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1. INTRODUCTION

Continuous dependence in strong topology of the solution on the data
(well-posedness) is a difficult but significant part of the theory of non-linear
hyperbolic equations. By using the powerful abstract theory developed by
Kato [12, 137, I prove in the recent paper [5] a perturbation theorem
that can be successfully applied in order to show the weli-posedness of a
class of non-linear hyperbolic equations that appear in the applications.

Here, T show how to apply this perturbation theorem to concrete
problems by considering a specific one, namely the motion of an inviscid,
incompressible, non-homogenecus fluid in a bounded domain Q. 1 will
prove the well-posedness of this problem in Sobolev spaces W™ 7(£2). The
proof applies as well to unbounded domains {actually, the main difficulties
are due to the boundary).

Well-posedness for the above specific problem was stated by Marsden
[187 under the assumption that / vanishes identically. This author con-
siders the H*? case, and asserts that W*? and C*** are similar. In [18]
it is also claimed that the continuous dependence on the initial data holds
if a fixed force term f is added to equations, provided it is divergence free
and parallel to the boundary.

Tt is worth noting that the two approaches are completely distinct.
Marsden’s proof uses techniques of infinite dimensional geometry, by
replacing the original problem with one of finding geodesics with respect
to a weak Riemannian metric on an infinite dimensional manifold of
diffeomorphisms, My proof uses Kato’s perturbation theory for linear
hyperbolic evolution equations {cf. [11, 12, 137).

The Marsden (Ebin and Marsden) approach is done directly in the
Lagrangian representation, where some analytical difficulties disappear
because there the connective term (v-V)v is transformed away. The
pressure term becomes more complicated. fn general analysts consider this
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approach to be difficult because of the heavy dose of infinite dimensional
geometry used.

In Eulerian representation (used here) the continuous dependence on
initial conditions is delicate. Note that in material representation the solu-
tion depends in a C® way on the initial condition, while in spatial
representation the dependence is only continuous (the material-spatial
map is only €°). Non-smooth external forces are easier to treat in spatial
coordinates.

I point out that the perturbation theorem proved in [5] (see also
Theorem 2.1 below) applies to equations of the form apDu+

" a.Da+au=f, where the Nx N symmetric matrices aff, x) satisfy
the condition ¥'7_, v;a,=0 on I" and the eigenvalues of ay(#, x) are strictly
positive, provided p=2. This result then can be applied to prove well-
posedness in W™?(Q) spaces for non-linear hyperbolic problems.

Before going on, 1 recall that well-posedness for inviscid homogeneous
fluids (in domains with boundaries), is studied in [10, 9, 3, 14, 51,

2. TUe PERTURBATION THEOREM

I start by introducing some notation. Let £ be an open bounded set in
R”, n3=2, that lies locally on one side of its boundary I, a ¢+ 2 manifold.
The positive integer m will be fixed in the sequel. We denote by v the unit
outward normal to I". We denote simply by L the Banach space L"(£2), by
| |, its canonical norm, by W* the Sobolev space whr(Q), and by || |, its
canonical norm defined as in {4, 5]. This notation will also be used to
denote function spaces whose elements are vector fields. For instance, both
W oand W™ x --- x W™ (N times) will be denoted by the same symbol
W and the corresponding norms by the same symbol || |, {sometimes we
will write p,, po€ W™, even when v, is a vector field and p, is a scalar).

We use standard notations for functional spaces consisting of functions
defined on an interval I= [#,, #,] with values in a Banach space. If v(¢, x)
is defined on I'x £, v(¢) denotes the function v{z, -} defined on £2. The norm
in L=(I; W*) is denoted by || ||, and that in L4(Z; W*} by || I, -

If X is a Banach space, #(X) denotes the Banach space of all bounded
linear operators from X into X.

The symbol ¢ denotes positive constants that will depend at most on £2,
n, N, p, m. In Sections 3 and 4, these constants may also depend on ¢. The
symbol N denotes the set of all positive integers.

Let I=[~T,T], T>0, and let v=(v,, .., v,) be a vector field defined
on I'x @, such that

ve Lo Wy n C(I; w1, (2.1)
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and that
v-v=0 on I, for each te 1 (2.2)

where pe]l, +oof, and m > 1+ (n/p). Let u={u, .., uy)e W3, N2 1, and
define (for each te7) the differential operator

AL u(x) = (o(4, x) - V) u(x), (2.3)

with domain D(f)= {ue W: (o(t) - VIue W?}. In [5] (see also [4]) 1
show that the family of unbounded operators A(¢), tel, generates an
evolution operator U(t, s) (cf. [11, 12, 197), t, sel, in W? In particular,
Ult, s)e Z(W?), Uls,s)=Identity, U(t,r) Ulr,s)=U(t,s), Vt,r,sel
Moreover U(z, 5) is strongly continuous on Ix I; ie, the map U(-, - )Ju, is
continuous on [ x [ with values in W2, for each fixed u,e W2 The evolu-
tion operator U(r, s) generated by the family {A4{s}}, te 1, is characterized
by the following property. For each fixed se/, and for each u,e W72, the
function w{f)=Ui¢, s)u, is the solution of the Cauchy problem
Do+ Aty u(ty=0 on I, u(s) = uy.

If fe L'(I; W?), the solution of the Cauchy problem D,u+ (v(f)-V)u=
f(1), tel, u(0)=uy,, is given by

w(t) = UL, O)uy + J(: Ul 5) fs) ds. (24)

Let us recali the part of the perturbation theorem proved in {5] that will
be used here. Assume that {v,}, k€N, is a sequence of coefficients that
verify assumptions (2.1) and (2.2), and such that

the quantities fv,[i,,, are uniformly bounded with respect
to k, ' (2.5)

and that
im v,=v in C{r;wmh. (2.6)

k— 4o
By using as coeffictents the functions », instead of », we define (in the
obvious way) operators A,(¢), domains D.(¢), and evolution operators
U,(1, 5). One has the following result |5, Theorem 4.27.

THEOREM 2.1. Let pell, +oof, and let meN be such that m>
max{2, 1 + (n/p)}. Under the above assumptions on the coefficients v and vy,
one has
lim Us, 5)=U{s, 5) (2.7)

k- +
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strongly in W2, uniformly on I'x I. Moreover
WU, syl <e®', Vi sel (2.8)

where 8,=c(2, n, N, p, m) |\oell,,n, for a suitable constant ¢, and | |
denotes the norm in L(W?)

4.

3. AN APPLICATION

Let m and p be as in Theorem 2.1. In this section we apply Theorem 2.1
to prove the well-posedness of the equations describing the motion of a
non-homogeneous, inviscid, incompressible fluid, namely

1
Do+ (w-V)u= —;Vn-i—f,

D,p+v-Vp=0,
dive=0 in IxQ, (3.1)
v-v=>0 on IxTr,

5(0) = v, p{0) = po

(see Sédov [23, Chap. IV, Sect. 1, p. 164]). For a mathematical study of
system (3.1) see Marsden [ 18], Beirdio da Veiga and Valli [7, 8], and Valii
and Zajackowski [227. Let us give some references also on papers concern-
ing the motion of incompressible, non-homogeneous fluids in the case in
which viscosity terms are added to Eq. (3.1). Inviscid, non-homogeneous
fluids in the presence of diffusion (say, a continuous medium consisting of
two components, for example, water and a dissolved salt) are studied by
Beirio da Veiga, Serapioni, and Valli [6]. Viscous, non-homogeneous
fluids are studied by Kazhikhov [15], Ladyzhenskaya and Solomnikov
[167, and Simon [20]. Viscous, non-homogeneous fluids in the presence of
diffusion are studied by Beirdo da Veiga [2] and Secchi [21]. Let us
return to the proof of the well-posedness of system (3.1). For convenience
we will restrict the time variable to the non-negative real axis. Hence,
I=[0, T], T>0. We assume that

vy W™, dive,=0in 2, vg-v=00n T, (3.2)
po€ W™, a<plx)<h, Yxe, (3.3)
where @ and b are positive constants, and that

fe LI, W), where g > 1. (3.4)
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It is well known that the system (3.1) has a unique solution (v, p, V) on
F=[0,T*,if T*>01is sufficiently small. Here we ar¢ interested in solu-
tions in Sobolev spaces W™. We refer the reader to H. Beirdo da Veiga and
A. Valli [8] (n=2,3; p=2. The method applies as well if p#2) and to
A. Valli and W. M. Zajaczkowski [22]. An alternative proof of the exist-
ence theorem for local solutions in Sobolev spaces can be done by adapting
to non-homogeneous fluids the proof given for homogeneous fluids in [4,
Sect. 5].

The local existence result asserts that there is a positive T* and a
(unique) solution v, p e L>(I%; W™), Ve LI(J*; W™} of the system (3.1)
on I*=1[0, T*]. Moreover a<p(l x)<b on I*x Q. Actually, a lower
bound for T* depends only on the norms of the data vy, pg, f, and
decreases if these norms increase. More precisely, there exists a positive real
function t(M, M"), defined for positive values of M and M’, which is non-

increasing as a function of each of the variables separately, and such that if
NUU”;1:<M7 “p(}”rn<M’ !1f“ l,I;m<M,5 (35)

then the solution (v, p) exists {at least) on /.= [0, 1.

Moreover, there exists a real positive function L(M, M), which is non-
decreasing as a function of each of the variables separately, and such that
Lol . < LM, M), Hol i, m < L(M M), if (3.5) holds.

Note that by using Egs. (3.1} and (3.10) (Eq. (3.10) follows from
Eq. (3.1)), one easily verifies that the norms [|Val g r;ms 1Dl rsm—1s
LD, ol m-1 8 bounded by quantities that depend (non-decreasingly) on
the above norms of the data, and on [[o]l . and |pll,, .. Hence, we can
assume, by eventually changing the bound L, that the above norms of V,
Do, D.p, are bounded by L{(M, M"). Here, we do not take into account
the dependence on a b, £, n, p, M, ¢, since all these parameters are fixed.

By setting f{¢) =0, for 1> T, we assume (without loss of generality) that
I=[9, +ool. Let now (vk, p&), ke, be a sequence of data satisfying the
assumptions (3.2), (3.3), and (3.4), for each ke N, Moreover, assume that

lim vk =u,, lim pi=po  in W7, (3.6)
k= 4o k— oo
and that
lim fo=f, in L% W) (3.7)
— +on

For each ke N denote by v, py, Ve the solution of Eq. (3.1),. We denote
by (3.1), Eq (3.1) if v5, Po- f are replaced by vk, pk, fi, respectively. Note
that the solutions v,, p, are defined on all I, for sufficiently large values of
k, since for these values of k the data vk, p&, fi verily the assumptions (3.5).
One has the following well-posedness theoren.
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THEOREM 3.1. Let wvg, po, f, and also vk, p&, £, keN, verify the
assumptions (3.2), (3.3), and (3.4). Assume that (3.6) and (3.7} hold. Let
t=1(M, M’), where M and M’ satisfy (3.5). Then

k— +wo

lim o,=v,  lm pe=p, in CUs;W") (3.8)
EX -t

The foHowing result is a trivial consequence of (3.8) together with
Egs. (3.10), (3.1),, (3.1),.

COROLLARY 3.2. Under the hypothesis described in Theorem 3.1, one has
Vo, —Vr in LI ; W), D, — D,v in LY9I_; W=, and D,p, ~ D,p in
C; WY If fi=f in CU; W™) then Vr, -V in C(I_; W"); and
Dy, — Dwin CI; W),

In order to prove Theorem 3.1, we state the following auxiliary result,

Lemma 3.3, Under the hypothesis of Theorem 3.1, one has

lim »,=v, in C(I; W™ 1) (3.9)

k— +wo

Proof. By applying the divergence operator to both sides of Eq. (3.1),,
and by taking the scalar product of both sides of (3.1); with v, it readily
follows that

div (% Vrc)m — > (Dw)D,v,)+div £, in Q,

; . (3.10)
T H
5;:9 Z (Dvj)v;+ pf, on [

Q=1

for each te .. Similar equations (denoted by (3.10),.) hold for v,, p,, Vr,,
Ji» instead of v, p, Vx, f. Since the functions v, are uniformly bounded
on L®(I.; W) and on W9 ; W"™'), and since this last space is
continuously embedded on C*~%a(7_; W™~ it follows (by Ascoli and
Arzeld’s theorem) that the sequence {v,} is relatively compact in
C(I; W~ '), Similarly, the sequence {p,} is relatively compact in
C(I.; W™~ 1). Hence, from the elliptic boundary value problem (3.10}, it
readily follows that the sequence {V=,} is relatively compact in
LAI; W), The desired tesult follows, since limits of convergent
subsequences of the sequence (v, p,, Vr,) are solutions of {3.1), and the
solution of (3.1} is unique. |}

Proof of Theorem 3.1. Let D* be any space derivative such that
0 < jof < —2. By applying D* to both sides of Eqgs. {3.1},, {3.1),, {3.1)s,
(3.1),, one gets
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DAD%) + (v-V)D*v = F*[v] — D" (% Vﬂ:) +D*f,

DAD*0)+v-VD*p=H[v, p], for tel, (3.11)
(D*0)(0)= D0y,  (D*p)(0)=D%p,,

where by definition F*[o]=(v-V)Dv—D*[{v-V)v], H[v,p]=
v-VD% — D*[0-Vp]. Note that the higher order terms are of order m — 2.
The reader should note that in our approach to the well-posedness
problem the boundary condition and the divergence free condition do not
appear.

By replacing in Eq. (3.11) the functions v, p, V7, vg, po, f bY vk, pgs Vg,
vk, pk. f., respectively, we get a sequence of equations, denoted by (3.11),.
By using Sobolev’s embedding theorems and Holder’s inequality it readily
follows that, for each rel_,

IF*Co] — F* Lo, H, < Cllo— velim, (3.12}

and that
IH o, p1— H[ve, pedla < Cllo—oilln+ o —pillm),  (3.13)
since the norms ||vg ;. ,, and [|p.l 1, are uniformiy bounded. Here, as well
as in the sequel, the symbol C denotes any positive constant that depends

only on M and M’ {and on the fixed parameters described above). On the
other hand one has for each re/f,

H

1 i
-Vr——Vn,
2 Pr

(3.14)

This last estimate is proved by applying well-known L’-estimates to the
elliptic boundary value problems (3.10), (3.10),. For the reader’s con-
venience, the proof is sketched in the Appendix.

By setting u=(v, p), uy=1{(vy, po), G"=(F*[v]—D*(p~'Vn)+D*f,
H*[v, p1), Gt = (F*[v,] — D*(pic ' V) + D* fir, H*[o i), Eq. (3.11) can
be written in the more compact form

D (D*u)+ (v-V)D%u=G* tel,
(D*u)(0) = D%uy,

(3.15)

and Eq. (3.11), in a similar form, denoted by (3.15),. For each fixed
multi-index ¢, (3.15) and (3.15), are systems of N=n 1 lincar evolution
equations in the Banach space W* Formula (2.4) shows that

(D*u}(t) = Ult, 0)D"ug + L: U(s, 53 G*(s) ds, (3.16)
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and that
!
(D )(0) = Uelt, ) Dk + [ ULl ) GEls) ds, (3.16),
4]

for tel,." By subtracting side by side Bq. (3.16), from the Eq. (3.16), one
easily verifies that '

I1D%ul1) — D*u, (1) 2
< (U1, 0) = Ult, 0) D*ugl, + UKL O 1D%ug — Dl

+ [ U 5) = Ugls, 5) G0l

+ [ UML) 1670~ Gl ds (3.17)

The estimates (3.12), (3.13), (3.14) show that [|G*(s)— G(s}[, is boun-
ded by the right hand side of Eq. (3.14), for suitable values of the constants
€. On the other hand, (2.8) shows that || U,(z, s)|f < C. Hence, for fixed
g& J0, 1], one has

1D%u(2) — D )]l
< (U, 0) = Us(t, 0)) D"l + Cliug — ugll,,

+ [ MU )= Vst 5) Gz ds + Clo+ o' ) =l

+C[ 1A =Sl . (3.18)

for every 1€ [0, a]. By adding side by side these inequalities for all multi-
index a satisfying 0< |x|<m—2, and by taking the supremum of both
sides as ¢ runs over [, one gets

”ﬂ - uk”!,,,m = Z sup ”(U(t: 0) - Uk(t7 0))Dauoﬁz + Cﬂ“o - Hgli "

a 1€y

+e¥ r sup U1, s)— Un(t, 8)) G*(5)}}, ds

0 ety

FCo a0 sl ot C [ 1S05)— Sl s
(3.19)

! Equations (3.16) and {3.16), prove, in particular, that u, 4, e C({; B™).
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Let ¢ be the solution of the equation C,(¢ + o'~ 9} =} if this solution is
less than (M, M’} Otherwise, we set ¢ = (M, M'). For this choice of o,
we are allowed to drop the forth term on the right hand side of (3.19}, by
multiplying the left hand side by . It readily follows, by using in particular
the dominated convergence theorem, that u,—u in C([0, ¢]; W™). By
applying this result successively to the intervals [ jo, (j-+1)aJn [0, 7], one
shows that u, —u in C([0,t]; W) |

Let us explicitely state the following consequence of the above result.

TucoreM 3.4. Let v, py, and f, verify the assumptions (3.2}, (3.3), and
(3.4), and let [0, T} be the maximal interval of existence of a solution v, p
of problem (3.1) in the space LZE([0, T[; W™).2 Then, to each £>0 and
to each Toe 10, T[ there corresponds a positive 6= (g, T,), such that the
following result holds. If data vy, py, [ verify assumptions (3.2), (3.3), (3.4),
and belong to the neighborhood

loo—vollm<d, NP6~ Pollm<d, WS —Sltiim<d  (3.20)

then the solution v', p' of problem (1.3) with data vq, py, f' exists on
I,=T10, T, and belongs to C(Iy; W7). Furthermore,

lo'(e) —v@lm<e,  Ke'()—plnm <& (3.21)
uniformly on [0, T,].
COROLLARY 3.5. Under the hypothesis of Theorem 3.4, one also has

|1Vﬂ—vnf"q,lo;m<85 HDIU_'DJv,l‘q,IU;mfk{E’ iIDrp_DIp’"I[),mfl“/‘g'
(322)

Moreover, if f, f.eCly; W5), and f,— [ in this functional space, then
{3.22) holds by replacing L%(I,) by C(Iy).

Proof of Theorem 34. Let M, M’ be positive real numbers such that
1o sy me < M, 1Pl <M, and | fll, pm<M" Set v=1(M, M'), and let
[fo, to+1] be an arbitrary subinterval of [0, 7,], of length 1. Since
[0(t) < M, 1900}l < M, and [ £1 . 11, o+ e3om < M, Theorem 3.1 shows
that to each £>0 there corresponds a &0 such that if (¢'(z), p'(¢0))
belongs to the d-neighborhood of (v(fy), p(t,)) then (2'(1), p'(t)) belongs to
the e-neighborhood of (v(t), p(r)), for ail 1€ [ty, t,+ 1] By applying this
result successively on intervals [ jr, (j+ 1)t1n [0, Tpl, j=0, 1, .., J, where
(Toft) — 1 < J < T/, we prove (3.21). |

2 This means that o, pe L™(0, Ty, W™), for all Ty< T. Note that, from the previous results,
it follows that v, pe C([0, T[; ™).
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4. APPENDIX

Here we prove the estimate (3.14). Since 1€/, is fixed, we drop it from
the notation. From Egs. (3.10) and (3.10}, it readily follows that (for
convenience, the ith component of v, is denoted by v¥)

AMw—m)=p  Vp -Vin—m)+p ' Vip—pc) - Vm,
+ Llpr—p)ppi 1 Vo - Vm,
—p Z [(DEU_{)(D;'UI') - (D.Uf)(D;Uf)]

—(p—pi) Z (Divf (Djvf'c)

+pdiv(f—f)+(p—p)divf, in £,
A —m)dv=pY (D)oo, —vFvf

i
+(p—pi) Z (Divj)l’{'cvj'(
i f

+p(f—fe)vtp—p}fe-v, on L

Well-known L?-estimates for solutions of elliptic boundary value
problems (cf. [1] and references) show that [Vir—m ), <
e(lA(m — )l 1 + 10(m — 7))@V ]| (1m, r) Hence, by using (4.1) together
with Sobolev’s embedding theorems and Hoélder inequalities, and by
recalling that [Jv. |, , < C and that [p.ll, ., <C, it readily follows that

Ve —Vrl,, < C Ve —Vr,ll,,_; + Cllo—v.l,,
+ C(l + ﬂvnklimw 1 + “fk“mfl) |Ep _pk”m + C“fi.fklim'
4.2)

On the other hand, the norm of the coefficient p ~! Vp is bounded in C*°
by a constant C, since W™ ~' 5 C%* for a suitable « > 0. Hence, by weli-
known L*-estimates for elliptic operators, one has

V(r—m)l,<e(l4(n—m)— P Vp V()

+ ||6(r — Rk]/av”.’n—(up),f'}‘}
Hence
iv(niﬂk)ipé C”U— Ukltm_'_ C(l + Elvnk”mfl + l;fknmfl)

x [lp = pill+ CILS — Fil - (4.3)

* This very rough estimate is sufficient for our purposes here. See the following remark.
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Remark. We could claim directly for |[V(r—=,)}{,, the estimate stated
above for [V(z —=,)|,. In fact, the regularity of the coefficient p~ . Vpin
the elliptic operator 4 —p ' Vp -V, namely p~' -Vpe W', is sufficient
for that purpose. However, for the reader’s convenience, we utilize only
L*-estimates for elliptic operators with coefficients in C’ spaces (rather than
with coelficients in suitable Sobolev spaces) since this is the case usually
treated in the current literature,

Now, by a well-knowh lemma of J. L. Lions [17], to each &> 0 there
corresponds a A(e})>0 such that |V(z—=n)|,._, <[Vt —n)l,.+
Ae) V(7 —m, M ,. By setting e = C,/2, and by using (4.2) and (4.3), we show
that [V~ V|, <Cllo—vll, + CO+ Vel o+ L fillm— i) le — ol +
C|lf— fill. Consequently,

IV =V, < Clo—vd + CAL+ Lfel) e — pdlln + CU = fills - (44)

since |Vx,|,, < C(1 + | fi,,)}. This last estimate can be proved by applying
the above arguments, this time to the elliptic problem {3.10), {written in
the form that corresponds to (4.1)). From (4.4), together with the estimates
lely, <G lpelis, m < C, (3.14) readily follows.
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