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~ On the Existence Theorem for the Barotronic Motion
of a Compressible Inviscid Fluid in the Half-Space (*).

H. BEIRAO DA VEIGA

Summary. — We give here an existence theorem, see Theorem 1.1, for the selution of the system of
equations (1.1) that deseribes the motion of a compressible tnviscid fluid in the half space.
Moreover, we establish some sharp estimates, see Theovem 3.2, for the solution of the linear
second order hyperbolic mixed problem (3.1) in terms of suitable norms of the coefficients.
These estimates play a main rule heve and in reference [BVS], where o first proof of
Hadamard’s classical well-posedness for the above nonlinear system of equations is given;
see also [BV4)l. Here, we adapt and simplify the method followed in our previous
paper [BV1]L

Notations.
N = {positive integers}; No=NU{0}; R"* = {positive reals}.
Q=R3=R:xXR*; Qp=I[0,TIxR:, Tel,1].
I'=R®x{0}; Zr=[0,TIxI; v=(,01).
z = (yy, ¥z, @) = (y, ®), the generic point in R®.
0,=0/fat; 3;=9/dy; for i=1,2; 083=23/0x.
Jy denotes either 9, and 3;.
o ={ay, ag, ag} € Ny)?, a multi-index; |a| = oy + ap + a3.

9 = 39505

3

(v Viw= Zlvi(aiw).

i=

(*) Entrata in Redazione il 21 giugno 1990.
Indirizzo dell’A.: Istitute d¢i Matematiche Applicate «U. Dini», Fac. Ing., Via Bonanno 25 B,
56100 Pisa.
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We use the abbreviate notation

IF= jF(z)dz.

We set X = X(R3) for every functional space X(R? )} consisting of functions de-
fined on R3. For instance, L? means L?(R3). Moreover,

l,, norm in L?, pell, + ],
P

|-, norm in H®= L%,

Il = 3 I,
: [ |4
elfe = > 1Dl
=0
s+k
Dl ="3 Il

[ul} = 2 IID ulP.

The symbol D concerns always derivatives with respect to the space variables.
Sometimes we will use the symbol D in a formal (but convenient) way, specially when
dealing with estimates, For instance, we take leave to write expression like

[3,(V X w)(®) + dulx)| < c¢[D*u(x)| or jI(V X u)- V| SCJ [Du| |Dv|.

Cy (R?) is the subset of C* (R?) consisting of functions having compact support
contained in R3, the closure of R . H* is the completion of C;° (RY) with respect to
the norm |- |,. We made (here and elsewhere) usual identifications and follow usual
conventions. Hence

HY= {ueL? D*uelL? for all « such that laf <kj}.

Since R3 is unbounded, it is convenient to make use of spaces H¥, defined as the
completion of Cy° (R?) with respeet to the norm [-],. It is well known (see [DL],[L1])
that

H*={ueL% D*uel? for all « such that 1< |x] <k},

since |%|¢ < c|Du|, by a Sobolev’s embedding theorem.,
In the sequel we use freely some well known Sobolev’s embedding theorems In
particular the following continuous embeddings and the corresponding inequalities
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for norms will be used very often

0.1 HicH'cL® - Hi*cH®:c(C“YicL~>,
0.2) HEcL*NL=cL?, ifpel2 ],
(0.3) HcL?*NLScL?, if pel2, 6].

In particular,
| < elaly fo
C%'7 denotes the Banach space of bounded and uniformly Halder continuous fune-
tions with exponent 1/2, endowed with the canonical norm.
Since our results are local with respeet to the time variable we assume, for conve-
nienee, that T« 10,1].
Let X denote a Banach space consisting on functions defined on R®. We set

CrX) =CI0, T, X),  LEX) =L?(0, T; X),

and so on. The canonical norm in the space Ly (X) is denoted by adding the symbol 7
to the symbol denoting the X-norm. For instance

lleelle, 7 = loell o, 7, 24y
and
(uly, 7 = [fello-o, 7. -
.Furthermore, we set
llell, 7 = Mello, 7, 25y
and
[k, 7 = [lllz0, 2, 24
We do not distinguish between notations for scalar fields and corresponding nota-
tions for vector fields. For instance, if v = (v, vz, v3) and v e H* for i=1,2,8, we
write ve H* and [off; = llou|fi + lslff + loslz-

Given a function f{{, 2) we denote by f(t) (for each fixed #) the function f{¢, ) of the
% variable.
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1. - The existence theorem.

The barotropic motion of a compressible inviscid fluid obeys to the following equa-

tions (see for instance [Se] C.I and E.LII; [Sd] IV §1; {LL] §1 and §2)

P& + (- V)v) + Vplp) = 0,

Oip +V-(pw) =0, inQr,

vy =0, on X,

wW0) = vy,  p0) =g,
where » is the velocity field, o i;he density, and p the pressure. The function p: R+ —
~> R is a given, C* function, moreover p'(s) > 0 for all s € R *. We denote by p a fized po-
sitive eonstant, the value of the density ¢ at infinity. We define

Hf={pp~jpeH"}

and set mp) = infp(z) for z e R%. We assume that the initial data satisfly the
assumptions

(1.1)

(1.2) vy e HE, Yyrv=0 on I'; p{,er, mlpy) > 0,
and (compatibility conditions)
(1.3) Sppo =0, 9wy Vegl/po+ V-y]=0on I.

These conditions are also necessary in order to get the existence results proved in the
sequel.

Finally, we note that the uniqueness of our solutions is trivially proved since it
holds in much larger functional classes than those considered here. See, for
instance, [Se2].

The first existence result for the mixed problem was proved by EBIN [E1] by as-
suming that the initial velocity is sub-sonic and the initial density is not too large.
The existence of solution for arbitrarily large initial data was first proved by us [BV1]
and, in an independent paper, by AGEM1[A]. In reference [BV1] a main role is played
by the couple of operators curl and divergence. These operators play again a main
role in Schochet’s paper [S1], where the authors proves the existence of the solution
in the general case p = p(p, s) and studies the incompressible limit. These results
were extended to a class of first order hyperbolic systems in Schochet’s paper [S2]
(for the Cauchy problem see Karo[K1], and KLAINERMAN and MaJDa [KM1],
[KMZ2]).

In reference [BV1] we have considered fluids filling bounded domains Q. Here, by
following similar ideas we consider the case = R3. One has the following
result.

THEOREM 1.1. - Under the above hypothesis there exist two positive constants T
and ¢, that depend only on [vyls, lleo — pls, mle0), 2, and on the porticular function
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p{*), such that there is a solution (v,e) of problem (1.1) in Qp. Moreover,
8w, p—p) e Cp(H? I X H*1),  forj=0,1,2

and
2 , .
(14) _20([321”]3 _ir B =k~ rl S e,
=

Furthermore, if vy e H?,

(1.5} - j;o (187 vl 5t 3iCe — pMis _ir)=ec.

Actually, the equation (1.5) holds under the weaker assumption v, e 7, provided
that the term ||v » is replaced by [v]; 7.

It is convenient to study the problem (1.1) by making the change of vari-
ables

(1.6 g =log(o/p)
and by introducing the funection
(1.7 his) = p'(pe®), selR.

Clearly, he C3(R; R*). The system of equations (1.1) turn out to be equivalent to
the system

Sv+ (wVyv+ hig)Vg =0,
g9+vVg+V-v=0, in Q,
pv=0, on Xp,

w0 =vy,  g0) =go,

(1.8)

where, by definition, g,(z) = log(ey(2)/g). The assumptions (1.2} and (1.3) turn
into

(1.9) weH?, . wv=0onl; gyeH?
and
(1-10) amg():O, Sm[’lﬁo'Vgo-l-V"Uo}:O on I,

It iy immediate to verify that the Theorem 3.1 is equivalent to the following theo-
rem and corollary,

THEOREM 1.2, ~ Let vy and g, satisfy the assumptions (1.9) and (1.10). There exist
positive constants ¢ and T such that there is o solution (v, g) of problem (1.8). More-
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over, 3{(v, g) e Cp(H® 1 x H®9Y, j=0,1,2, and
2 i .
(1.11) _26 (3vls s 7+ [igls - r) < c.
i<

The constunts T and ¢ are universal with respect to bounded sets of initial data (see
definition below).

COROLLARY. ~ If, moreover, vy e H® then 8{(v, g) e Cp(H3 7 x H®~7), j =0, 1,2,3,
and

3 _
(1.12) _20 (ll6fv]lg i+ 18l -jT)Sc.
o

Actually, this last result holds under the weaker assumptions v, € H3, provided
that the term |[vlly 7 is replaced by [vly ; and v e Cp(H?) by ve Cp(H?).

Positive constants ¢ and T are said to be wniversal with respect to bounded sets of
initial data if a (positive) lower bound for 7 and an upper bound for ¢ depend only on
upper bounds for the norms |goll; and [v]; [resp. |lully, if v, e H?].

We will write the equations (1.8} in the equivalent form (1.15) below, which is
very appropriate for our purposes. Set

(1.13) G=VxXuv, g1=~—w Vgt V).
From equation (1.10) it follows that ¢ e H? g, € HZ, and
(1.14) Ay =0, 3,9,=00nTr.

We consider the following system of equations:

[+ @V~ Vv+(V-0¢=0,
3
(8, + v V¥g — V-(h(g)Vg) = 'Zl(aiwj)(ajvi),
L=

{-Vv=28g9+v Vg,

VXv=¢, in @y,

vy=40, 20=0 onXy,

O =4, g0 =g, @O =g, V-u(0) =Y.

(1.15)

A couple (v,9) is a solution of (1.8) if and only if (v,¢,%) is a solution of (1.15),
where { =V xv. The quite immediate proof will be done after stating the following
existence theorem for problem (1.15).

THEOREM 1.3. — Let v, and g, be as in Theorem 1.2, and define &, and g, as above.
There are positive constants ¢ and T, universal with respect to bounded sets of initial
data, such thot there is a solution (v, 9,0) of problem (1.15) in Qp Moreover,
3w, g, ) e Cp(H3 I X H*J x H29), for j=0,1,2, and (1.11) holds.
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PROOF OF THE EQUIVALENCE BETWEEN THEOREMS 1.2 AND 1.3. — Assume that v, g,
¢ is a solution of (1.15). Define, for each fixed ¢, the vector field V= 8,v + (v-V)v +
+ h(g) Vg. Since { = V X v and since h(g) Vg is a gradient field on R? , it readily follows,
from eq. (1.16);, that VXV =0 on R?. Reecall the vector analysis formulae V x
X[wV)o]l =@V~ V)v+ (V1)L On the other hand, V- V=3,6 + (v- V)& +
+ 2(8;v)(8;v;) + V- (h(g) Vg), where 6 = V. Since ¢ = —(3,g9 + »- Vg), it follows from
(1.15); that V-V = 0. The orthogonality of the vector fields v and V(»+v) on I" shows
that

0= 2 v,3; (o) = - Vvl v + 2 @;v) viv;.
iy i

Hence, [(v:V)2]-v = 0 on I'. On the other hand, 3,(v-v) = 0 and 4(g)8,¢ = 0 on I". Con-
sequently, V-v=0 on I,

FromVxV=0and V-V=0o0n R, and from V-v =0 on I, it follows that V=10
on RY (since V e H?). Hence, (1.8); holds. Moreover, »(0) = v,, since both the vector
fields have in R? the same divergence and the same curl, and both are tangential to I

Reciprocally, if (v,9) is a solution of (1.8), set { = V X v and apply the operators
curl, divergence, and v+ to the equation (1.8); and to the 1dent1ty w0) = v,. This de-
vice yields (1.15). =

A large part of this paper (the Section 8) is dedicated to the study of system (3.1),
the linear counterpart of equation (1.15),. The system (3.1) plays a main rule in the
proof of Theorem 1.3. This proof will be carried out in Section 2, by assuming Theo-
rems 3.1 and 3.2. The proofs of these two last theorems are postponed to Seetion 3.

2. — Proof of Theorem 1.3.
We start by reducing the proof of Theorem 1.3 to the existence of a suitable fixed

point. We assume that v, and g, (fized once for all) verify (1.9), (1.10), and we define
% and gy by (1.3). Consider functions ¢, g, 4. enjoying the following properties:

2.1 dl¢e Ly (H2), j=0,1,2; V-¢=0in Q; ¢(0) = &,
2.2) dgeLr(H), §=0,1; 0 =g,
2.3) dlse Ly (HE ), j=0,1,2; S0)=d=V-u,,
1 . )
24) liglls, = + »20 (loiglh - » + lolal_; +) <A,
5
1 . . .
(2.5) 2y Wotele—r + 168l r + 0igls ;) < B

(2.6) ”ag@"”o, rt ”aéi?g”a rsC




-
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The values of the positive constants A, B, C, and 7, will be fixed later on. For the
time being we only assume that A and B are larger than |5l + |lgo [is + [ide . This as-

sumption guarantees that the set K (see below) is not empty. Set, for convenience,
X=H'xH'x H®, x=Cp(X), and define

@ K=K@A, B, C, T = {(¢, ¢, § € X:(2.1) to (2.6) hold}.

Lemma 2.1. ~ K is o non-empty, convex, closed subset of .

PROOF. — The two first assertions are obvious. Let us show that K is closed. For,
assume that (¢, ¢,, 4,) — (¢, g, 9) in X, where (¢,, ¢,, 4,) € K for n e N. In particu-
lar, ¢, - ¢ in Cp(H°), hence, 82¢, — 3% ¢ in Mp(H?®), as n — . Since

L (H®y =[LY((H®))]' (¥' denotes the strong dual of Y),

a well k_nown theorem (see, for instance[T] Theorem 4.61-A) guarantees that
d¢, —0l¢ weakly-* in L; (H"). Moreover, ||ag¢||0,tslgﬂ inf 184, o, 7. Similarly,
3], — 8]9 weakly-* in L (H°) and |3} o, 7 < lim inf 187, 1, 7. Tt readily follows that
(2.6) holds. A similar argument applies in connection with (24) and (2.5). =

We consider the following linear problems

28 [fou=¢, V-o=4, in Qp,
vy =1, on Xp,
©.9) G+ V- Vo+8=0, in Qp,
Z(O) = cﬂa

8, +v-VVg — V() Vg) = 2D, v )(D;v;), i Qy,
(2.10) 9,4 =0, on Xy,

g0 =gy, (B,gX0) =g,,
(2.11) &= —(3g + v Vg),

and we define on K a map S as follows. For each (¢, g, #) « K(A, B, C, T) we solve the
problem (2.8) (which gives v), the problem (2.9) (which gives £), the problem (2.10)
(which gives g), and (2.11) (which gives &).

We define the map S by setting

S(3, g, 9 =g, 9).

The following two lemmas will be proved in the sequel.
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LeEMMA 2.2. — There are positive constants A, B, C, and T, such that S(K)c K
These constants depend only on d,

(2.12) d = |lgolls -+ [ve]s-

Move precisely, 4, B, and C depend non-decreasingly on d, and T non-increasingly
on d.

LEMMA 2.8. — In Lemma 2.2, T can be chosen in such o way that S turns to be o
strict contraction of K into itself.

ProoF oF THEOREM 1.3 (by assuming Lemmas 2.2 and 2.3). - By the contraction
mapping principle, S has a fixed point ($, ¢, §) = ({, ¢, &) e K. By seting ¢ =, ¢ =g,
& = 4, in equations (2.8) to (2.11), we get a solution of (1.15). Since (, g, &) e K, the
funetions ¢ and 9,¢ satisfy (1.11) and (due also to the Lemma 2.4 below) v, 3,7, and v
satisfy (1.11). The Lemma 2.6 below shows that 87 g satisfies (1.11).

The Lemmas 2.5, 2.6, and 2.7, and the corollary to the Lemma 2.4 guarantee that
3l(z, g, ) e Cp(H2 i X H® =9 X H* 9y and that 8jv e Cp(H?~7), for j = 0,1,2 (note Cr
instead of Ly). =

In order to prove the Lemmas 2.2 and 2.3 we need some results on the solutions of
the linear problems (2.8) to (2.11). These results will be established helow (see Lem-
mas 24 to 2.7). We start by recalling the following well known result (see, for in-
stance [BV2]), For the reader’s convenience we sketch briefly the proof of the a priori
estimate (2.14). Here, ¢ denote numerical positive constants.

PROPOSITION 2.1. — Assume that v e L (H3) N Cp(H?), v-v =0 0n Zp, fe LFH"),
e HY, where k=1, 2, or 8, Then, there is a solution (e Cp(H*) of

a "|' 'V =T i ]
@.13) 4 wW=f n QT
qoy=1¢.
Moreover,
P
(2.14) [ll, 7 < e T (il + f |l e |-

0

PRroOF. — The technique to get the a priori estimate (2.14) is standard. Let 9* de-
note a fixed derivative with respect to space variables, |«} < k. By applying the op-
erator & to both side of equation (2.13), by multiplying by 8¢, by integrating on RE,
and by doing straightforward calculations, we show that

1 d |3 « .
5ol < clvls ol + o= llles1l
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By adding side by side all the above estimates for the multisindices o such that
|a| <k, one gets

(2.15) %% I£I < elvly, #fl2lE + Nele )£l

The estimate (2.14) follows now easily. We remark that if a solution ¢ belongs to
Lf* (H*), the estimate (2.14) together with 7 e Cr(H*~1) yields {e Cp(H*). This is
proved by a standard argument.

It is convenient to adopt here the following convention. We denote by ¥(-, ey ')
generic real, positive, non-increasing functions of each of the arguments. The argu-
ments are some, or all, of the quantities d, A, B, C. For convenience we denote by ¥
functions ¥ that may depend on the four arguments, ie., ¥ = ¥(d, 4, B, ©). Distinct
functions ¥ (or ¥) can be denoted by the same symbol. In particular, we can write
Y+ ¥=V, ¥F=9, and so on.

LEMMA 2.4. - Let (4, q, ) e K(A, B, C, T). Thgre 18 a (unigque) solution v of the lin-
ear elliptic problem (2.8) satisfying 8jve L (H*™7), j=0,1,2. One has #(0) =
Furthermore, there arve functions of type ¥ such that

(2.16) [vle, 7 + [8ywh, r < ¥YA),

(2.17) [v]_a, r + [8,9], 7 < ¥(B),
81, + < ¥(C).

 COROLLARY. ~ If moreover, 3]($, §)e Cp(H% i x H27 ), for 1=0,1,2, then
ag'\’) € CT(HS _J)

The proof of the above results for the function v is easily done by applying well
known results to the elliptic problem (2.8), for each fixed f e [0, T']. By differentiating
both sides of equations (2.8) with respect to £ we get similar equations for 8,v and for
3 v, from which we prove the desired results for 3, and for 3/v.

LEMMA 2.5, — Let ¢ q, 4, and v be as in Lemma 2.4, and let ¢ be the solution of
problem (2.9). Then 9]t e Cr(H® 7)Y for j = 0,1,2, movewoer, there are functions of
types ¢ and § such that

(2.18) ”5”1 r+ 18, C”o, r = ¢(d) eﬁ,

L, + I8, ¢l r < ¥, A)e™,
(2.19) {” ||2,T ” t ”I,T

8z]o, 7 < ¥(d, A, B).

Finally, V-{ =0 on Q.
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Proor. — We start by proving that V-£=0 on Q. A direct computation show
that

V- CWMo=V-0v— (V- NL{-VX@X]).
This formula, together with (2.8) and (2.9), shows that
L+ (V- Dv=Vx{wx{).

Applying the divergence to both sides of this equation and using the vector caleulus
formulae

VUV Dul=v-VV-O) +(V-u)V- O,
one gets

{V- O+ v VV-O)+8NV-0)=0, inQyp,
{V'C(0)= V-4 =0.

This transport equation shows that V- =0 on Q.

The remaining assertions are proved by arguing as in Proposition 2.1. Since here
[ £lle < ev)s rlidflz, we can drop the last term on the right hand side of (2.15). Conse-
quently, we obtain the equation (2.14) without the integral term. In particular

(2.20) el r < W) ™.

From equations (2.9); and from (2.20) it follows that 8,4l < elvlz iz, for each
t {0, T'}. Herice

(2.21) lo:ll, » < ¥id, A)ye™®.

From (2.20) and (2.21) we get, in particular, (2.19),.

By differentiation with respect to ¢ of the equation (2.9), and by using (2.20) and
(2.21), one shows that |87y, r < ¥(d, A, B). Hence, (2.19); holds.

Let us prove (2.18). Take the derivative with respect to ¢ of both sides of equation
(2.9);, multiply by 8,2 and integrate over R%. It readly follows that

L4 |a,¢p < wid, 4, BlatIP,
for each ¢ [0, T]. Use, in particular, the estimate (2.19).. Since 8, 2O < ¥(d), one
has [8,¢ll, » < W(d) exp[T¥(d, A, B)]. This estimate, together with (2.20), proves
(2.18). The continuity of 3,7 with values in H' and that of 37 with values in H® follow
easily from the expression of these derivatives (obtained from (2.9)), since
e Cp(H?), ve Cp(H?), and Ove Cp(H)).

LEMMA 2.6. - Let ¢, p, g, and v be as in Lemma 2.4. Then, the problem (2.10) has a
(umique) solution g satisfying dlg e Cp(H* 1), j = 0,1,2. Moreover there is o function
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¥y such that if

(2.22) T¥, <1,
then
(2.23) liglls, » < ¥(d) + T,
and
2 —
(2.24) 2 lofgls ;. r < ¥, A + TVEF.
i=o"

The proof of Lemma 2.6 is done below, together with that of Lemma 2.7.

LEMMA 2.7. - Let ¢, p, g, and v be as in Lemma 2.4 and g be as in Lemma 2.6.
Then, the function 8 defined by equation (2.11) satisfies dse Cp(H2 1), J'r_ =(,1,2,
Moreover, under the hypothesis (2.22), and for suitable Sunctions ¥ and ¥,

(2.25) el z + 2,30, r < ¥(d) + TF,

and

8lls p + 118, 8]l;, 7 < ¥(d, A) + TV2F,
25 {n b+ ouclh

”81523“0, T = W(d7 Ar B) .

Proor oF LEMMAS 2.6 AND 2.7. — We start by proving (2.24). Equation (2.10) has
the form (8.1) by setting in (3.1) I = k() and f = X(3;v;}(9;v;). Hence, the estimate
(8.18) applies to the solution of (2.10). In this case, the equations (1.13) and (2.12)
show that |lg; {l; < ¥(d) and that ||A(0)]}, < ¥(d), for suitable functions ¥().

Moreover, under the assumptions of Lemma 2.6, polynomials of type P turn out to
be functions of type ¥(d, A). It is sufficient to verify that the arguments of P are
functions of type ¥(A). Let us start by m. By (24), |¢|a r < cligls, 7 < eA. Hence,
Ut, @} = k(q(t, x)) = inf {A(s): [s| < cA} = [¥(A)]"L Since his) >0 for all se R, the
last equality defines, in fact, ¥(4) as a positive nondecreasing funetion of A, Hence,
the first inequality in equation (3.4) holds for [ = h(g) and m = ¥(A). The assumption
llglls, 7 < A (cf. (2.4)) and equation (2.16) easily show that the remaining arguments of
the polynomials P are, in fact, functions of type ¥(A).

On the other hand, the particular form of f together with (2.17) show that the inte-
gral on the right hand side of (3.18) is bounded by T'¥(B), for a suitable ¥(-). The facts
proved until now show that, under the assumptions of Lemma 2.6, the estimate (3.18)
turns into (2.24). Finally, we must show that the condition (3.19) turns into (2.22). In
other words, we must prove that R < ¥(d, 4, B, C). This is eagily done by showing
that all the argument of R are, at most, of type ¥(d, A, B, C). This follows immedi-
ately from the result proved above for P, from (2.17), and from the assumptions (2.5)
on ¢ (together with the C?® regularity of h()). =
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In the sequel it iz well understood that the assumption (2.22) holds. Let us prove
(2.26). From (2.11), by taking into account (2.24) and (2.16), it readily follows that
I3]lo, + satisfies (2.26),. Moreover, by taking the derivatives of both sides of (2.11) with
respect to f it readily follows that

||at3”1, 7= ||8§g!|1, r+ [&v], T”9'”3. rt+ E?f]z,i"”azguz, T-

By using (2.24) and (2.16) one proves that ||3;8], r satisfies (2.26);. Now, we prove
(2.26);. From (2.10); and (2.11) one gets

(227 ds=—v-Vo+ V- (hig) Vg) + 2(3;v;)(8;v;) .
Consequently,
(2.28) 0,(8,8) = —d,v-V&—v-9,V3 + 3,[h'(q) Vq-Vg + h{q) Vgl + 2X(3,9;v; X3;v;).

By taking into account (2.17), (2.24), (2.26);, (2.2), and the estimates |h'(¢}|« r<
< ¥(A), |h'(Q)] », v S ¥(A), it readily follows that the |||l » norm of the right hand side
of (2.28) is bounded by ¥ Hence (2.26), holds.

Sinee &,y + v-Vg = —3, one gets

L gtel < el @l + elell, o),

which yields (2.23). Finally, we prove (2.25). From the above estimates it follows that
the |||l 7 norm of the right hand side of equation (2.27) is bounded by V. Since
o), < (), lléll, r satisfies (2.25). We have already shown that the [|- [, » norm of
the right hand side of eguation (2.28) is bounded by ¥, Moreover, the initial data
3,8(0) (obtained by setting ¢ = 0 in equation (2.27)) satisfies [|9,4(0)]] < ¥(d). A stan-
dard argument applied to the transport equation (2.28) shows that [|,4||, r satisfies
(225). =

Proor or LeMMA 22. — From Lemmas 25, 2.6, and 2.7 it follows that,
for suitable function of types ¥ and ¥,

1 N . —
(2.29) llglle, = + ,EO(Ilaé’CIIl —irTt 813l -, 7) < ¥i(d) + T,
i

L _ _ _
(2.30) _En(nagf:”z—j, 4 18{glls—j,r + 188l . r) < P2(d, &) + T2F,,
iZ

and

(2.31) 1183 tllo, 7 + 167 8l » < ¥5(d, A, B),
if

(2.32) TF, < 1.
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We dropped from the above formulas the terms e’ since, by (2.32), T¥ < 1.
Note that we can replace 7, + ¥ by ¥,, since both are functions of type ¥

The lemma is proved if we show that A, B, C, T, can be chosen in such a way that
P {d) + TE, < A; ¥y(d, A) + T2 ¥y < B; ¥3(d, A, B) < C: and T¥, < 1. We start by
fixing A =1+ ¥, (d), and we impose to 7 the condition 7%, < 1. This condition is in-
cluded in (2.32), by replacing 7, by ¥, + ¥,. Hence, ¥,(d) + T'7, < A. Now, we set
B =1+ ¥;(d, A), and we impose to T the condition T2%, < 1 (included in (2.32)).
Hence, ¥,(d, A)+ 1'2¥, < B, Then, we set C = ¥,(d, A, B). Finally, we chose T
such that 7%,(d, A, B,()<1. =

PROOF OF LEMMA 2.3. — The values of the eonstants A, B, C, are that fixed one the
proof of Lemma 2.2. Hence, for suitable functions ¥, one has A =V(d), B= ¥(d),
C = ¥(d). Consequently, every constant of type ¥(d, A, B, C) is now simply of type
#(d). In the sequel we assume that T obeys to condition (2.32) (which can be written
in the form ¥y(d)T<1) and we show that there is a function ¥(d) such that if
Y(d)T <1, then § is a contraction,

For convenience, constants of type ¥'(d) will be denoted simply by ¢. Also numeri-
cal positive constants will be denoted by ¢. The symbol ¢ may denote distinet eon-
stants, even in the same equation,

Let (¢,¢,%) and (3, q, 9 belong to K and set (¢, 9.8)=8,¢q, %), (g 8=
= 8(3, 7, §). Since these elements belong to K, all the norms considered below are
bounded by constants ¢ = #(d). In the caleulations that follow the reader alse should
take into account the embeddings (0.1), (0.2), (0.3). Note, in particular, that
Il < 1715 g5 < el £ 1 [lgl;.

From (2.10), and (2.11) one gets 8,6 + v- V3 — V- (h(g) Vg) = 2(0;9;(8;v;). By tak-
ing the difference (side by side) between this equation and the corresponding equa-
tion for 4, g, g, 7, by multiplying both sides of the equation obtained by ¢ — 3, and by
integrating over R? it readily follows that

@39 L3+ (M@ ¥ -p-ve-5 <

<o~ 2l - &l + to ~ 51 + 19 ~ g1, + g~ g1,

for each ¢ € [0, T']. On the other hand, by taking into account that ¢ — 5 — (g —g) +
+ 2 V(g - g) + (v - ) Vg, and that V(g — 5)- V[v- V(g — P =2(3%,)8;(g — P d;(g -
— 9+ 1/ V|V(g-p it readily follows that

(2.34) f K Vig - ) Vis—3) >

= %gtm J'(h(q)[V(q—ﬁ)lz‘- clg — g% - g —gllv - 21).

Since |¢]. < ¢,4 (by (2.4)), where ¢, is a Sobolev’s embedding constant, one gets

SR S R

e
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hlg(t, z)) = |sl|rn<i?Ah(s) = ¥(A) ! (definition of ¥(A)). This shows that
[g—~ <cfh(q)|V(9 P2

Consequently, (2.33) and (2.34) yield

2 it e~

< e(s ~ ff + la(@ 2 V(g — DD - s — &l + e V(g — @I + [v ~ Bl + [g — gh)-
Since 2(0) — &(0) = g0 — g(O) :4{0, it readily follows that
(2.35) lle = &llo,z + [g — g, r < ¢TUg — Gl r + [v — By, 7).

Now, we take the difference, side by side, between the equation (2.9), and the cor-
responding equation for Z, 7, 4. Then, we multiply by 2 — Z both sides of the equation
obtained and we integrate over R%. Straighforward calculations show that

(2.36) Il = Zollo. 7 < eT(w ~ B, + |8 — 3.

By using (2.85) and (2.36), and by taking into account that [v — 7]; < c(l¢ — ¢l + ||¢ —
— 4}, one gets

le—= o,z + g ~ gh, 2+ 18 ello, 2 < 6Tl = B,z + [g =~ T, r + |8 = o, ),

where ¢ = 7(d). The map § is a strict contraction if 7' satisfies the inequality
2¢T<1. =

PROOF OF THE COROLLARY TO THEOREM 1.2. — Let us go on assuming that v, e H.
Equation (1.8), immediately shows that 8,v € C(H"). Moreover, by (1.11), it readily
follow that ||8; o]l 1 < ¢. Corresponding results hold for 87 v and 8} v, by differentiation
of equation (1.8); with respect to {. By differentiation of equation (1.8), with respect
to ¢ we show that 8}ge Cp(H") and we get the estimate |8} gly 7 < e

t
Assume now, in addition, that vye H®. Since o(t) =, + j(atv)(ﬂ:) dr, and
{

dve Cp(HY), it follows that ve Cp(H?) and that |y p<c.

3. - On a linear second order hyperbolic equation.

This section is dedicated to the study of the linear hyperbolic mixed problem

@ +v-Vig-V-AVg) =f, in Qr,
3.1) g =0, on Xp,
g0) =g, 3 9(0) =gy,
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which plays a main rule in the study of the nonlinear problem (1.8). The main results
are Theorems 3.1 and 3.2 below. We are interested on proving sharp estimates for the
solution g in terms of the data and, specially, in terms of the coefficients v and L.
Methods to construct the solution, departing from the a priori estimates, are well
know. See, for instance [M1],[M2], and references therein.

We will mention, together with the estimates, the conditions on the data which
are sufficient to prove the existence of the golution, In order to simplify the notations
and to make fluent the reading we do not write the estimates in the sharper form, but
just in the form needed to apply.them to our nonlinear problem.

The estimates are proved under the assumption (3.19). We can get ride of this as-
sumption by using weighted LZnorms e " I-Il. However this gives no advantage in
the application to our nonlinear problem. For convenience, we assume that
T=1

In this section the coefficients v and [ are as follows

(3.2) dlve Ly (1), j=0,1,2; wv=0ony,
(3.3) Vie Lf(H?), dleLf(H?),
(3.4) m s, x) =M, on Q.

We use the following notation. P, @, and R, denote polyromials with non-nego-
tive, costant coefficients that depend at most on the arguments indicated below

P = P(m, M, [0l 7,18,0}, 7, [Vih. 7).
Q = Qim, M, [vls 7,3 vk, 7, (Vs 7, 10:2le, )
R = R(m, M,1vk, r.[8 vk, 7, @ vl r, Vil 7, [0, ) -
We use the same symbol P (or @, or R) to denote distinet polynomials, even in the
same equation. Hence, we are allowed to write P+ P =P, PQ = @, and so on.

We start by proving a priori estimates of order zero for the Cauchy-Neumann
problem (3.1) and for the Cauchy-Dirichlet problem

@, +v-Vg—V-AVp =f, inQp,
(3.5} g=0, onZXg,
g0 =gy, 0O =g

We set

(3.6) —2=23,g9 % v Vyg.
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LemMa 3.1. — Let goe HY, g1 H', fe L2(H"), and let g satisfy 3.1). Then
t

(8.7 J(a?- + g2 + 1| Vg | < eQTj(az + lg2 + 1| Vg |®)(©0) + eQT[ IAIEds,

0

in [0, T). This estimate is also verified by the solution g of (3.5). In this case, we as-
swme that gy e Hy.

ProoF. — By multiplying both sides of (3.1); by & and by integrating on RE, one
easily shows that the estimate

358) %-{‘f—t[;#jzvg-w: —Jfa,

holds in both the cases. Note that, for the Dirichlet problem, ¢ = 0 on Zy. By using
(3.6) it readily follows that

_ J 1Vg-Vs = %% Jl|vg|2— % J(atl)|Vg|2— % j{V-(lv)]lVgl2+ J 12(9;0,)(3:0); ) .
Hence, from (3.8), we get

1d [, 2 2

5 d J(a +1|Vg| )SQJZ|Vg| Jfa.

On the other hand,

Do (ke

4d [zl 2_J' _,LJ 2
dtJEg ZJ(atl)g 1§ 5 wVg=©.

Consequently,

%;% J(a2 +Ig2+1|Vgl®) < QJ(az + g%+ l[Vg‘lﬁ) + Ifz. n

THEOREM 3.1. — Assume that the conditions (3.2), (3.3), and (34) hold and thal
fe LE(HY), goe H% 8,90 =0 on I, and g, € H®. Let g be the solution of (8.1). Then
there are polynomials P and @ such that

T

(3.9 g2 2 + 8,01, 7 < Pllgo B + lign D) + ¢ j Irsiids,
1]

if

(3.10) Qr<1.

PROOF. — We use the notation F, = 3, F, F, = 9, F, and so on. We denote by % any
of the variables ¥, or ¥s, and by z any of the variables #, %z, or @. By taking the
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derivative of both sides of equation (3.1); with respect to a space variable, we
get

(at+v'v)zgz_V'(lng):F(z}: n QTa
(3.11) 8,9,=0 onXypif z=y [resp, g, =0on Xy if 2= x],
7.0 =90, 09.0) =g,

where .
_(3.12) Foy=f,— @+ v V), Vg) ~ (0, V)(Og +v-Vg) + V(. Vg).

Note that g, , € Hj. The function g, [resp. g,] is the solution of the Cauchy-Neumann
fresp. Cauchy-Dirichlet] problem (3.11). Set

(3.18) — 3 = 8,9, + v Vg..

Equation (3.7) yields
T

G0 [@h +lg? + UVg, 1)) < e [ + lgE + U1Vg. DO + eQTJ | ()P ds,
o

on [0, T']. Straightforward ealeulations show that
17 @l < IFd: + Qllg®l: + [0:9®ll) -

Hence, from (3.14) we get the estimate

(8.15) J(a‘?z) + gk +1| Vg, DO <

£ i
< e J(S?z) + g2 + 1| Vg, |2)(0) + ¥ f If)Eds + Qe?” f (lg(s)lg + 0. gs)[E Y ds .
1] 0

Now, we want to obtain estimates for ||gll; 7 and [3.glh, ». Since
%+ 1| Vg|? = (BugF + 200- V)@, 0) + v-Vy|* + 1| Vg%,
it readily follows that, for every « < ]0,1[,
& +1Vg|* = (0 — )@ + [m*-‘ - 1—“,;“-5— |v|m]|Vg|2-

By setting ¢ = 2{v|. /(2|v}. +m '), one obtains, in particular,

|8,9]2 + |Vg|? < P& + [|Vg|?).
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Hence, from (3.7), it follows that
T
(3.16) lglB 7 + B gl 7 < Pe¥ llgol + llon | + Pe QTJ IreslPds.
5

On the other hand, by replacing &% + [|Vg|? by 8%, + 1| Vg, |* and by using (3.15) in-
stead of (3.7), one gets

G1D ol r + 18,018 7 <

T T

< Pe¥ | llgo [ + llg:[IF + f lFes)i ds +QeQTJ(IIg(8)||§ + 8. g(o)lit) ds,

0 - )

either for z = x and for z = ¥;, i = 1,2. In particular (3.9) follows if T satisfies (3.10),
for a suitable polynomial . ™

We point out that the above estimates allows us to prove that a L,° solution of
(3.1) must belong to Cr.

LEMMA 3.2. — Assume that the hypothesis stated in Theorem 3.1 hold and let g be o
solution of problem (3.1) in the cluss g e Ly (H?), 8,9 e Ly (H 1), Then, ge Cp(H?)
and 3,9 € Cp(H').

The proof follows a well known technique. In order to avoid a deviation from the
main lines, we postoponed the discussion of the above result to Appendix A.
Now, we prove our main result.

THEOREM 3.2. — Assume that the conditions (3.2), (3.3), and (34) hold, and that
feLi(H?), 8, fe Ly(H"), goe H? g1 € H?, 8,0y = 9,01 = 0 on Ly Let g be the solution
of (8.1). There are polynomials P and R such thot

2 . 3 .
318) 2 [6/glB ;v < Pllgolf + lon [ + KO + P [ Qs + o, sl ds,

0

provided thot
(3.19) T RT=1.

PROCF. — By taking the derivative with respect to ¢ of both sides of equation (8.1}
and by setting g, = 8,9, one gets
(8, +v- Vg, —V-(Vg)=Fy, in@Qr,
(3.20) d.4:=0, on Xp,
g:(0) = ¢, 3,9:(0) = g,
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where the expression of Fy, is obtained by replacing z by ¢ in equation (8.12). Tedious
but straightforward calculations show that

(3.21) Fll < l8:f1l + Riglls + 3.9l -

almost everywhere in [0, 7], for a suitable R. In particular, Fy, e LA(H"). On the
other hand, by setting ¢ =0 in equation (3.1);, one easily prove that

(3.22) fige [l < LAONL + Plgolls + liga ll2-

By applying Theorem 3.1 to the solution g; of the Cauchy-Neumann problem (3.20) we
prove that

323) ol r+ 60l » <
T
< P(lgo B + llgx 1 + IAONE) + ¢ j 13, 7s)|Eds + RT(gl,  + 13,91 ),

0

if (3.10) holds. Lemma 3.2 shows that
(3.24) g.e Cp(H?), 8,9, € Cr(H).

On the other hand g, and g,, (both denoted here by g,) are solutions of the Cauchy-
Neumann problem (3.11). Note that 9,(3,g0) = 0 on 2. Straightforward calculations
show that

(3.25) 1F el < £l + Qlglls + 118291k

a.e. in [0, T]. Again by Theorem 3.1, one gets

T
@26 loyI8 2+ 18,9, 2 < Pl + a8 + ¢ [ WrisB s + QTlgl 7 + 0.1k ).

0
if (3.10) holds. Moreover, by Lemma 3.2,
(327) gyE CT(HZ)) atgyGCT(Hl)- u

It remains to estimate the Ly (H®) norm of 33g. If it were no boundary, the esti-
mate (3.26) would hold also for g, and (3.23) would be superfluous. Nevertheless, in
the presence of a boundary, the argument developed above for g, can be applied to g,
only in order to prove an interior estimate. In fact, by using a saitable cut-off function
8(x), we will obtain the desired estimate on R3S, where S is a neighbourhood of the
houndary I". The width » of S will depend on the partieular coefficients v and I (a cru-
cial point for the application to our nonlinear problem is that r < P -1 for a suitable
polynomial of type P). Finally, by solving (algebraically) the equation (3.1), for g
we are able to estimate 33g on the slab S.

Let us start from the interior estimate. We define r by (3.35) below and we fix a
real nonnegative function @ e €= (R ') such that x) =0 if v e [0,1/2] and &{x) = 1 if
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z 2 1. We set d(x) = &x/r). From (3.1); we get
(3.28) @, +v- Vg — V-[IVG] = 8f + HS, L, v, g]
in Qr, where H is the «commutator»
H =@, +v VEg) — 93, +v-Vig — V [IV(Eg)] + 9V {IVg).

We left to reader the straightforward calculations leading to a more explicit expres-
sion for H.

Now, we take the derivatives of both sides of (3.28) with respect to &, and we as-
sociate boundary and initial conditions to the equation obtained in this way. One
gets

(at + Q)V)z(-;ﬁg)m - V[lv('&g)x} = 8m(7-9f) + awH + G’ on QT’
{3.29) 8, (dg), =0, on g,
(99),(0) = ($gy)s, (990, (0) = (Sg1 ),

where G is the «commutator»

619, b )= 2 +0-) Butig) = 8,00+ 0V 0) — V- UV: (5] + .7 IV )

A more explicit expression for G is left to the reader. By applying the Theorem 3.1 to
the solution (8g), of the above Cauchy-Neumann problem we show that

330) |00 + 3 B9l 7 <

T T
< PUKsgo), I8+ gl + ¢ [l @l + ¢ [ 6.4 + Gl ds.
0 0

The last integral on the right hand side of (3.30) is easily estimated, by doing
straightforward ecaleulations. Use, in particular, (0.1), (0.2) and (0.3). The only differ-
ence with respect to the situations considered above consists on the presence of 4 and
of its derivatives. However, the corresponding terms are trivially estimated, since
(3.35) shows that

k .
(3.31) %ﬁi I < o r ¥ < @cf FomF v < P,

for each k e N,. Moreover, for k = 1, these derivatives vanishes fosx<sr/2orif
x = r. After some calculations one gets

lo, # + Gl < Qlglls + l18:glle)
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for each e [0, T']. It readily follows from (3.30) that

. Fz 2, TRE N9 s[5, TRINS) =
332 lg.lB +[|0. g <
T
< P(lgo [ + llon |B) + P j 171 dt + QTlglE ~ + 6. 91E ),
U]

where the left hand side of the above inequality has been restricted to the interior do-
main B\ S. Furthermore, Lemma 3.2 shows that -

(3.33) goe Cr(HERENS), 8,90 Cr(H' RIS,
since (dg), e Cr(H?) and 3,(dg),c Cr(H"). ® '

Finally, we estimate 8¢ near the boundary I'. In equation (3.1); the coefficient of
3%g is given by — (I — v¥), where v, is the third component of the vector field . Since
vy =0 on Iy and vy e Cp(H?) c Cx(C% ), one has

(3.34) fos (2, o, 2] < colvly, ™2,
where ¢, is a positive numerical constant. Set
(3.35) r= 2mef [vE )"
and define
S={zeR}:0<x<r}, E=]0,T[xS.
The coefficient [ — v satisfies the estimate
(3.36) [-vi=1/2m, onk.
From equation (3.1) it follows
(3.37) Eg=(-f+A+B-Vp/l—vi),
on F, where ‘
A=3g+ 203, Vg) + (i’j)g(g, Ui 8kg— WAL+ 3y
and B = 8,v + (@ V)v— VL. From (3.37) it readily follows that, for each te {0, T],
(3.38) 162 gle < PL—f + A + B-Vgh.

for a suitable polynomial P. Moreover, straightforward caleulations show that B <
< P and that [A]; < P|lg|lz. Here

lols = = [6%glh + [B:gll: + 197 gl -
()= (3,8

Denote by ||, the canonical norm in the Sobolev space W*”. The Cauchy-
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Schwarz inequality yields |-[y<|-|¥*| |3 Hence | |h.<el V4] 2" <
< d|-i**]|- 2. On the other hand, straightforward caleulations show that [B-Vg], <

< o[B1||Vgll, « < P|Vgl; o It readily follows that
(B-Vgl; < ¢ 2 Pllgil. + <Pilglls
for every ¢ > 0. In particular, (3.38) yields

1839l < Pllflh + Plglit -+ <Pllgl + <~ Plglis -
Hence, for ¢ < ]0,1[,

T
@339) 80l cusy < P(Hf(mll% +7 IlatfH%dt) + <Plglf, r + < Plllg?.
0

By adding, side by side, (3.82) and (3.39) one proves thai
340) |82l r < Plligo I8 + lon |8 + [l FOIE) +

+P f (712 + lle. £12) + QTligls® + = Pliglls? + <Plglf r,

provided that (3.10) holds. =
Finally, we prove (3.18). Equations (3.23) and (3.26) show that
BAD  |lolg% < PllgelE + llgw I8 + LFOIR) +

T
+e [Af1E + 18£8 dt + RTIE 7 + 10,08 -
0

By adding (3.40) and (3.41) we get (recall that P < Q < R)

(342) Z 6918 - 5,2 < Pllgo | + llgs 8 + L A0 +

+P j 0171 + o, £ dt + RT 2 l6iglg .z + & * Plglis? + <Pl .

Now we drop the last term on the right hand side of (3.42), by choosing ¢ such that
¢P = 1/4. Since this value of ¢ is of type P Y, it follows that the coefficient ¢ 3P is a
polynomial of type E. Hence, the penultimate term on the right hand side of (3.42) is
bounded by Pllglli%. We estimate this term by using (3.41). After the above simplifi-
catlons the mequa.hty (3.42) turps out to (8.18), except for an additional term

RT 2 88 ; 7 on the right hand side of the inequality. By using the assumption
3. 19) We drop this undesired term. The proof of (3.18) is accomplished. =
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In order to verify that L solutions must belong to Cr, it only remains to show that
(3.43) d2ge Cr(HY(S)).

In fact, (343) together with (3.24), 3.27), and (8.33), shows that geCr(H ),
3,0 € Cp(H?), 829 e Cp(H'). Equation (3.43) follows eagily from (3.37) by taking
into account that A e Cp(H'), that B-Vy e Cp(H 1y (use (3.24) and (3.27)), and that
(I—v2) teC(L= @), VIE-vH e Cp (H*(S)).

4. - Appendix A.

Here, we prove the Lemma 32. If Y is a Banach space, we denote by w — Cp(¥)
the linear space consisting of weakly continuous functions on [0, 7] with values in Y.

Equation (3.1) shows that 829 e L3(H®). Hence 8,9 Cy (H)YNLyg (HYcw —
— Cp(HY). Similarly, g € Cp(H") N Ly (H?) ¢ w — Cp(H?). On the other hand, the as-
sumption (3.2) show that ve Cp(H*)c Cr(L ™). Hence, —3; = 8,9, + v- Vg, belongs
to w — Cp(H®). In particular

A1) i I < i inf s O

On the other hand, by using (3.14) and by taking into account that
le Cp(H?) c Cp(I ™), it readily follows that

4.2)  limsup J[a%z) ® + 10X |g. ]2 + | Vg D D)) =

t—0"

< J{a‘m(O) + 40)(|g, O]% + | Vg, 0}12)].
Since the norm

. o 2
ol = {f(a2 + 19, 10|
is equivalent to the canonical H Lnorm, and since gew — Cr(H 1), it follows that
48 g COMIE < lim inf [lg ).

From (4.1, (42), and (43), it follows that lim @I = e (OF and  that
im JJg, ) = llg- O}, as t->07. A well known result in Functional Analysis
guarantees that s, (£) — 4,(0) strongly in H 0 and that g, (£) — ¢, (0) strongly in H', as
t — 0*. Taking into account (3.18), one proves that 3,9, — 3,9,(0) strongly in H ¢ as
£ —» 0", It readily follows that g(¢) is right continuous in H? at ¢ = 0 and that 3,g(1) is
right continuous in H* at ¢ = 0. The uniqueness of the solution g shows that the above
properties of right continuity hold at every £. Finally, since the equations satisfies by
¢ are reversible with respect to the time, the right continuity properties turns into
left continuity properties. ®
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