
0

Furthermore, one has

w/2 w/2
/ T sin” Ydp = b p; f TrlzTrfn sin” Ydy = .u".vgtém,ﬂ (2.13)
0 0

and
Kﬂﬂm

sin” W’

(T ()] < 0 (72 ()] < (2.14)

sin? ¢’

where Ky is the same as that in lemma 2.1,

Proof. The proofs of (2.9) (2.10) follow standard arguments which consist in plug-
ging in equation (2.8) a function 7}, (%) of the form (2.9}, and then on equalizing
the coeflicients of each distinct power of cos to zero.

It is worth noting that the coefficients b(n,k,9) do not vanish (they are
strictly positive). The cocflicients 7% may be obtained as follows, We start by
giving to T'> an arbitrary value p # 0. Then, equation (2.10) allows us to determine
the values of 772, .., T/ in this same order. Since T # 0, the function 73, (1} does
not vanishes identically. Since 7,,(v) is proportional to p we can get (2.12) by an
appropriate choice of p. We also remark that we have T7 #£ 0. If not, let ng be the
smallest n for which T} = 0. Since T # 0 for n = 1,...,np — 1, it follows that
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T (1) is & linear combination of the Ty, (), » = 1,..., 19— 1. But this contradicts
(2.13)1. The proofs of (2.13) are obvious.

We now prove (2.14). For convenience we write p = p,,, T(¥) = T,(s),
for a fixed index n. On multiplying both sides of equation (2.8) by sin® ¢ T’ (),
integrating over [, w/2], and by straightforward calculations, one gets

w/2
T'(7)2)? = (T'(¢)? + p>T(h)?) sin® 9 + Qﬁuzf sin® 1 5 cos 5 T}, (s)2 ds.

L
(2.15)
On dividing both sides of this equation by sin? 4, integrating over [0,7/2], and
using (2.13), one obtains
w/2
Ta(e/2P [ sy = 2 + 20y (2.16)
o

where

/2 x/2
Y= f sin~? z,b( / sin®® ! 5 cos s T%(s) ds) defr .
G ]

An integration by parts shows that

w 1
Y:f zsinﬁsz?(w)( cos’y [V ds )dzp.
0

sin' Y9 Sy sin¥ s

Since s > (2/7)s, it follows that the integral of sin™ 5 on [0,] is bounded by
(n/2)?(1 — 9)~ 41~ Hence, by taking into account (2.12), it follows easily that
Y < 7/2(1 — ¥). On the other hand, the integral of sin™ v on [0,7/2] is greater
than (m/2)17%(1 — 9)~ 1. Hence, from (2.16) one gets

T)(m/2) < (2/m)" 2 (2(1 — 9) + 9m)pad (2.17)

Finally, from (2.15) and {2.17) we conclude that sin®’ ¢ [T7 (¢)? + p2 T, (¢)?] is
bounded by the right hand side of (2.17). This proves (2.14). O

Lemma 2.3 There is a positive constant K1, independent of m, such that
Sm(#)? < Ka(L+m®)?%, S0 (9)7 < Ka(l4m*)'+0/2, (2.18)

Jor each ¢ € [0, /2].

Proof. We use here some sharp results on Gegenbauer (or ultraspherical) polyno-

mials proved in (2, 3]. Following [2, 3], Gegenbauer polynomials are polynomials in

the real variable z which, in our case, is replaced by sin ¢ i.e. we set = = sin ¢. We
point out that here the polynomials are not normalized as in [2, 3]. More precisely,

Sm() = C(m)Coil(sing),  0< < m/2, (2.19)
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where C(z) denotes the Gegenbauer polynomials as defined in [2, 3]. See [2] 3.15.1
and [3] 10.9.

For the convenience of the reader we prove the identity (2.19). We take (2.19)
as the definition of S, (¢) and we prove that S,,,(#) solves (2.2) when A\? = 4m? +
2Zi'm. For convenience, we write y{z} = C;gﬂ/f (x). From [3] 10.9, Eq. (16), it follows
that the function y(z) is even. Hence, Sy () is even and, in particular, 87 (0) = 0.
On the other hand, S}, (7/2) = y'(1) cos(x/2) = 0. Hence, the boundary conditions
(2.2) are satisfied. Next, from [3] 10.9 Eq. (14} onc shows that

(1— 2%y (@) — (1 1 V)ay'(a) 1 (4m? +20m)y(z) =0,  (2.20)

for each = € R. It readily follows that S, (¢), defined by equation (2.19), satisfies
(2.2} for A% = 4m? 4 29m. Clearly, this is independent of the particular value of
the constant C'(m). Next, we prove that

(2m)! (2m +9/2) 1/*

o i 9) 2925 =12p(9/2) . (2.21)

cm) - |

In [2, 3] (see [2] 3.15.1 Eq. (17)) the polynomials C/2

condition

(z) are normalized hy the

wE(2m + 4)
27 (2m)! (2m + 9/2)(19/2)2°

1
| e @ra - a0 s =
0

where we have used the fact that Cj,{f is even. Setting = = sin ¢ in this equation,
using (2.19), and choosing C{m) in such a way that (2.5) holds, we obtain (2.21).
£l
Next, we prove the estimate (2.18);. We start by remarking that (see [3] 10.18

Eq. (7))

972 942 ~ T(2m +9)
From (2.22) (2.19) and (2.21) it follows that
29T(9/2)? 9 T(2m + 9)
2 __ = 7
05?2/2 Snld)” = T} (2 + 2) e (2.23)

In order to prove (2.18), it is sufficient to show that

(2m + 9/2)T(2m + 9)

li =27,
mosoo (1 + m2)072(3m)!
The guantity under the limit sign can be written as
o7 | 2+ 9/2 - I(2m+0) m

2m  D(2m)(2m)? ( m) '
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since ['(2m) = (2m — 1)!. Our thesis follows because

. DP(W+n)
] e
s r'{d)n?

See, for instance [6] chap. 7, § 83, Eq (44).

[}
Finally, we prove {2.18) by showing that
P2 2 2
o nax Sm(@)* < (4m° +2dm) Joax Sm () (2.24)

Multiplication of both sides of the equation (2.2) by cos? ¢57,(¢) yields

lcos?® (57, + A2SZ)| = N2Sh (cos™ @),

m

where A2 = 4m? + 29m. Integration over (¢,7/2) and using straightforward tech-
niques show that

7 2 2 2 < 2 2
Sia (@) + A28 () < A ¢£g/25m(s) .

This proves (2.26). Note that this estimate also implies that Sl (wf2) = 0.

Lemma 2.4 Let A, and p, be as in lemmas 2.1 and 2.2 respectively. Then, for
each m = 0 and each n > 1 one has

Al =dmn+D—1/2)(m—nt(1-9)/2). (2.25)
In particuler, by setling 9= (1-19)/2,
IAZ 2| > d(m+n—1/2)jm—n + 9] (2.26)

We leave the proof to the reader.
Define the linear operator

LV = (cos? ¢ sin” 9 Vi )y — (cos? & sin® Y Vy)y, (2.27)

and set A = (0,7/2) x (0,7/2). In the remaining of this section we study the

auxiliary problem
LV =cos® ¢ sin® ¢ F in A, (2.28)

with boundary conditions

—_ i U — -
{ = ‘f’—*l(ff?fzr cos’ $Vy(@,) =0, 0w =2 (2.29}
V($,0) = V(¢,7/2) =0, 0<¢<m/2,
where
F(,d) = Y, FrnSm(@)Tu(¥). (2.30)

=0
nxl

o

s
]
}
;
]
|
.
]
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By using lemmas 2.1, and 2.4 it follows that the solution V' of the problem (2.28),
(2.29) is given by

V($9) =, VinSm{$) (1)) (2.31)

m>0
n>1

where, for each couple of integers m > 0, n > 1,

an

Vian = -l (2.32)
In particular .
[Vl = 4(m+n—ll;gﬁiz—n+@|' (2.83)
Let # and é be nonnegative reals. We define the norms
IVIGs=> (1+m?)n®V2 . (2.34)
)
n>1

From now on, we shall use notations
dpg = cos® ¢d¢p,  dpy =sin® Yy,  dp = dugduy .

For completness, we state some significant equivalences between the norms (2.34)
and suitable integrals. One has

IFI2, = / / Frap, | FIly~[FI%,+ / f Fidu; (2.35)

1P = [ Fda nvnilzﬂvnéwjfvfw;
2 o2 w
IV o =NV o+ [ [(Vosos?

IVIGa= [ [ (s j

where the integrals are over A. The proofs follow by using (2.6), (2.13), and the
explicit expressions of A2, and x2. By the way, note that the fourth and the fifth
equations show that

dpdi;

[ 1008”93 + (Vo 073 2% agty < 1V 0 4 1V

In particular, if V' is a solution of (2.28), (2.29) and F = Fy + Fy, || F1 ||, o < +o0,
| #2 |iy ; < +oc, then the above inequality holds. Note that Vi cos? ¢ is the function
which appears in the boundary condition {2.29);.

We have the following result.
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Theorem 2.1 Suppose that || F'||, o < o0. Then, the solution V of the problem
(2.28), (2.29) satisfies the estimates

IV e a< el Fl2,, -lga<l, (2.36)

Moreover,

[
Vi Vol <
IU = |¢|VCOS"‘9¢

for each (9,4) € A. Similarly, if || Fllg, < +oo, then

1 E 15,0 (2.37)

IV o <clFI2, —1<a<l (2.38)

Moreover,

I F“u,} ) iV¢£ < (2.39)

c
< F

Vol < 5o =51 Pl
for each (9,4) € A.

Proof. It is sufficient to prove (2.36) and (2.38) for &« = 1 and @ = —1, since

2
v !ﬁ+a,1—a <|v ”go +Vliga -l<agl.
By using (2.33) one gets

(1+m?)? 2 2
| V5, < E e
” |20 2 +?’L"‘“‘1/2)2( —-n 19) n m,n

w0 b

n>1
Hence, in order to prove (2.38) for a = 1, it is sufficient to show that in the last
inequality the coefficient of n2F?2, | is bounded by a constant ¢, independent of the
pair (m,n), m;n > 1. This holds since m — n — 1/2>m/4 and m—n+9 > m/2,
ifrn>2n; n® > (1+m)?/8 and fm —n+9] > 9, if m < 2n.
Next we prove (2.38) for & = —1. In this case we are lead to prove that

?’L2

(m+n+9—1/2)2(m —n+9)2

<e,

where ¢ is independent of (m,n). This holds, since |m —n +9| > 0.
The cstimate (2.36) for « = =1 is proved in a similar way.
£
Next, we prove (2.39). The proof of (2.37) is similar, and is left to the reader.
Write

Vo= Z[sm(qs)—Sm(onzvm,nanH

n=1

+ Z S (0) va nTnlt) =U+W. (2.40)

=0 n=1
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Since Uy{0,4) = 0, it readily follows that

w2 g4 12, enj2 1/2
Uyl 9}l < (fo Cosqj(ﬁ) ( [O Ul d.“’qé) =
oo oo 1/2
me=1 n=1

Hence, by using in particular (2.14), one gets

oo oo 1/2
s g {2 (bl ) |

n=1}

As usual, the positive constant ¢ may change from one to another equation. By
Cauchy-Schwarz inequality,

2 1/2
7 < 1l (2 e )
Moreover,
= m> > 1
< e
,;(f\?n ~ui - ;m n+9)? "
< i 1 i e . (2.41)
W@+p)? (1 -9) +p)?

Hence |Uy| is bounded on A by the right hand side of (2.39);.
Next, we consider Wy, Since [Sm{0)]| < Ko, it readily follows that

o0 o

Wl < ko 3 (S0t S LGy |

m=0 mn=1 n=1 p’n

By Cauchy-Schwarz inequality, and by using (2.14), (2.26), one gets

| Filoq 1 12
Walse sin® +f ( Z (n—i—m_l/Z)z(anr@)?) ' (2.42)

m>0
nzl

In order to accomplish the proof of (2.39); we show that the double series on
the right hand side of (2.42) converges to a finite sum. Since 8(n + m — 1/2)?
(m+n)?+1and (m—n+19)? > {(m—n)2+1), for some ¢ > 0, our assertion follows
gsince the sum of the above double series is bounded by &/c times the quantity

1 1
Z (m—n)2+1 (m+n)2+1"
m,nEZ
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The sum of this last‘ double series is bounded by

1 i M2
Lo tig @)
pacl

Next, we prove (2.39),. We write

Z (Tn(¥) — To(7/2)] Z TS} +

mz=0
+ZT (7/2) ZTmnS =U+W.
n=} m=0

Since Uy(¢, m/2) = 0, by arguing as was done above for Uy {clearly, the functions
U and W are now distinct from those in equation (2.40}), it readily follows that

1/2
Uil < g 1Pl (mp Y s )

—ml

An argument similar to that of (2.41) shows that the sum of the above series is
bounded by a constant independent of n.

Finally,
wa < (B S (S wnso) ) <
nc:l . - =1 =0 - 2 1s2
a3 {3 (e ) |
which, in turn, is bounded by
o m2
a3 28 3tz | F o

Theorem 2.2 Let V be the solution of problem (2.28), (2.29), defined by (2.81),
{2.32). If | F'||, y < +oo then

[ .
L L TEEY (2.43)

If || Filg,y < oo then

[ .
Vel < - ] ”F“(},l in A (2.44)
sin® 1
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Proof. Here, we apply the sharp estimates (2.18). From (2.31), (2.33), (2.18)a
and (2.14) one obtains the estimate

§ LA
Sln 1'[) m20 |m+n—_l/2||m_n+79l

nz1

Vol < (2.45)

It readily follows that

. 1/2
[V¢|< E|F”10( Z lm+nA1/2|219(mn+19)2) l

m>0
nzl

Consequently (2.43); follows, since

Z [ +n— 172> %m —n+ ) < Z Ip—1/2[°2iqg+ 9|72 .

s pael

On the other hand, from (2.45) one gets,
1+ m2)1+9/2 L/2
Vil < o 1Pl (0 o )

0 (m+n—1/2)2(m — n + 0)%n?

n>1

Moreover, the sum of the double series is bounded by a constant times the quantity

2 1 DY !
. (L m?)1 =9/ 2n? ey, M+ — 1227 (m —n 9)?
n>1 n>1

which, in turn, is finite. Hence (2.43)s holds.

Finally, we have the following result.

Theorem 2.3 Let V be the solution of problem (2.28), (2.29) and assume that
| E'll1,0 < 400 or that | Flly, < +oo. Then V is Hélder-continuous on A with
exponent 1 —J. More precisely,

V(1) — Vido,vo)| S el Fllyoll¢ — bol' 7+ 1 — o) (2.46)
for each couple of pairs ($,4), (do,90) € A.
Proof. Use

[ P
V(gob) — Viorto) = f Vo(€, o) dE + f Viy(¢h,1) dn

and the estimates (2.37) or (2.39). ]
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3 An equivalent problem

For convenience, we introduce specific symbols to denote positive constants that
appear often in the sequel. Set

my = (m—1)/2, mg = /2f/(m+ 1), W= rw™,

The Riemann invariants for the equation (1.9) are defined by the equations

a = 1/2u, — Talug))
{ 6= 15251:@ + EZEHB , ()
where
it = [ Vs (3.2
Note that
8 o =mwq(u) . (3.3)

If u(z, 7} is a solution of (1.9), then oz, r), #(z, 1) are solutions of the problem

{ ttr + WG (g ), =0, (3.4)

ﬂ‘r - mql{uﬂ:}ﬁz: =0,

in @. Moreover, if u satisfies the ’Dounda,ry conditions (1.12}), (1.13) then « and 3
satisfy the corresponding boundary conditions

{(ﬁ+a)(o,r)m(ﬁ—a}(l/z,r)—o 0<T<7/2, 35)

{(B—-a)(z,0) =(f+a)(z,n/2)=0 0<z<1/2.

Conversely, assume that g(0) = 0 and that g(-y) is invertible, and let a(z, 7), 3(x, 7)
be solutions of

ozf+""w"a.r’(q‘l(ﬂ%a))a:”:0’ (3.6)
J— a '
ﬁT“wq’(qil(ﬁm )),8:1::0:
in (), and satisfy the boundary conditions {3.5). Define «(x, 7) by the equations
w=g* (P22, w=ats. (37)

The solutions of problem (3.7) exist and are defined up to an additive constant. In
fact {3.6) implies that the derivative of the right hand side of {3.7); with respect
to 7 is equal to the derivative of the right hand side of (3.7)s with respect to =.
Moreover, for a suitable additive constant the function u(x, 7) is a solution of (1.9)
(1.12) (1.13).

Hence the problem (1.9) (1.12) {1.13) is equivalent to the problem (3.6) (3.5).
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We shall prove the existence of solutions o, 3 of the problem (3.6}, (3.5) of
the particular form

8 =1/2movsin{e + ) , (3.8)

where @(z,7),%(x,7) are functions on Q, satisfying 0 < ¢(z,7) < /2, 0 <
Y(x, 7} < 7/2; cleaxly

{ a = 1/2maovsin(¢ — ) ,

8 — a=myrsiniycosg , B+ @ = marsingeosp . (3.9)

In this way our problem is transformed to the problem of finding a pair of functions
¢, with values in [0, 7 /2] and solution of the problem

(¢ =) + ()¢ — )z =0 (3.10)
(6 +4)r —c(,9) (b + ) =0 ‘
in @, with boundary conditions
¢0,7) =0, (/2 7)=n/2, 0=r<m/2, -
Y(x,0)=0, Plz,r/2)=7/2, 0<z<1/2, (3.11)
where, by definition,
e, ) = Eq'(q_l(mmzy cos¢sint }) . (3.12)

Note that ¢ is the coefficient of ¢, and B, in the equation (3.6) and is also equal
to \/v2w™ 1o’ () (recall the equation (1.9)), provided that (3.1) and (3.8) hold.
If the couple (¢,1) solves the above problem then the couple (o, 3), defined by
equations (3.8), solves (3.6), (3.5).

In order to deal the equations (3.10) it is necessary to study carefully the
properties of the coefficient (¢, ), taking into account of the specific properties
of the function a(vy) defined by the equation (1.10).

First of all, taking into account (1.10), (1.5), one easily verifies that, given (in
R) a bounded neighborhood of the origin, the function ¢'og~! is well defined in this
neighborhood provided that the positive parameter a belongs to a sufficiently small
neighborhood of the origin (since, roughly speaking, o(y) is a “small” perturbation
of |vI™1v; note that v is fixed and that w takes values in a neighborhood of wy
as shown in the sequel. In fact, w = w(a) and w(a) — wy and a — 0).

We have the following result:

Proposition 3.1 Under the hypotheses (1.5) (1.6} we have
1 1
eld,p) = /m| %iu )ﬂ/zwﬁucosﬂ ¢sin” 1f
m

{1+g(( %%—1 )21 cos ¢ sin )} (3.13)
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where g € C([0,8]) N C?(]0,5]) for some b > 0, satisfies the estimates
(@)l < clzf, |g'(@)| <e, lg"(@)] <eca™ . (3.14)

Before proving this proposition we establish a result which is independent of
the particular hypotheses (1.5) (1.6).

Proposition 3.2 Let &(v) be defined by the equation (1.4), where R(v) is of class
CL(—b,b). Let o(vy) be as in (1.10). Then

my ., at/Pw

f(mz\/ﬁ

c(\qﬁ,qj;) = cos ¢ sin g ) (3.15)

where f = o F™1 and

o) =" ST+ KD ,

1 gt
F(t) = m——;"— f ¢(s)ds , (3.16)
0
1
k(t) = R(t —tR/(t) .
(1) = R(t) + - _tR(0)
Proof. We have
_ . I {14 .
c(p, ) =w/o'{y} if y=g¢ (7 cos dsing ) . (3.17)
On the other hand, one easily shows that
m -
Cff("y) = Wgz(am—lwry) (318)
and (from (3.2)) that
g(y) = @a*lmw%ii F(amz-l wy) . (3.19)

m+1
Since (see (3.13)) g(7) = (mav/T) cos g sinep it follows, by using (3.19), that
mtl
2v'm
This equation together with (3.17) and (3.18) yields (3.15).

aﬁl—'fwfy = FY maa P w cosdsin ) . (3.20)

=
The proof of the proposition 3.1 follows from (3.15) and from the following
result,

Proposition 3.3 Let f, I and ¢ be defined as in proposition 3.2 and assume that
R satisfies (1.5),(1.6). Then '

Fey=a"(Ltg()), =eloH, (3.21)

for some b > 0 where g satisfies the hypothesis in proposition 3.1.
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The proof will be given in section 5.

Instead of looking directly for a solution ¢ = ¢(z,7), ¥ = {x,7) of the
problem (3.10} (3.11), one looks for a pair of functions = = X{¢,%), 7 = T{(¢,v)
which are solutions of a suitable boundary value problem, such that the map
(¢,%) — (z,7) is invertible (from A onto @) and the inverse map (z,7) — (¢, )
solves (3.10) (3.11}.

Consider the following linear system in A

Xy — el )Ty =0,
et
with boundary conditions
X(O0,4) =0, X(n/2,8)=1/2, 0<p<n/2, (3.23)
T($,0 =0, X{¢=n/2)=n/2, 0<p<w/2, (3.24)

One has the following result:

Theorem 3.1 If 0 < a <1 then there is a Holder continuous map T : (¢,9) —

(z,7) (& = X($,9¥), 7 = T{¢,¥)) from A onto @ such that (3.22) (3.23) (3.24)

hold. T is locally Lipschilz continuous and has non- vanishing Jacobian on A.

Moreover, T is a one to one map from A onto Q. The norms |V It —ar for

each a € [~1,1], and the quantity sup {sin® ¢[Vy! + (cos® ¢ + sin® ¢)|V, |} are
{p,0}eA

finite, for V=T and for V = X.

The proof of theorem 3.1 will be carried out in section 4. Assume, for the time
being, that this theorem holds, Then, by the implicit function theorem we have
Ty = J¢o, Xy = —J¢,, Ty = —J¢s, Xy = Jipr. Hence, 1t follows from (3.22)
that the equations (3.10} are satisfied. Moreover, the boundary conditions (3.11)
are satisfied as a consequence of (3.22) (3.23) together with the surgectivity and
the continuity on A of the map (¢, %) — (z,7). Hence the existence of a family of
non trivial periodic solutions of the problem (1.1) (1.2) (1.4) (branching from the
nontrivial periodic solution of this same problem when () = }y|™ 1) is proved
if we can prove the theorem 3.1

4 Proof of theorem 3.1

The strategy of the proof is the following, By eliminating X from (3.22) we easily
get the equation

(o, ¥)Ty)y — (e(¢,9)Tp)p =0  Im A (4.1)
with the boundary conditions
{ T{qb,O)IO,T((ﬁ,T{/Q):?T/Q, OS¢SW/2,

Tp(0,1) = qb_’l(iwn/lm_ cos? 9Ty =0, 0<op<n/2. (4.2)
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This problem admits the érivial (constant) solution T = n/2. Hence, a good strat-
egy is to lock for solution T which are perturbations (0 < a < 1) of the particular
solution Tp obtained by setting R = 0 in the equation (1.10). Once the solution T
is known we define

[
X(6,) :fo os, ) Ty(s,)ds, 0<p<m/2, (4.3)

The pair (X, T} satisfies (3.22) {3.23) (3.24) except, eventually, for the boundary
condition X (x/2,v) = w/2. This condition will be fulfilled by making a suitable
choice for the free parameter w.

Proof of theorem 3.1 Define 7Y = T?(1) by setting
T2 = (ko sin” )1, T°(0} = 0 (4.4)

and by choosing kg in such a way that 79(x/2) = 7/2. It readily follows that T
is a solution of problem (4.1) (4.2) when ¢(¢, ) = kcos? ¢sin? ¢, where k is any
constant, The constant kg is given by

w2 1
kDEE/ do _ fmEL, (4.5)
mJo sin'a 2

The second relation in (4.5) follows easily by the change of variables sina =
1/{1—9)
y .

Next, we look for a solution of problem (4.1} (4.2) of the form

T, ) = TO() + /T (¢,4) (4.6)

i.e.; we look for a solution T%{¢,) of the non-homogeneous linear eguation

(cos? ¢ sin” ¢T,},)¢ — (cos” ¢sin? ?.I'JT;)«;S =

= cos” ¢sin? o [Fo + F1(T}) + Fa(T})] (4.7)
where
—94 ~gy A 9o
o= , Fi(A) = ———, Fp(4)= """, 4.8
* 7 koa/?(1 + g) sin? 14 L+g 2(4) L+g (48)
which satisfy the homogeneous boundary conditions
T'($,0) = TH{¢,7/2) =0, 0<¢<n/2,
TH0.9) =, lm cos’ $TL=0, 0<p<r/2. (4.9)
. m + ]- 1/19 .
In equations (4.8), g = g( G, @/ wcos ¢sint ); see (3.13). The above prob-

lem will be solved by a fixed point argument. In the sequel we denote by ¢, ¢p, c1,. - .,
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positive constants which may depend on m but not on a or on w. The same symhbol
can be used to denocte distinct constants. In the sequel it is always assume that

wa'’? < ¢y, {4.10)

for some suitable constant ¢p, which can be made smaller from equation to equa-
tion, if necessary. From (3.14) and (4.10) it follows that, for sufficiently small values
of ¢g one has 1+ g > 1/2 on A and also

9 G 9¢ Gy
vl e B S MU s

< ca'Pw (4.11)

I

where || [|_, is the usual L°°(A) norm. Since (see (2.35})

1f AL e < el fllo+ 17 l)* N AN

and similarly for || [}, ,, it readily follows that

I FL(A) |3 < ca® P AT,
| Fa(A) 113 o < ca®/Pw?|| A7, (4.12)

[Folllo < cw?;

note that Fy = F(sin? 1 /kq AY?),
Next, let || T [}, ; < +oo and consider the problem

LT = Fy + F\(Ty) + Fo(Ty) (4.13)

with boundary conditions (4.9). By theorem 2.1 together with (4.12) one gets

2 ~ 2
|7 “1+a,lfcx < eyw?(1+ GQMHT”LJ . (4.14)
Note that | Ty iy, < e Ty, and that [Tyl < eliTylloo + KT 1h,) <
T o + 17 lly,0) < el Tl s see (2.35).

Set
K={T . ”Tﬂfl < 2cw” }

and define a map S by setting §(7) = T, where T} is the solution of (4.13) (4.9).
Assume, in the equation (4.10), that ¢y < 1/4/2¢;. Then by (4.14),

[T ) ia < 200, Vae|-1,1]. (4.15)
In particular S(K) € K. If T* = S(T), T} = S(Ty), then

L{T' — 13) = cos” ¢sin” [P (T - To)y) + Fo((T ~ Ta)y)]-
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Since ciw?a?? < 1/2 one has
2 1, ~ -~ 2
“Ti - Tol “1,1 < 2 ”T*TO ”1,1 :

This shows that the map S has a (unique) fixed point 7! = T in K which is the
desired solution of problem (4.7) {4.9). Moreover, again by theorem 2.1, one has

1 Ct) 1 ci)
< — i S [ A .
|T¢| - COS‘9¢ ! | 1};! = Sinﬂ’gb > OR (4 16)
Theorem 2.2 shows that
< -2 onA. 4.17
T < =5 (17)

O

Remark 4.1 The estimates (2.36) (2.37) by themselves do not seem to be suffi-
cient to prove the ezistence of the above fived point. In fact, | T'|l,, < +oo does

not imply that || T ;o < oo (hence, does not imply that || Fy(Ty) 0 < +00);

consider, for instance, the function T(¢) = fod)(l [/ cos? s)ds. It seems necessary to
use (2.88) (2.39), as was done above,

0
Let now T be defined by the equation (4.6). From (4.4) and (4.16); it follows

that
T.,',', >

on A, (4.18)

c
sin? 1f
if in the equation (4.10) ¢p is sufficiently small. Next define X (¢, ) by the equa-
tion (4.3). It readily follows that the pair (X, T') satisfies the equation (3.22) and
the boundary conditions (3.23); and (3.24). Now we choose w = w(a) in such
a way that (3.23); is satisfied. From (3.22)s, (3.13) and (4.2)4 it follows that

Xy(m/2,74) = 0. Hence

w2
X(w/2,) = /U (6, 9) Ty, ) dp = T (4.19)

is independent of ¥. From (4.6) and (4.16), it readily follows that

1. w}2
T = ﬁ(ﬂl—j——)?mvw‘gf cos” pdp + cve(w,a)
0

T{) 2m

where £(w, a) = {1+wal/?)O(w*+?a/?). Moreover e(w, a) is a continuous function
of w (and of a) since ¢ € C. By taking into account that (setting u = cos ¢)

/2 1 du
U —
]0 cos ¢d¢ o ]0 (1 _ u2)1/(m+1)




146 Hugo Beirdo da Veiga NoDEA

it readily follows that
1

— W9

z=3 ('w_o) + crve(w, a) .
Let now (w fwe)? = 1/8, (wy/wo)}® = 3/8 and let a > 0 be such that cve{w,a) <
1/4, for each w € [wy, wa]. Since T(w1) < 1/2 and Z{wy) > 1/2, there is w €]un, wa|
such that T = 1/2. Hence, it follows from (4.19) that to each positive value of the
parameter @, ( << a < 1, there corresponds a value of the parameter w such that
(3.23)5 holds.

Finally we prove that the map (¢,%%) — T(¢,9) is one to one from A onto

Q.
Remark 4.2 From (8.22)1 (3.13) and (4.18) it follows that
Xyzevw®cos®¢, O0<p<mf2. {4.20)

This estimate, together with (4.18) and the boundary conditions (3.23) (5.24), is
not sufficient to prove that the map {¢,%) — (X, T) is one to one. Moreover, the
Jacobion J = XyTy — XyTy may chenge sign in A for arbitrarily small values of
the positive parameter a. In fact, ({.18) and (4.20) show that

cos? ¢
sin? 9

XyTy > cvw® on A . (4.21)

On the other hand (4.6) (4.16)1 and (3.13) show that 0 < Xy Ty < (¢, ¥)T2 <
cw? a2/ sin? yp(cos? ¢} 1. Hence

9 R
Tz o’ (952 patoy2 S Yy 4.22
> cw (Sinﬂu’) e(wa ") cosﬂqb) (4.22)
When a = 0 one has J > 0 on A. However this result does not follow from (4.22)
if a > 0. This shows that the estimates {4.16) by themselves are not sufficient
to prove that J > 0 on A. This will be done using also the estimate ({.17), a
consequence of theorem 2.2.

[
By using (4.17} instead of {4.16); one gets
9
0<XyTy < cw* /v cos ¢ .
sin? h
Hence,
#y2 cos” ¢

J = cw? (1 — e(wa/?)?) —5— >0 onA. (4.23)

The equation (4.23) shows that the map Z : {¢,9) — (X, T) is locally invertible
on A. This map is also (Hélder-)continuous on A. This last property together to
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(3.23) (3.24) shows that Z maps the boundary OA onto the boundary 8Q in the
“natural” way, Le.,

I{O9) : 0=y <x/2}) ={{0,T) : 0T <1/2},

and so on. It follows that 7 maps A onto (. Since the inverse images of compact
subsets of (J are compact subsets of A, and since A and € are simply connected
it follows that Z is globally invertible on A (by Caccioppoll’s theorem; see [1],
Chapter 3, Theorems 1.7 and 1.8).

5 Proof of proposition 3.3
Clearly k € C*([0,8]) n C?(]0, b]), moreover
k()] < et | (O < et? |K(E)] < et (5.1}

Denote by s = s{x) the inverse of the function x = F(s) and write s(z) in the
form

s(x) = mmiﬂ(l + h{x)) . (5.2)
Note that A(z) = 0 when R(¢) = 0. One has

F(s) = 5™ 4 O(smﬁté“"ﬁ“) .

By setting s = s(x) in this last equation and hy straightforward manipulations we
prove that
28912

h(z) = O(z ™1 ) . (5.3)
Next, by using (5.1) (5.2) and (5.3} we prove that

(Bp+1)(m—1} 2(fg+1} ) ]

f(w)ilf(s(w)):g;ﬁ [1+O(mm—+;)+o(m Lo

Since g is defined by the equation f(z) = z%{1 + g(z)) (3.14); follows easily.
[
Next we differentiate the relation £(s{z)) = 2®(1 + g(z)) with respect to
and we replace there #{s(z}) by the expression obtained from differentiation of
(3.16) with respect to ¢ (for t = s(x)) and replace s'(z) by 1/F'(s(z)). This gives
(use also (5.2))

m+1 _ h(x) K (s(z)) o=
m =129 @) Fo@) = - DL+ k(s(z))] (54)
Hence . 2(1480)
zg'(z} = Ofg(z)) + O(z 71 ) (5.5)

It readily follows (3.14)s.
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a
Next, we differentiate (5.4) with respect to z. Suitable manipulations show
that +1 5
: 2(Bg-+1)
L_Iwg”(a:) + m?f’ig'(z) = O(K/(z)) + O(z »5T 1), (5.6)

On the other hand, differentiation of z = F'{s(z)) yields

= T @)™ T VI RG@) (w7 (14 b))

It readily follows that

1

m+1 2 1-m 1
T h’(az)\ = g wFl NG ~14+h(z)| . (5.7)
The expression within the square bracket has the form
1= (1+ h(@))(1+{(1/2)k(s(x)) + O(k(s(x))*)
(1 + A(z))y/1 + k(s(z))
which, in turn, has the form O(h({z)) + O(k(s(x))} = O(x*Fo+1)/(m+1)y,
Hence, from {5.7)

+ h(z)

2f8p—m+1 )

W (z) = Oz =+
Consequently, we get from (5.6) that

2(Bp+1) 3

g"(z) = O(g'(z)/z) + O(a™ =¥ 72} .
This yields {3.14)3. O
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