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Attracting Properties for One Dimensional Flows
of a General Barotropic Viscous Fluid. Periodic Flows (¥).

H. BEIRAO DA VEIGA

Summary. - We consider the motion of a barotropic compressible fluid in o one dimensional
bounded region with impermeable boundary, see equation (1.1). Here, u(t, q) denotes the vel-
ocity amd w(t, g) the specific volume. The quantity log v(t, g} measures the displacement of
w(t, q) with respect to the equilibrium v= 1. For the sake of brevity we denote here different
norms by the simbol | ||. We show that there is a positive constant ro =7, (p), a small ball
B, () (with radius B, (v), limu R, (r) = 0), and a large ball B(r) (with radius R(r), lirr%) R(») =

r— s
= + ) such that the following kolds, for each € [0,7[. () If | f® < » for all 1= 0, and f
[(2e0), log w(ON|=E R (e (u(0),log v(0) € B(1)) then, for sufficiently large values of t,
(), log v = Ry (); (i) The solutions starting at time ¢ = 0 from the large ball B(r) hove
all the same asymplotic behaviowr (see (1.11)); (iti) If f is T-periodic then there is a (unique)
T-periodic solution (u(t), log v(t)) inside the small ball B, (r). This periodic solution atracts
all solutions which intersect the large ball B(r). Periodic solutions had been previously stud-

ied only for very specific pressure laws, namely p(v) =logv and p(v) =yl

1. — Main results.

In this paper we consider the motion of a barotropic compressible fluid in a one di-
mensional bounded region with impermeable boundary, for a general pressure law.
By using material Lagrangian coordinates, and after a normalization, the equations of
motion are

V= uq,
g
(1.1) Uy = o sy )y — PN, + £ |, [ott, &) ),

0

u(t, ) =ut,1)=0,

where ge 2=10,1[, and ¢=0. Here, u(t, ¢) is the velocity and v(¢, ¢) is the gpecific

(*) Entrata in Redazione il 7 aprile 1989,
Indirizzo dell'A.: Univ. of Pisa, Ist. Mat. Appl. «U. Dini», Via Bonanno 25/B, Pisa.
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volume. The external force f(, ) is given as a known function of the Eulerian coordi-
nates (¢, x). The real function p(-) has a (locally) Lipschitz continuous first derivative
on 0, + «[. Moreover, p'(s) <0, Vs € J0, + o[, Without loss of generality, we assume
that p(1) =1, '

Let us consider the conditions

(1.2) mig v >0,
1
(1.3) [v@dg=1,
0
and
(1.4) dg, €[0,11  such that »(g;) =1,

For convenience, we set
HY(Q)= {ve H (Q): (1.2),(1.3) are satisfied),
K'Y @)= {ve H'(Q): (1.2),(1.4) are satisfied} .

Clearly, H'c K'. H}(Q) is the closure of 0(@) in H'(©). In the following we denote
respectively by || | and (, ) the norm and the scalar product in L2(2), by | |.. the norm
in L (@), and by (| ||, the norm in H* (). We denote by C%'(2) the space of Lipschitz
functions defined on [0, 1] and we set [ £y, = sup | f() —f@)|/|x -y, for z, y [0, 1],
x#y. For convenience we drop Q frtl)m the above symbols, Hence L% = L%((2), and so

on. We also use the notation [g = [g(g) dg.
0
For functions fe L”(0, +%;C%!), we define
(flo1=esssup[f®)y, for tel0, +oof.

For functions fe L™ (0, +o;L”) we set (for convenience) [l f].. = (10/w)V?| fL,
where || f]|. = esssup | f(£)., for t€]0, + o[.

A quite natural quantity in order to measure elements (%, v) in the phase set L* x
X H'is [fulff + ol + [v~" 2. Tt is not difficult to verify (we will return to this point later
on) that the above quantity is equivalent to [fuff + [[log v), |}, in the sense that, each of
the above quantities is bounded away from infinity (or from zero) if and only if the
other does. However the latter is more significant here and we will state below our
main results in terms of it.

In the results below 7, denotes a positive constant which depends only on the par-
ticular function p(-) and on u. Moreover,

R 10,7 =10, +oof  and  t*:]0,7[—]0, + o]

Fig
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are suitable decreasing functions such that
(1.5 hn}] Rr) = + oo
and _

3{1 (7'): ]0, 7_"0[—)]0, +°°[
is an increasing function such that

(1.6) ' lirr%] R (r)=0.
In the next seetion we shall prove the following result:

THEOREM 1.1. — Let the external force i, %) belong to L™ (0, +00;C%1), and as-
sume that (f Yo, = co where ¢o is a suitable positive constant which depends only on
p(:) and on . Assume thut for some r €]0, 7, [ one has

. . NF e <r/2,
(1.8) e + [[log ™) Iff < RE (),
(1.9) [0 + [[log T") I < RE (),

where the initial data (', v°) and @°,v") belong to LAx H! Let (u(®), v(®) and
(), B(®) be the solutions of problem (1.1) with initial data @®,v°) and @°, %), re-
spectively. Then, for each t=1t*(r) one has

(1.10) Hu@)|E + [|(og v, P+ llu, DIF < R,
and similarly for (@), 5(8)). Furthermore,
(1.11) () — u)|E + |[Qog #(£), — (og v()),[F =i exp (=g (t—t%(r))).

In order to interpret the above statement it is worth noting that for «small» exter-
nal forees the ball (1.8) is «large» and the ball (1.10) is «small». In fact, as 7— 0, the
ball (1.8) invades L2 x fI! while the ball (1.10) shrinks to the point (0, 1).

The second part of the statement shows that the large ball (1.8) is exponentially
attracted by a (asymptotically) unique flow. All the solutions starting from (or inter-
secting) the large ball have the same asymptotic behaviour.

The following result concerning periodic solutions will also be proved in Sec-
tion 3.

THEOREM 1.2. — Let f be a T-periodic function, T >0, satisfying the hypothesis
of Theorem 1.1. Then, there is a T-periodic solution (u(), v(t)) of problem (1.1}
whose orbit lies entively inside the small ball (1.10). Each solution (@), o))
of the equation (1.1) that intersects the large ball (1.8) must converge asymptotically
to the periodic solution (u, v), according to the exponential law (1.11). In particular,
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there are no T'-periodic solutions, T'Z0, that intersect large sphere and that
are distinct from the T-periodic solution (u(t), v(t).

For pressure laws p(v) such that kv Z —p'0) Z kv~ or kyv EZp' () Z k02
(p'(v) <0), periodic and quasi-periodic solutions were studied by SHELUKHIN in [8].
For p(v) = kv periodic solutions were studied by MATSUMURA and NISHIDA in [6],
also for the piston problem. For the n-dimensional case see VALLI[10].

Our results are partially related to those in BEIRA0O DA VEIGA[1], KANEL 3],
KazHIKHOV [4], [5]. The proof of Theorem 1.2 uses Serrin’s technique [7].

Related results for stationary solutions were proved in BEIRAO DA VEIGA [2].

2. — Known results.

For the reader’s convenience, in this section we present a review of those results,
proved in [1], that will be used in the next section. For more details, the reader is ref-
ered to[1]).

Positive constants that depend at most on the particular function p{*) and on . are
denoted by c¢,eg,¢,.... The symbol ¢ may denote arbitrary different positive
constants.

In this section, we recall some results proved in BEIRA0 DA VEIGA [1]. In order to
state these results it is necessary to introduce some auxiliar functions and some nota-
tions. First of all it is worth noting that a natural quantity to measure elements
(u,v) e LEX H' is [[uff+ flw, [P+ |0 ~" 2, which is equivalent to el + [le? + [for, P +
+[vf% +[v7]., in the sense that both remain bounded away from zero together. How-
ever, there are equivalent (in the above sense) quantities that appear more conve-
nient than the above ones in order to study our problems. In this regard, and for the
reader’s convenience, let us describe the following facts. By using well known devices
([11, 141, [5]) one shows that for each v € K* one has:

exp (— [l(log v),|) = Jo]o Al | < |l V o7 o = exp((log W,

Idog v, llexp (= fitog v),ID = flug | Allw )]l < o, IV ltw ™), 1 = [og 2, | exp (ldlog v, )
R lICL + log Iy = o 1 iz = log vyl = Mol oo = ey L+ ™), ) -

Hence, for elements (u,v) € L*x K', the quantity [ul? + [(log v), |? is equivalent to
lleal* + ol + lJog I[P + lcw 1), [P+ ol + [0 1 2. In this section we will use the equivalent
quantities ¢*[u, v] and ¢?[u, v] + ¢*[v], where

2.1 ¢ [, ] = @/ mulff — 2(u, (log v),) + pil(log v), |
and ¢*[v] will be defined below. Note that
(2.2) ¢, v1 = @/wlkf + Jullog v), — ulf,

g
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and that

1(4) 2\ < ;2 <3[4 2
@3 (L ulog v, F) =42, o= 2 (Al + ulog o), F),
for (u,v) € L* X K'. Moreover,

(2.4) exp (—@2 /WY ¢lu, v]) = vig) = exp (/w)/2¢[u,v]) Vge,

for all (u,v) e LTx K.
Defined (see [3], [5]} 5 real funection

e C1(J0,+[) by @ =p(), Vs>0, »(1)=1.
Note that s —»(s) >0, if s#1. Set

(2.5) £ll=6/w [v—=v), Ve,

The quantity ¢*[u, v]1+ ¢*[v] is equivalent to ¢*[u, v] since there is a real, strictly in-
creasing function 6 e C([0, + =[), such that 6(1) =0, and that (see{1], equation (7.8).
Here 6(-) is the function (8/x) M2(-) in reference [1])

(2.6) $*[v] = 0 (exp (/" *¢lu, v])).

Another main point is the following estimate (see[1], (7.2)):

@ % %W O+ g @1+3 v+ [ —op'@)log A fllavt),  VEZO,
if ¢@) = glu(d), v()], () = ¢lv(®)] and (u(), v(®) is a solution of the system (1.1).
Now we recall some properties of the functions (), R(r), ¢, (), B, (r) (see [1], sec-
tion 6) which will be used to estimate the radius of significant balls in the (u, v) space.
The main point is the behaviour of these funetions. For precise definitions and proof
we refer to[1], section 6 and 7.
F: [0, +[>]0, + [ is a continuous function, such that

FO)=0, F@>0 if y>0, F(+o)= lim_F(y)=0.
Yo+

B: 10, rol—=lyo, +o[ and p: 10, 76 [—1ry, + [ are strictly decreasing functions such
that () < R(r), ¥r €l0, vy[. Moreover,
(2.8) h‘n% olr) = limD B(r) =+,

r—» s

BE1: 10, 70[—10, %[ and ;1 10, 75 [—10, 4o [ are strietly increasing functions such that

o1(") < By (r), ¥r€l0, ry[. Moreover,

(2.9 1in}) o) = ]in%) Ri(r)=10.
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Finally, for all » €10, 7,[ and for all (u,v)e L*x H 1 one has(*)

P lu, vl < o2 (1) = (2w, v] + 0] < R2(0),

(2.10)
$lu, v) < 20 = ¢ lu, v1+ W1 <REG).

The above constants 7y, %o, ¥ and the functions F, p, E, p;, £, depend only on u
and p(-). Let the initial data («°, v°) belong to L% x H' and the external force f(t, )
belong to L= (Q.,), where Q. =0 x]0, + o[, and denote by (u(t}, v(}) the global weak
golution of the problem (1.1} constructed as in[1], section 4. Then

ue 0, +o[; LB A LE ([0, +oo[; HEY, veC(0, +o[;H,).

If, in addition, fe Li, ({0, +[;C%!) then the solution (u,v) is unique, moreover
strong well-posedness holds. More precisely, if (u?,»)) and (u,(f),v,(t)) are se-
quences as above and if (u),v}) converges to (u’,v®) in LZx H* as n- + o, then
(u,, (), v, (1)) converges to (u(t), v(f)) in L?x H?, the convergence being uniform on
bounded intervals [0, 7] (moreover, u,— w in LZ(0,T;H}), YT >0). Seell], sec-
tion b.

From Theorems 7.2, 7.8, 7.4 of [1], in particular, the following result follows. We
point out that there are not smallness assumptions on f(f), as ¢ goes to o=

THEOREM 2.1. — Let (u°,v*) e LEx H', fe L*(Q.), and let v <.

® If

@10 Al <=

and if

@.12) P, 001 + E°] < RE()

(in particular, if Y¥[u®,v?]1<2() then

@.13) Plule), v + 2] < R2(),  VtZ0.
(ii) If (2.11) holds and if

(2.14) G, v 1+ [ 1< RE(r)

(in particular if ¢*Tu’, v < 2(r), then

(2.15) G luld), v()] + o] < RE(), VIZO0.
(iii) If

(2.16) Nl <v/2

(*) Since R2(r) = o (r) + 6(exp [(2/ )"/ o()]); see[1], eq. (6.7).

il




H. BEIRAO DA VEIGA: Attracting properties for one dimensional flows, etc. 159

and if (2.12) holds, then (2.15) holds for all tZ T* where

o P’ 01+ 801 REO)
B 701 (7) ro (r)’

(2.17) T

3. — Proofs.

We start by proving the following

LEMMA 3.1. — Here 7, €10, 75| and ¢y are positive constants which depend only on p
and p(-). Let (u(t), v()) be the solution of (1.1) with the initial date (u*,v*) e H§ x
x HY. Assume that for some r €10, %[ f satisfies (2.11), ¢*[u*, v* ]+ ¢*[o* 1 < RE (),
and fuf|* < a(Ri(r) +r?) where a = c;. Then

ey OIF < a(BE(@) +72), VtZ0.

PROOF. — For convenience, we will sometimes use the notation <,b2 )= a,bz Faudt), v(B)],
#2() = 2 [v(t)]. Let < r,. By theorem 2.1(ii) one has ¢*(t) + ¢*(1) < RE(r) =%§ and
by (2.4) one gets ¢ = w(t,g) = ¢, for a suitable c. By multiplying equation (1.1); by
Uy, and integrating in Q one has

1d

2 dt
since {at, | = V2l /2 |lut, I2 Recall that [u, = 0. By Young's inequality it readily
follows that

ot P+ el IP = o 3y hag /2 lesgq /% + eClilog 0Dl + L oo Mot

1d
2 dt

Note that |lu, || = (1/V2)lu, . By fixing 7, €10, 751 so that ¢, R{ (1) = ¢;/2, and by tak-
ing into account that R, (") is an increasing function, it follows that

Il B + ca lltg [P = co BE (et I + LRE () + 721,

31 %nuq I+ eylhug B < o(REG) +72)

for each r€10,7[. In particular, Dyle,[F=0 if Jlu P Z ¢, (REG) + r?), where ¢, =
=c/c;. =

LEMMA 3.2. — Let r €10, 7, [ and assume that (2.16) and (2.12) hold, where @ v e
€ L x H*. Then, there is a positive constant ¢ such that

3.2) ey ONF <e(REGY+72), VEZ1+TH,

where T# is defined by the equation (2.17).
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Proor. — By Theorem 2.1 (iii) one has

(3.3) PO+ <RIE), VIZT*,
Hence, (2.7) and (2.4) yield
1d

5 57 O+ O+ cllw, P2 cll £11% -

By integrating with respect to t on [T*, T*+1] and using (3.3) it follows that

T*+1

[ e @IPde<@BE @) +9),
T*

where ¢ is a suitable positive constant. We assume that ¢=c¢,. Consequently,
et G < (R () +72), for some ty e [T*, T*+1]. Lemma 2.2 shows that (3.2) is
satisfied. ®

In the following we consider two solutions (u, v), (%,7) of the problem (1.1) with
initial data (u® 0°), @",7°) e L2 x H' satisfying

Flu’, v° 1+ 1< R (1),
Flul, 5 )+ [0 1< R* (),

for some r €10, 7,[ such that || f|||l. <. Set, for convenience,

(3.4)

3.5) w=u—u, t=v—v, I=(ogwv),— (loguv),.

From Theorem 1.1(i) and from (2.4) it follows that there i3 a constant N e{l, + o[
such that

(3.6) NI=vt At <o, QVelt,) <N, V(¢ €Qn.
For each N €[1, + o[ define

Ny=  ap |EEZPO)
Nlseysnt 8§78
Set k= —p'(1). It readly follows from equation (1.1) that

(3 7) W= wq}
) wy = w(® g — v ), — (V) — p)), + V1= f0],

7
where fvi(t, ¢) = f|t, J v(t, &) d¥|, ete. By multiplying (3.7); by w and integrating with

]
respect to g, one gets

(3.8) %%fwz-mfﬁ*lwf:,uf%quq+j[p(ﬁ)—p(v)]wq-l-f(fm—f[v})w.

Fig
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Since [p(@) ~ p@) + ke| EL(|v — 1| + |z)}z| ¥o,5 € [IN"!, N1, and [ew, = 1/2) D, |7, it
follows that

14d i
3.9) 5 g (el + &)+ f vy s

= uNE [ty | [el.o oo |+ L% faog | + Llele o = Lo oo | + f (fl@l-flvDw.

Note that (cf. [11, (5.3))

=
(3-10) !T]w—N”lHr
v — 1|, = Nljlog v), |-
Since (log v), = v~'u,, the equation (3.7), may be written as
(3.11) w, = ply— '@V, —p' W v,) + W] —flv].

On the other hand —p'(¥) ¥, + p'(v) v, = — vp' @) L + (vp'(¥) — wp'())(log 'L’)q;. Then, by
multiplying (3.11) by ! and integrating on @ with respect to g, one gets

612 ELpp o agulip- [z Lo [ fog v, 1< 1+ (- fEDL,
where by definition
a(N)= min - sp'(s),
N-l=z=N

S;Dr(S) _ Sfp.'(sr)

r

§—8

Ly(N)=

N'=s5<gs'=EN

Since
jwtlz ifwl+j5*1wzwj.j—u w
dt ¢ T
one obtains
# 4 e 2_ ij <
(3.13) 5 1B + oV 7 wl =

|,

L1+ Ly [ dog 3, 1+ (7100 7D L.

§¥‘1w§+j

Now we multiply the equation (3.9) by 4/« and we add side by side to the equation
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(3.13). By using (3.10) it readily follows that

d

B 3 T T O+ 2]+ 3N o, -+ = 5N o, i o, |+

+ALNZ W7 I o, ||+ AZN? 6 (Qog 00, 1A o, ||+ Lo Ndlog o), | [P +

, 17101 = f vl ™ el + D,
where, for convenience (see (2.1);,
9 (0) = ¢E®), /)0 = 4™ O — 260t 18) + llicOE.
Note that (cf. (2.3))

(3.15) %—(4#“1 ol + ity = 7 (1) = % (™ ool + 1P

For convenience, we denote by € positive constants which depend at most on u,
p(+), and N, and which are nondecreasing function of N for N e [1, + cof. By using this
notation and Cauchy-Schwarz inequality, (3.14) yields

(3.16) -;- %@2 ® + 4 ) + € fan, [F + C =

= g P + 116 + log v, [P + liclog w)g DI + eNT£1o, 1 (] + bl
Note that |f[0] - f[vlle = [flo,1 sl SNLFL . ®

Assume again that (3.4) holds and assume that (1.7) is satistied. Theorem 2.1 (iii)
shows that

P Lu(t), )] + $* (o)l < RE(r)

(3.17)
P, o] + 2O <REQ)  Vt=T*.

Since R} (1) = R (%), it follows that the left hand sides in equations (3.17) are bound-
ed by %¢, for t= T, Hence, by equation (2.14), there is a suitable N e {1, + oo, that
depends only on u and p(-), such that (3.6) holds if £ = T*, Consequently, for ¢ = 1'%,
the equation (3.14) holds even if the contants € are replaced by constants ¢. In partic-
ular, the term eNLf Ty (fefl + D] can be dropped provided that

(3.18) : (o, 1= ¢,

for a suitable ¢, (note that |lu] = |, (). Finally, by using Lemma 3.2, and also (3.17),
(2.3), one gets

B9 gl + U + dog ), P+ [og ), [ S o(REG) + 72+ By (), ez TH41,

o
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for a suitable c¢. By taking into account the above remarks, one gets from (3.16)

1d

@20) 5 o GO + e P + ol [F + s lIF =

S (REM +r2+ Ry MNE, vt=T*+1,

under the additional hypothesis (3.18). Fix now a value 7, €]0, 7] so that ¢g [RE(T) +
+ #& + Ry (7)1 = ¢5/2. The value 7, depends only on ¢ and p(-). For convenience we con-
tinue to use the notation 7, instead of 7,. Since R, (7} is an increasing function, for
each r €]0,7f one has

lad
2 dt

for each t= T* + 1, for a suitable constant ¢. We have also used (3.15) and (3.10);.
Congequently,

BB + Ak YR S IRA(T* + 1) + duk (T * + DIF Jexpl—c — T* - 1)].
Using again (3.15) and (3.10), it readily follows that
(3.22)  [[a(t) — w(t)F + [[(log B()), ~ (log v(®)), |* =

Scexp(—et — T*— ID{T*+ 1) —w(T* + DF +

(3.21) () + dhew |eB) + ety + 4k P ) <0,

+ ||(og HT* + 1)), — (log w(T* + DYIF}.

The term {...} on the right hand side of (3.22) can be estimated in terms of _the initial
data (see also[1], eq. £5.8)). For convenience we follow here a more crude way. This
term is bounded by ¢(T * + 1), hence by ¢RI (r)=cyé. In particular

(3.23)  [[@(®) — u@®|F + |(og 7®), — (log v(®) ¥ = c1exp (—ea(t - T*+1)).

The above arguments prove the following theorem:

THEOREM 3.2. ~ There are positive constants ¥y, ¢y, €1, ¢z, which depend only on u
and p(-), such that the following result holds. Let w®,v"), @°,7°) € LEx H' satisfy
(3.4), and let f satisfy (1.7), (8.18), for some r €10, 7 1. Let (u, v) and (%, V) be the sol-
ution of the equation (1.1) with initial data (u°, v°) and (@°,0°) respectively. Then,
for t=T* + 1 (see (2.17)) both solutions satisfy (3.17) and (3.2). Further, (3.22) and
(3.23) are salisfied.

Theorem 1.1 is an immediate consequence of Theorem 3.3. Note that (2.12) holds if
2 [u’, 9] < *(r) (see Theorem 2.1(i)) and recall (2.3).

Now we prove Theorem 1.2. We argue as Serrin in reference [7]. It is sufficient to
show the existence of periodic solution (u(f), »(f)), since, if an «initial data» @°,9%)
belongs to the ball (1.8), then the corresponding solution (u(t), %(f)) satisfies (3.23),
hence converges asymptotically to (u(f), »(1)).
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Let (°,v%) e L2 X H' be an initial data satisfying (1.8) and set
(u, (), v, () = wnT + &), v(nT +1), Vtz0,

for each n € N. Since f'is T-periodic, each pair (u,, v,,) is a solution of (1.1) with the in-
itial data (u,(0),v,(0)) = (w(nT), »(nT)). Hence (3.28) shows that (assume m>n)

le(n Ty — ulmTHE + [log v(nT ) = (log vimI), | =
= |lu®mT) — sy, (T + [[log (7)), — (log vy, ., (nT)), |F =
Sciexp(—c(nT —T*-1)),

for n=(1+T*/T (it is also clear that the trajectories of (u, (), v, () lie inside the
ball (1.10)). The above inequality proves that (u(nT), (log v(nT)),) is a Cauchy se-

quence in L# X L%, as n— + oo, Let (u#, v&) be the limit in L2 x B of the sequence
(u(nT), v(nT)), and denote by (u*(£), v¥(®)) the solution of (1.1) with the initial data
(g, v§). From the continuous dependence of the solution on the initial data {see f1],
corollary 5.4) it follows that (u*(T),v*(T) = lim (u((n+1) Tho(in+1)T)) =
= (ud, v ) in L® X HY, Hence (u*(0), v*(t)) is T~perio?(ti-ichr'°1°‘he last point of the proof can
also be done using (3.22). In fact, for n7'> 1+ T* the trajectories (u, (1), v, (), tZ 0,
and the point (uf, v§) lie inside the ball (1.10). Hence the estimate (3.22) can be ap-
plied to the solutions (u,,v,) and (u*, v*) with 7% + 1 replaced by 0. In fact, the as-
sumption £ > T* + 1 (in order to get (3.22)) was needed only the guaranfee that (3.19)
holds. In the present case this smallness assumption holds for each t=0, since for
large values of n all the picture lies inside the ball (1.10). Consequently

e Ty~ w((n+ 1) TE + [(log v* (T), — (log v((n +1) T))qfl2 =
= cexp(—eD)[luf — umD)F + |dog v ) — (og v(nI),IF1,

which tends to zero as n— + .
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