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1. Introduction

In this paper we study one dimensional motion of a barotropic compressible
viscous fluid in a bounded region with impermeable boundary, for a general
pressure term. This and related problems have been studied by a number of
authors, including Kaner [5], Kazakuov [6], [7] Itava [4], KAzHIKHOV &
SHELUKHIN [8]; the paper of SoLonnTKov & KazHikHOV [12], in particular, can
be consulted for more complete references. I wish to mention also the papers of
SueLukHIN {10}, [11], which came to my attention only when this manuscript
was finished. S#HELUKHIN states quite complete results on bounded solutions
for the case p(v) = klogwu, and on periodic solutions for p(v) ~ klogv and
p(v) = ko', k> 0. It should be noted that for pressures of the form p(v) =~
kv™7, 9 > 1, one does not expect to get the uniform estimate (1.6) since vacuum
may occur as [-—»oo; see [3], section 5.

Without loss of generality we assume that the above bounded region is the
interval (0, 1). In material Lagrangian coordinates, and after a normalization
(see [8]), the equations of motion become

v, — Uy =10,

¢ (L1

= o = p + 1 (1 f o0, ),
0

where g€ (0,1), and ¢= 0. Here the material Lagrangian coordinate g of a

particle of fluid is the mass of the portion of fluid that occupies the region be-

tween the origin and the given particle. After the normalization, the total mass

of the fluid is equal to 1. Hence the coordinate ¢ runs over the interval (0, 1).

The external force f{¢, x) is given as a known function of the Eulerian coordinates
aq

(t, %), x€(0,1), where x = [ off, &) dE.
0
In the above problem, the boundary conditions are
u(t,0) = u(t, ) =0 V=0, (1.2)
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and the initial conditions are

(0, Q) = HO(Q)! (0, g) = vo(q), g¢ (0, I) (13)

Without loss of generality, we suppose that

1

Of volgldg =1, mT Zv@)<=m Vqc(o1). a4

We assume that a real function p¢ CY(0,00) is given, such that (1) =1
and that

P <0 Vsc(0, +o0). (1.5)

Among other results, Kazuiknov shows in [7] (see also [6]) that for f=0
and for arbitrarily large initial data (u,, v,) there is a (unique)} global bounded
solution (u, v) to the above problem. Moreover, v satisfies the estimate

No'Zolt, ) <Ny, VY (t,9)€ O, (1.6)

where N, = 1 is a constant which depends only on p(*), u, m, lug |, and Jvelf;.
The main point of his proof is the global estimate (1.6). Following his argument,
it is not difficult to extend the above result to the case in which there is an ex-
ternal force f€ L'(0, 00; L(0, 1)). However, this assumption is still too restric-
tive since it does not cover many significant cases, including time independent
and time periodic external forces.

In the sequel we investigate, in particular, the existence of global solutions
satisfying (1.6) in the presence of external forces which do not become small
for large values of ¢. In view of the results proved in f3]1 § 5, however, we do
not expect to get global solutions satisfying (1.6) in the presence of arbitrary
(even constant) external forces f. In fact, in [3] I gave {for general pressure func-
tions p(-)) a complete characterization of the time independent external forces f
for which a stationary solution of problem (1.1)—(1.3) (necessarily unique) exists,
For brevity, assume that p(s) = ks~7, where k and y positive constants. Then
I showed in particular that a stationary solution exists for all time independent
forces f=VF if FEL™ and y — 1; and that, under the effect of suitable
(even constant) external forces £, a vacuum may occur if ¥ > 1 though infinite
density cannot appear, even for arbitrary FE L™, On other hand, if yp<1,
then vacuum cannot appear, and infinite density may occur only in the presence
of unbounded forces f, This last result is proved in section | of reference [11.

In view of the above results, it is not surprising that evolutionary solutions
of the problem (1.1)-(1.3) in many cases never develop infinite density (see
Theorem 7.5, below). In particular, since vacuum and infinite density cannot
oceur if 0 <y =1 (for more general functions p(*), see [3]), I believe that in
this case the solution of (1.1)~(1.3) satisfies (1.6) for arbitrarily large initial data
and external (bounded) forces. However, the most stgaificant cases correspond
to values p = I. In general I expect in this case that there is a positive thereshold
¥o such that if

A, )| <re Y, x)¢0n, (1.7)
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then solutions (for arbitrarily large initial data) are bounded and satisfy (1.6).
In this paper I proved that there is a positive threshold ro, and real positive
decreasing functions o(r), R(r), defined on (0, ro), satisfying 11"5% o(r) = }1_5% R(r) =
oo, and such that the following condition holds: If e x=r < rq, and if
ol < o(r), l{log vo)li < o(r), then there is a global solution (u(?), (1)) of the
problem (1.1)=(1.3) which satisfies (1.6). Moreover fu(®)l and |[(log v()), [ are
uniformly bounded by R(r), see Theorem 7.2. Furthermore, there is a positive

function Ry(r) (Iir% Rir) = 0) such that after a finite time T = T#(lug s

Il (log vo),fl, r) the solution (2(?), log v(1),) lies in the sphere of radius Ry(r)in
the space L?xL*(*). Hence, the “‘small” sphere of radius R,(r) is an absorbing
set with respect to solutions which initial data that lie inside the “Jarge” sphere
of radius o(r), see Theorem 7.3. Specifically, stationary and periodic orbits that

intersect the large sphere must lie entirely in the small one. It is worth noting
1

that sets consisting of positive functions subjected to the condition f o(g) dg = 1

0
are bounded with respect to the norm [j(fog v), |l if and only if they are bounded
with respect to the norms [{zfl;, |60, and [v7" |oo: In the following, we will use
the quantity w?[w,v]= (4/u) J|u)* — 2(u, (log v),) + plidlog v),|? instead of
flui? + [ (log v),[1*. By (2.9), these two quantities are equivalent.

We emphasize that the conclusions above are not results for small data. In
fact, to any arbitrarily large real number g corresponds a positive number
r = r(g) such that any solution (u, v) of problem (1.1)<(1.3) is uniformly bounded
and satisfies (1.6) provided its initial data (1tq, (log vg),) belongs to the sphere of
radius o (in L?xL?*) and f belongs to the sphere of radius r = (o) (in L=(Q))-
In particular, if r==0, then g =00 (a result of KAZHIKHOV).

I prove the above results under weak regularity assumptions on the initial
data, namely {uo, voyc L2x H'. In this case, in fact, the solutions describe
continuous trajectories in the phase space 12w H', 1 further prove strong con-
tinuous dependence of solutions on the initial data; see Theorem 5.3 and Cor-
ollary 5.4. Note that the results proved in this paper can be extended to stronger
NOTMS.

Some further results on the above problem are proved in [1], e.g. a stationary
solution is necessarily stable. In the forthcoming paper [2] attracting properties
of flows and periodic solutions are investigated.

I note that barotropic motions for viscous fluids are pot totally realistic.
Nevertheless, in any mathematical study of the equations describing compressible
fluids, the first serious obstacle is the dependence of p(v, T) on the specific vol-
ume ». The study of the simplified model (1.1) however makes it easy to under-
stand the difficulties and the main points which arise. In this sense, the present
work may be considered a contribution also to the mathematical study of the
general thermally dependent case.

* Because of (2.2), ©(t, q) is uniquely determined by (log v(z, q))q.
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Notation. We set Ir = [0, T], I, = [0,00), @r = I; < (0, 1). The terms “local”

and “global” are used here with respect to the time variable 1. We denote integrals
i

over (0, 1) with respect to the g variable, i.e. integrals of the form f glq) dq,
by [g For k=1, we set 0 :

H¥0,1) ={ucL?: D, ..., Dkuc L?}, where L* = L0, 1).

We denote by (,) the scalar product in L2, For k=1, H} is the closure of
2(0, 1) in H*(0, 1) and H-1(0, 1) is the dual space of H}(0, 1). For convenience,
we set H = HY0, 1), @ = 2(0, 1), and so on. Finally W**, sc R*, pe (1, )
is the usual Sobolev space, while C*% 8¢ (0, 1], denotes the space of Halder
(or Lipschitz)-continuous functions.

We use standard notations and conventions for function spaces consisting
of functions defined on I with values in a Banach space X. In particular, we de-
note by Lf, (7 ; X) the space of functions that belong to L?(I; X) for every finite
T>0. For g(t, q) defined on Ix(0, 1), we denote by g(z) the function g(z, *)
of the variable ¢. Finally L'/ L3(J; X) = LY(I; X) N LX(I; X).

The norms in the main functional spaces used here will be written as follows:

|, mormin L7, | =p<oco,

Hf  norm in L2,
1l mnorm in #*, k=1,
<. > norm in €%,
Moreover, for functions depending on both space and time,
Hpwr  morm in L(I; L7),
Il  norm in L(7; L3),
I lewer  morm in L°(Z; HY),
< >,y norm in L°(F; C*), 1= s5=oo.

We drop the symbol s if 5= oo, Finally, for convenience we set

|1 1o = 10/ | fooo -

If f(r, x) is the external force field, we define

Flol (. q) = f (r, f o, ) ds) | (1.8)

Hence, fis a function of the Euler coordinates (¢, x) and f[v] is a function of
the Lagrange coordinates (7, g).

Positive constants that depend at most on the particular function p(*) and
on w are denoted by ¢, ¢y, ¢y, .... The symbol ¢ may denote different positive
constants.
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2. Some estimates

Here we establish some estimates for the solution of the problem (cf. (1.1)),
v, — iy =0,
M{ = ‘u(uiluq)q - P(U)q + g(t! q)J

with boundary conditions and-initial conditions given by (1.2). (1.3}. We assume
that (1.4) holds, and that p € C(0, o0) satisfies (1.5). For convenience p(1) = 1.
Here the forcing term g is given function of (7, 4).

Some main tools used in this section can be found in papers by KANEL [5]
and KazuikHov [7]. We start by noting that (1.1),, (1.2), (1.4) yield

@.1)

1
of o(t, pdg=1, V=0, (2.2)

Define a real function 7(*) on (0,00) by #'(s) = p(s), a(]) =1, and assume
that

(vo, vo) € LA H', gec L'(1.; L7). (2.3)
Multiplying both sides of (2.1); by u, integrating on (0, 1), and taking into
account the fact that p(v) u, = n(v), and D, [ v =0, one shows that

d
1|u1|2 + - f(v — () +p [ ol = | gu. (2.4)

On the other hand, since v, = u, one has v'u, = (logv),. Hence (v~'u,), =
(log v),,. Therefore, multiplying both sides of equation (2.11, by (log v), and in-
tegrating on (0, 1) easily yields
14 d \2 d 1 2 \
@ [ Qog vy, + [ — vp'(v) (log v); = f u(log v), + [ v 'l — [ gllogv),.

(2.5)
Finally, multiplying both sides of equation (2.4) by 4/ and adding the outcome
to equation (2.5), one gets
d
3 ) + $0] + 3 fot; + [ — op'(0) (log )] = — f gu — [ gliog v),.
(2.6)
where we set p2(¢) = v2[u(r), v(7)] and $*(¢) = ¢*[v(s)]. By definition

4
Y[, v] = " fuli* — 2(u, (log v),) + | (Jog ), 1%, 2.7

and

$2[o] = —i— [ I — ). (2.8)
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Note that s — 7z{s) > 0 if s+ 1. Since

b3 4 z z z 3 4 2

3 [;; Nl + 1 [ og o) ] < 7, 0] < 3 [; ll + | log ), 52] . @9
it follows that

=< V10/u |l g]l (t). (2.10)

4
’; (g, u) — (g, (log v),)

Hence
d -
P WO+ O+ 3 [ v + [ — op'o) Gog )2 = V10 gl w(0).  (2.11)
Therefore
(1) + $2(OF = [y2(0) + *O)F + V 10/ Df lg(s)]l ds. (2.12)

On the other hand, since v satisfies (1.4), there is a ¢, = ¢, (1)< 10, 1] such
that o(t, g,(1)) = 1. Hence,
l(og u(t, g))| = lI(log v(1), ! = (2/m)* w1,
Consequently
No' St D= Ny V(1,9 €Qw, (2.13)
where
No = exp {(2/u)* [(#*(0) + $*0))* + (10/)* ligle.r1}- (2.14)
We use the letter C to denote positive constants which depend, at most, on the

given function p(-) and on g, m [uyll, [velle, | gli,r,, (and which are increasing
functions of each one of the last four quantities). Then

ol y = € oo y = €, (2.15)
and also
Hullaory = €0 Nolher, = C. (2.16)
By returning to equation (2.11), we see readily that
iEu“LZ({m;H(])) =G vl ,=C. 2.1
Equation (2.1), shows that
102, = C. (2.18)
Finally, we show that*
"Ulicf’,”(g‘r.o) =C Ve, %) (2.19)

* Actually, we will exploit only the fact that 6 > 0,
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In fact, one has [[v]] e y = 1+ {0, since o, @ = 1+ {o, (0. Hence
it is sufficient to prove that a Holder condition holds on thesets €, = [r,7 + 1]X
{0, 1], uniformly with respecttor, 7= 0. Let p¢ (2,00), andset = [r,7 + L]
Since o€ H(I; L?)c, WURTWRNT; [?) and since v€ LAI; HY), it readily fol-
lows (by interpolation) that
(—1—+L)ﬂf,p s {—a
ve WY (L H' ") YV pe(2,00), Yac [0, 1].

In particular, pe COGD- (=W (1, COUPTY) For & =1}, one gets
ve £0.(1/6) - (2{3p) (I; COJIG)_
We now assume additional regularity of the data. Let

(ug, o) € HEX HY, g€L'(lw; LAY LI L), (2.20)

Multiplying (2.1); by u,, and integrating on {0, 1), one gets
d 1
‘}’E Negll2 + po [ vty = p [ 072w tigth0 + [ p'(0) vy, — ﬁf Qg (2.21)

By use of the estimate |u, |« = Y2 | ug,P* it readily follows that the first
integral on the right-hand side of (2.21) is bounded by

Y 3 L
e oy Hatg) % oI = Cot {lugI* + &7 utggli®-
Straightforward calculations (see [7]) now yield
ilu!ELw([w;Hé, é Cl& ”L"HZ;Z,IDD é Cl: (2'22)

and also
Hvz“oe,lw = Cy, !il’r”l;z,rm = (.

22 Hz,;m =Gy,

(2.23)

where the constants C, depend, in addition, on [luf; and on | gl

The above estimates are sufficient to prove that under the hypotheses (1.4),
(2.20) there is a unique solution (u, v} of the problem (2.1), (1.2}, (1.3) on Zu;
see Theorem | in KAzmikHOV'S paper {7]. Solutions that belong to the above
functional spaces will be called sfrong solutions.

3. The strong selution

Here we consider the case in which the external force fis given as a function
of the Eulerian coordinates (¢, x), i.e., we study the system (1.1). Particular care
is necessary in the presence of a discontinuous force. In fact, the usual proofs
of existence of a solution are based on fixed point theorems which require con-
tinuity (with respect to a suitable topology) of the map v— fiv]l. T will use

* Noie that there is a ¢4 €[0, 1] such that #,(g,) =0
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as point of departure the estimates and the existence result of section 2. We start
with the following auxiliary result.

Lemma 3.1, Let T€(0,00) be fixed and let {v,}, n€ N, be a sequence of real

continuous functions defined on Q-;, which satisfy (for some N > Q) the estimate
N = oflt, ) = N and the constraint (2.2). Assume that v,— v uniformly on

Or. Let fé LMIp; LY). Then f [v,] converges to flv] weakly in measure and hence in
D' (Qr).
Proof. For convenience, put [ = I;. Also for each fixed fc 1, set x(q) =
fq v(1, £y df. One has N-' =< dx/dg = v(t, ¢) = N. For each fixed ¢ the map
;—> x{(g) is a diffeomorphism of [0, 1] onto itself. The inverse map is given by
g(x) = f [1/v(t, ¢(t, m))]) dn, and of course dg/dx = 1/v(t, (1, x)). Similarly, for
each ﬁ;ed tc I, we define diffeomorphisms x,— g, by setting |
a4, o
x(g) = [ ol O dE a(x) = [ [oiadt, )] dn.

Let us prove that

,,iiflm é,,(t, y) = g(t, ¥), uniformly on Q. 3.1
For convenience, we drop ¢ from the notation. For each y€ [0, 1] one has

a0 - q(» S 4 B a(r)

y= (,f v,(8) dE = f (&) dE = f W)y dE + [ o) dE.

a,(»)
Hence

Nt |Qf1(y) - q(y)| éﬁr |t’"(5) - U(E)i 3

and in particular
”q" qnc(Q )= JV”IJI UHC(.Q—T).

This proves (3.1). It readily follows that
Jim v.(1, q,(t, W) = o(t, q(t, p), (3.2)

uniformly on Q. Let now ¢¢€ C(Q;). By using the change of variables ¢ =
aq,(t,»), one proves that

1 1
Df floa (& @) (2, @) dg = Of S, ) $(t, g0, ) [o(t, .06, YT dy .

By integrating both sides of the above equation on I, passing to the limit as
n—>oo, and taking into account (3.1) and (3.2), it readily follows that

Jim [ Flod (1, ) #(2, q) dg dt = [ flr, ) $(t, q(t, ) o2, q(t, y)I* dy dt.
" Or - @r
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Finally, by using the change of coordinates y = x({f, q) one proves that the last

integral is equal to [ f[o] (1, ¢) #(t, q) dg dt. (]
-Or

Theorem 3.2. Let (g, vo) € Hi X HY, f€ LN N L*(1o; L™), and assume that (1.4)
holds. Then there is a strong solution (u, v) of problem (1.1)~1.3) satisfying the
estimates (2.13)—(2.19), (2. 22) (2.23)*.

Proof. Since !]g(t)ii [g(f)]m, the statements and estimates of section 2 are
still satisfied if Li(J.;L?) and L*(I.;L? are replaced by L(I.;L™) and
L*(I; L™). Denote by N, the constant defined by the equation (2.14) with
lgli ., replaced by |flo.s,s,.. In order to apply compactness arguments, we
start by considering solutions on [, where T < 400 is arbitrarily large. For
convenience, we set [ = I. Define

K = {we C(Q,}: w(0) = 1o, (2.2) holds on 7, and Ny™' = w(t, ) = N on Qr}.
(3.3)

K is a closed, convex, bounded subset of C(Qr). Since |[f{(t}|o = [fIW] ()|
(the L™-norm on the left-hand side concerns the x variable, and the one on the
right-hand side concerns the g variable) it follows that |f[w]|e.is = |fleis
and that |f[W]}|es = |fle;ar for each we K. In partlcuiar for each wéekK
the problem :

v~ U, =0,

| G4
U = #(U—luq)q - p(U)q +f[W} (t! q)!
with conditions (1.2), (1.3), has a unique strong solution (u,») = Sw. This
solution satisfies the estimates of section 2 with ||gll,; and | gl replaced by
[£loos1,z @and |ficosa s, respectively. In particular v€ K. Therefore S'(K) C K,
where the map S’ is defined by setting S'w=uv, YVwe K. If Sv=0o, then
(u, v} = Sv is a strong solution of the problem (1.1)—{1.3). Hence the proof of
Theorem 3.2 will be complete if we show that 8’ has a fixed point in K. Let us
show that 5’ is a completely continuous map with respect to the C(Qy) topology.
Assume that w, w,€ K and that w,—>w in C_@;ﬂ) as n— +oo. Denote by
(3.4), the system obtained by replacing w by w, in the equation (3.4) and let
the solution of (3.4), be written (u,,v,) = Sw,. By Lemma 3.1 it follows that
fIw,]->fIw] in the distributional sense. A compactness argument shows that
STw,}—flw] weakly in L3(F; L?). On the other hand, the solutions (w,, v,) of
the system (3.4), satisfy the estimates proved in Section 2, uniformly with re-
spect to n. Compactness arguments show that we can pick subsequences that
converge with respect to suitable topologies. These topologies are strong enough
to prove, by passing to the limit on the equations (3.4),, that the limits of the

* In equatien (2.14) and in the definition of the constants C and €, the norms
gl 1, and ligla,;_ should be replaced by |/leo;1,z,, and [[f]leos,. respectively. -
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above subsequences are solutions of (3.4) and satisfy (1.2), (1.3). Since the solu-
tion (w, v) of this problem is unique, the entire sequence (u,, »,) converges to
(u, v). In particular v, = §'w, converges uniformly on O to v — S'w, as follows
from the uniform estimate (2.19). Finally, S'(K) is relatively compact since it is
bounded in C*(Q,).

Now we extend the above result to 7. If S, x) is regular (see Section 5)
the solution of the problem (1.1)-(1.3) is unique. In particular, since the solution
on Or, overlaps that on @y, (T < T,), the result holds on 7. In the general
case, we consider the sequence of solutions (u,, 5,) which were constructed above
for the problem (i.1)—(1.3) on I, = [0,n]. Since |f[o,]()]o = |f{t)|w, the
solutions (u,, v,) satisfy the estimates of Section 2 uniformly with respect to ».
Hence for each fixed n, there arc subsequences that converge on I, to a solu-
tion of (1.1)~(1.3). A diagonalization procedure yields a solution on I,. []

Note that u€ C(I,; H}), that ve C™*(I; H'), and that the corresponding
norms are bounded by constants of type C,.

Remark 3.3. If fe L¥(I,; L?), an argument similar to the one used in the above
proof shows that there is a local strong solution of the problem (1.1)-(1.3).

Sketch of the proof. Consider the set
K, = {we C0,): w(0) = wy, (2.2) holds on 7,, and (2m)~! < w(z, g} = 2m on Q,}.

One has
Em) AP < I IO < 2m | (02

Hence fTw] is uniformly bounded in L*(1,; I*) as w varies over K. As above,
the solution (u,v) = Sw of the problem (3.4), (1.2), (1.3) on I, satisfies the
estimates of Section 2, uniformly with respect to w¢ K. In particular, the

C“”’(Q—T) norm of v = §'w is uniformly bounded. Hence, if £ is sufficiently small,
one has 2m~' < u(r, ) < 2m on Q,. Therefore S(Ky) C K, Arguing as in
the proot of Theorem 3.2, we show the existence of a solution of (1.1)~(1.3) on I,

4. Existence of weak solutions

We say that (u, v) is a weak solution on I of problem (1.1), (1.2) if the fol-
lowing three conditions hold:

u€ LIp; HY),  ve L¥(; HY); (4.1)

there is a constant N such that N-! = olt,q) = N on Qp; and (u, ) iIs a solution
of (1.1) in the sense of distributions. A weak solution of problem (1.1)-(1.3) is,
by definition, a weak solution of (1.1}, (1.2} such that }in& u(ty = uy and

lim o(r) = vy (in the sense of distributions).
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Theorem 4.1, Let (ug, vo) € L2 X H' and fe L' LI, L™, and assume that
(1.4) holds. Then there is a weak solution (u, v) of problem (1.1)~(1.3) on f. This
solution satisfies the estimates (2.13)-(2.19)*.

Proof. Let {u§”}, nC N, be a sequence in H} that converges in L? to up. Denote
by (u,, v,) the strong solution of the equations (1.1),~(1.3),, these equations being
obtained by replacing u, by #” in the equations (1.1)-(1.3). By Theorem 3.2,
the solutions (u,, v,) satisfy the estimates (2.13)-{2.19} uniformly with respect
to 1. Actually, the constants C depend on ||u{”|, but || W = |uo|| as n—>o0
{obvious details are left to the reader). in particular, there is a subsequence u,, v,
such that u,—u weakly in L*(I.; Hg) and *-weak in LI ;i L2); () — i
weakly in L2(J; H'Y*; (0,),— 0 weakly in L*(I,;L*); and v,—v uni-
formly on Qy for each finite T The lower semicontinuity of the norms shows that
(u, v) satisfies (2.13)-(2.19). Moreover, by passing to the limit in the equations
(1.1),~(1.3), it readly follows that u, visa solution of (1.1)={1.3). The convergence
of fIz,] to fIv] follows from Lemma 3.1.

Remark 4.2. T fe L*(I.; L?) there is a local weak solution of the problem
(1.1)-(1.3) in the interval J;. This is proved as above, by using Remark 3.3 instead
of Theorem 3.2. Note that the “smallness” of 7 is determined by m and by the
C*%Q,)-norm of v. Since this last quantity depends on [|ue]| but not on llualtss
it readily follows that # is independent of n.

5. Regularity and well-posedness for weak solutions

We first show that for all initial data (uo, vo) € L2 X H' the solution (u(f), v(t)),
tc I, describes a continuous trajectory in the space L*x HY. Wefurther prove
that if the initial data (ug,0g) converge to (Ug, vg) ift L2x H!, then the solution
('(1), v'(t)) converges tothe solution (u(t), o(t)) in L2} H'. On compact inter-
vals I the convergence is uniform. There is no loss of generality in considering
an arbitrary bounded interval I instead of J.

Theorem 5.1. Let fc LX(I; L2 and let (u, v) be a weak solution of the problem
(1.1, (1.2). Then

(u, v)C CUI; LPx HY),  (u, v) € LU, H-1xL*)
ve CM(Qp), VOc(,1/6).
In particular, if (u,v) is a weak solution of (1.1)-(1.3), then
(1t), (1)) -+ (uo, o) i1 L*x H' as t 0,

(5.1)

* In equation (2.14) and in the definition of the constants C, the norm {igll; 7 should
be replaced by [fle;1.r,.
»* Equation {2.1); shows that fiwlliq 0y =C




i

152 H. BEIRZO DA VEIGA

Proof. The assertion for v, follows from (4.1),, since », = tg. On the other hand,
q
for almost all ¢ J the maps g —- x — f o(t, £) df are diffeomorphisms since

1]
H'c, €™ and y-' < dx/dg = N. Therefore f[] €LHI; L2). It readily fol-
lows from equation (1.1), that u, € LY(I; H1). This result, together with {4.1),,
shows that ¢ C(I; L)% [9], Chapter 1, Theorem 3.1. The Holder continuity
of v follows as in the proof of (2.19).
Setting* :
w = u(log ), — u, (5.2)

one has w¢c L™(7; L2). Since v 'u,), = (log Vg €quation (1.1) yields w, =
—p'(v) v, + flv], in the sense of distributions. :

Hence w, € L2(; 12) and so we C(I; L?), Therefore (log o), € C(I; LY. Tt
readily follows that b, = v{logv), € C(I; L?). O

Lemma 5.2, Ler fc LA LYY and let (u, v) and (', v') be weak solutions of (1.1),
(1.2) on I such thar N1 =v(t,q) <N and N! =0t q) < N. Then, Jor each
tcl, one has

|28} — (1) | < N | (log 2l = (og 0)oll < p='N(jju — u'| 4- | w—wl), (53)

where w is given by (52) and w' = plog vy, — o',
Proof. Let ¢ be fixed and then (for convenience) dropped from the notation.

Since #(g) and v'(q) satisfy (2 2) and are continuous on [0,1], there is a constant
¢, €{0, 1) such that v(q,) = v'(q,). Hence

q
log v(g) — log v'(g) = | (og v — log v'), dE. (5.4)
On the other hand, -
llog v(g) — log '(g) | = N1 u(g) — u'(g)| v qelo, 1] (5.5

Therefore, _
[0 — 0| = Nilogv — log view ¥Yicl

By using (5.4), one then shows that (5.3) holds. |

Theorem 5.3, Assume that P'(*) is locally Lipschitz-continuous on (0, +o0) and
that : :

fe_‘Lz(I; LHYN LT oY, (5.6)
Let (u, v) and (', v') be two weak solutions of (1.1), (1.2) on I. Then the function
le(e) — w'())|? + [w(6) — w'())? is absolutely continuous on I. Moreover
{ j
E{?(ﬂu U b — W) - ko, — )2 SADQu— w2+ [w— wi?),
G717

* The same device is used in SHELUKHIN'S paper {11].




One-Dimensional Motion of g Viscous Fluid 153

where

At) = Jey(1 -+ SR> + fuO)] + W] -+ lu, 7).

Here ky and Ik, are positive constants which depend only on u, p(*) and N. In par-
ticular, if (ug, vo} and (uj, vy) belong to L*x H' and satisfy the assumption (1.4),
and if (u, v) and (', v') are weak solutions of problem (L.1)(1.3) with initial data
(1o, vo) and (uy, vy), then '

lut) — @I -+ 1w(e) — WO + ko [ ) — ue)) dr
° f (5.8)
< (Lo — uh]2 + o — whl?)exp [ [ ds],

where wy = p(log vg), — uy and w) = u(log Vo), — Ug-

Proof. We denote by ¢, the duality pairing between H-* and Hj. Equation (1.1),
is an equation in L*(/; H-"). Forming the difference of this last equation and the
similar equation satisfied by the couple «', o', and “multiplying” by an arbitrary
element ¢ ¢ L2(7; HY), one gets

(W — )y by +p [ — w), ¢4,
=u [ [ =o' ug, + [ (p@) — p@)] ¢, +- J U}~ 1)) $.
By setting ¢ = ' — u in the equation (5.9), one gets

d ' ! !
ool =l N g — w12 = N |0 — v el ) — u,]

(5.9)

+ (a1 ) 157 = ol 1, =l + 11161 = 00 — .

s N

Recall that || w(2)2 is absolutely continuous on J and d (@) [12/dt = <w'(e), w(n)>
ae. on L if we LA(I; H)) and w'€ L¥I; HY). :

Also, using the inequality |fTo'] — f{v]].. < <) {v" — v|w, taking (5.3)into
account, and using the Cauchy-Schwarz inequality, we obtain

d
o N = alP ey — w2 S K4 <O + D) (o — ul? -+ W — wi?)
(5.10)

a.e. on fr, where k and &’ are positive constants depending only on u, p(*) and N.
On the other hand,

We=ptop' @) (Wt w) ~ flo]  and w0 = e W+ o) — FT].
(5.11)
It readily follows that, for every w € LXI; L), ‘
J O —wyp = fop ) [ — w)+ W — w)] 2
+pt [P0 — op' ) + W)y + f Ul — oD v,




Pl

154 H. BEIRA0 DA VEIGA

a.e. on I. By setting 9 = w’ — w and using (5.3) one proves that

d
T lwW = wi® = k(1 flu 4w+ 0 (' —wll* + W' = wl®]). (5.12)

By adding the equations (5.10) and (5.11), one gets (5.7). Equation (5.8) then
follows by using standard comparison theorems in ordinary differential equa-
tions. [ -

Corollary 5.4. Under the assumptions of Theorem 5.3, a weak solution of problem
(L.1) (1.3) is unique. Moreover, the solution depends continuwously and strongly on
the initial data; that is, if (ug, vo) converges 10 (uy, v) in L* X H*, then (u'(£), v'(1))
converges to (u(t), v(t)) in C(I; L2 X H') and u' converges to u in L*(I; Hy).

The proof is a consequence of equation (5.8). The convergence of ' to v in

C(Q;) follows from (5.3).
Theorems 4.1 and 5.1, together with Corollary 5.4, give the following result.

Theorem 5.5. Let p'(-) be locally Lipschitz-continuous and assume that (ug, vy) €
L2 X H, that vy satisfies (1.4), and that fe L' N L¥(T; L)YN L1, ; C™D).
Then there is a unigue global weak solution of problem (1.1)-(1.3). This solution
belongs (for I = 1) to the function spaces indicated in (4.1) and (5.1} and satisfies
the estimates (2.13)—(2.19).* If (ug, vy) € L? X HY, if vy satisfies (1.4), and if (ug, vg)
converges 10 (g, vp) in L2 H, then the global solution (u',v") of problem
(L.1)—(1.3) with initial data (1, vy) converges to (u, v} in C([0, T]; L2 HY) for
every T > 0. Moreover, u' converges to u in L*(0, T; H}) for every T > 0.

6. Preliminaries for Section 7
Here we introduce some real functions which will be used in the next section.

The function p(-) is assumed to be of class C! and satisfy (1.5). Define real non-
negative functions «: [[,00) = (0,00) and f:{l,o0)—=(0,00) by

a(N} = N_{nginN {—sp'(s)} VYV Ne[l, o0), (6.1)
B(N) = cmin {N"1,a(N)} VY NE[l,o0). (6.2)

The above functions are strictly positive, continuous, and decreasing.
Also define F:[0,00)— [0,00) by

F(y) = yB (exp (co))) VY y€[0,00). (6.3)

Clearly F is a continuous, nonnegative function with F(0) = 0, F(») > 0 if
y>0, and F(oo) = lim F(y) = 0. We denote by F, the maximum of F on
Yy

* In equation (2.14) and in the definition of the constants C the norm jigl);, 1., Should
be replaced by |fleir -
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[0, oo]; Clearly F, > 0. Set
¥o = min {y € (0, 00): F(3) = Fo},
and define a function R: (0, Fy] = [¥o,09) by
R(r) = min {y € [y5,00): F(y) = r} Y re (0, Fy). (6.4)
R is a lower semicontinuous, strictly decreasing function with 1@}3{1} R(r) = oo,
Note that F([y,, R(r)) C (r, Fy].

Define (see [5], [7]) a real function = on (0,o0) as n(s) = 1 + [ p(t)dt and
define also a nonnegative continuous function M by setting 1

M*N)= max N (s —al(s)) VY NE[l, o00). (6.5)

N- i<y

The properties of zz(s) show that M{1) =0 and that M is strictly increasing.
Also set

GHy) = y* + exM*(exp (coy)) VY y€[0,00); (6.6)
Clearly G(0) = 0, G'is a strictly increasing, continuous function, and G(eo) = co.
Denote by G- the inverse function of &, and define
e(r) = G- (R(r)) Vre(0,F]. 6.7
The function ¢ is strictly decreasing, and
liII[l' e(r) = oo,
Since R3*(r) = G*(o(r)) it follows that e(r}<C R(r). Put
ro = sup {r€ (0, Fol: R(r) = G(yo}} (6.8)

(the set used here is nonempty since ]ir:% R(r) = oco). If R iscontinuous, thenr,

is the unique solution of the equation R(rp} = G(yo) since R{Fy) = yo <
G(po) << R(0) = co,

In the following we will restrict the domain of the function g{r) to the interval
(0, rg). Note that

e(ry=>ry VYre(0,ry), (6.9)

since G{p(r)) = R(r) > G(y,) and G is strictly increasing.

The constants [y, v, o and the functions «, 8, F, R, M, G, o, depend only
on ¢y, €4, ¢; and on the particular function p{+). In turn, in the next section
o, €3, ¢ will depend only on g and on p(+).

7. Global properties
In this section we prove some global estimates for the weak solution (u, v)

of problem (1.1}-(1.3)} which was constructed by a limit process in Section 4,
Since the regularity of strong solutions is sufficient to justify the calculations
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made in this section, by passing to the limit one verifies that our estimates hold
also for the weak solution (u, v). In order to simplify the exposition we show the
calculations as if the weak solution (u, v) were itself a strong solution. In the
following we assume that o

(o, o) € L2 X H',  f€ Leoll: L), (7.9

and that (1.4) holds. Before going further, the reader should recall the definitions
(2.7), (2.8) and the estimates (2.9), (2.11). The estimate (2.11) yields

d
%Ewm+&mHﬂfW%+ﬁwMN%%§MNMWL (1.2)

since [/l < [Tl = Ifs- Set

N(t) = exp ||(log v())4l- (7.3)
By arguing as in the proof of (2.13), it readily follows that
N < ot @) SN@)  Ygelo 1) (7.4

Since |ul| < [lu,ll, one has (for cach fixed #)
: ’ 2
3 [otu; + [ —op'(v) (log o= 1,0_20‘) min {-’in Nl,——fuoc(N)},

where « is given by the equation (6.1). Define § by setting ¢ = min {2¢/2, 2/(3u)}
in (6.2). It follows that

p .
o [*(8) + $HO] + WD) v* (D) = 117111 202
Since 8 is a decreasing function and

N(?) < exp [(2)* v(D], (7.5
we obtain

d
3— @) -+ #01+ FOD) TOESHIIFTON (7.6)
where F is defined by Settiﬁg o = (2/u)t in equation (6.3).

Lemma 7.1. Let M and G be defined by equations (6.5) and (6.6), respectively,
with ¢, as above and ¢y = 8[p. Then

y(1) + (1) = GA(p(D)- (1.7

Proof. It follows from (2.8) that
$3(1) < (8/w) max, W(t, g) — #(o(t> )l-

Since
exp [— (/) p()] = o(t, g) = exp [/t w1
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it follows that
$2(1) < (8/u) M2(exp [2/p} w(1)]), (7.8)
which yields (7.7). []

Theorem 7.2. Let u,, vy, and f be as in (7.1), and let vo satisfy (1.4}, Assume that

[0 << 7 (1.9)
and that .
PH0) + $%(0) << R*(r) (7.10)
Jor some rc (0, ry). Then
YA 4 $* () << R¥r) ¥ 1€ [0,00). (7.11)
Moreover, the condition (7.10) is .s'anisﬁedn if
¥i(0) < 0°0). (7.12)

Proof. Since G is strictly increasing and G(e(r)) = R(r), Lemma 7.1 shows that
if 9*(t) < ¢*(r) then |
P + $(e) << R¥(r). (7.13)

This proves the last assertion of the theorem. Let us prove the first assertion.
Assume that (7.11) is false, and let #, be the smallest nonnegative real number
for which 9%(t,) + $(1,) = R*(r). Since y, < o(r), one gets.

Yo < 9t} = 9¥{to) + H2(te) = R¥(r).
By the definition of ¢, it follows that there is an &> 0 such that
V<P = 9O+ P < R Vet — o 1),
In particular, 9(¢)€ (3o, R(r)). Since F([y,, R(r)) C (r, F,], one has
Fly()=>r Yre(ty —st1,). (7.14)
On the other hand, (7.6) and (7.9) yield
d
77 [P0 + O < —1F(p(0) ~ r] (). (7.15)
It readily follows that w2(z) + $*(£) > R*(r) V t¢ (ty — &, ty). Hence there is
a 7o (0, 7) for which y(vo) -+ ¢%(z,) = R2(r). This contradicts the definition
of 1. O
For each re (0,r,) we put
| 0:(r) = max {y € (0, yo) : F() = r} (7.16)

Ri(r) = Glo:(r). (.17

The functions ¢, and R, are strictly increasing. Moreover, gi(r) < yo, 0 << g,(r) <
R,(r), and limo,(r) = lim R,(r) = 0.
r—> >

and
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Theorem 7.3. Let 1y, vy and f be as in (7.1), and let vy satisfy (1.4);. Assume
that

Al < r (7.18)
and that
$2(0) + $*(0) < Ri(r), (7.19)
Jor some rc (0, rq). Then
P2(1) -+ $Hr) < Ri(r) ¥ f€ [0,00). (7.20)

Moreover, the assumption (1.19) is satisfied if
¥*(0) < gi(r). (7.21)
Proof. As in the proof of Theorem 7.2,
P() << 0}(r) = (1) + $3(1) << Ri(r). (7.22)

This proves the last assertion of Theorem 7.3. Let us prove the first assertion.
From (7.6) it follows that

d
F— () + $H01 = —(FEQE) = |IIf i) wl0). (7.23)

Assume that (7.20) is false, and denote by #, the smallest nonnegative real number
for which v(t) + ¢%(#) = Ri(r). From (7.22) it follows that wu(t,) = o,(r).
On the other hand (since g(r) << yo << o(r) and since G is increasing) one has
Ry(r) << R(r). Therefore, w(t,) € [o1(r), R(r)]. The definitions of g,(r) and R(r)
show that F([e(r), R(nN]) CIr, Fp]. Consequently F(p(ty)) =r, and so
(F(p(to)) — ||/ |leo) w(te} > 0. The left-hand side of the equation (7.23) is there-
fore negative in a neighborhood of #,. This contradicts the definition of £,. [

Note that

d
= W0 + 9201 = — 0 — |[If]lw) es(r) (7.24)

whenever w({)€ [o,{r), R(r}]. Set

p*(0) + ¢*(0) — Ri(r)
2(r — || f1llec) €1(r)

Then one has the following result.

T* =

(7.25)

Theorem 7.4, Assume that the hypotheses of Theorem 7.2 are satisfied. Then the
inequalities (1.23) and (7.26) hold as long as (¢ -+ ¢*(t) = R3(r). In partic-
ular, (1) + 43() < RAr) for all 1€ [T* 00)*.

* Tt follows that Hm 9(#) + ¢2(1)] = 0 for all initial data (o, vo} if f=0 (sce
also [7]. o0 :
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Proof. If (7.19) holds, then T#% = 0. If (7.19) does not hold, equation (7.22)
shows that (1) = g,(z) as long as *(¢) + ¢*() = R%(r). On the other hand,
w(t) = R(r), V¥ t€[0,00]. Hence equation (7.24) shows that

P2(t) + $2(6) = 970) + ¢2(0) — 200 — ||If|[lee) €201 1, (7.26)

as long as ¢2(¢) + ¢%(¢) = Ri(r). In particular, if (7.20) is not satisfied by any
te [0, T*], then (7.26) must be satisfied on [0, 7*]. This Jeads to a contradiction.
Theorem 7.3 thus shows that when 9>(¢) + ¢%(f) enters the “sphere” of radius
R}(r), it remains there forever. [,

In order to interpret the above results, the reader shoulds recall that lim p(r) =
lim R(r) = oo, and that lim Ri(r) =0, as r—0.

On the other hand, (2.9) and the inequalities exp (—{(fogv),l) < |v]w,
i01], = exp | (log v),]| show that the quantity w?[u, v]* is equivalent to
Tul® + ol + o' [F (and also to ful + lolf + [ofi + o7 IF + o7 [2).
In fact, there are continuous strictly increasing functions g, and g, satisfying
2:1(0) = 22(0) = 0 and g,(00) = gz(o0) = oo, such that

gulull® + 1ol + 1o 1) < vl o] = gollull® + [olf + 271D

This allows us to use (in the theorems of this section) “balls” of suitable radius
o'(r) and R'(r) with respect to the quantity [u«|* 4 {lo|i + v~ [? instead of
“balls” of radius o(r) and R(r) with respect to the quantities y*[w, v] and
v?[u, v] + $*[v]. A similar remark holds for R,(r). Clearly, lim g'(r) = lim R'(r)
=oo and lim R{(r} =0 as r—0.

Theorem 7.5. Assume that p(*) satisfies the additional assumption**
lim ()iyf —sp'(5) = 0, (7.27)
S

Let (u, v) be a weak solution of problem (1.1)-(1.3), and assume that there is a
constant Ny such that

U(t} Q) g NO v (ty q) € QOG' (7'28)
Then there is a positive constant N-* such that N-' < o(t,q), ¥ (i, 9)€ Qe.

Proof. From (7.2), (7.27) and (7.28) it follows that
3 () + $2(O + cp*(0) = |[fl]le w(0).

Assume that 92(1)} + ¢2(f) > G*(c~! |||f]ll) for some 1. It follows from (7.7}
that 9(£) > ¢! |i1/]|ieo- Hence [w?(2) + ¢*(#)], << 0. This shows, in particular,
that 93(f) -+ #2(¢) is uniformly bounded. By (7.5) the quantity N(z) is also uni-
formly bounded. Hence N-!(¢) is bounded from below by a positive constant
N-1, The thesis follows now from (7.4). [

* As well as »?[w, v] + ¢3[0]; of (7.7).
** Tt is worth noting that p(s) = ks, where kand p are positive constants, satisfies
this assumption.
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