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Existence results in Sobolev spaces
for a stationary transport equation

H. BEIRAO DA VEIGA (*)

L. In the sequel Q2 is an open bounded subset of R”, n =2, and v is the
unit outward normal to the boundary I'.

We denote by L” the Banach space L?(Q2), 1<p < + «, endowed with
the usual norm | [,, and by W*? the Sobolev space W*?(02), endowed with
the usual norm || [, ,. Moreover, W?(Q) is the closure of ®(Q) in W2,
W~14 is the dual space of W7, pe]l, + oo, g=p/(p—1), and W* =
= W“? A W}, k=1. These notations are also used for functional spaces
whose elements are vector fields or matrices defined in Q. If h(x) = (h,(x)),
r=1,...,R,s=1, ..., S, where A, are real functions defined in 0, we set

R

DREIP= 3 3 3 DG

a|l=k r=
where a = (ay, ..., «,) is a multi-index, and |a| = o+ ay + ... + .
Ifth,eX,r=1,...,R,s=1, ..., S, where X is a functional space, we

write h e X. Moreover, we will use the abbreviate notations
_O%h _
Dh=3_, Jh—ﬂfh(x)dx.
If he WrkP we set

|Dh| =(f lehl")Up A, = 3 1D, -
I4 ’ k,p%fzo P

Let u=(uy, ..., uy), w=(wy, ..., wy), v= (vi, ..., v,). We define
N

n
uw=x3ww, uf=u-u, @-Viu=3>v,Du,
1 i=1

j=
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VoiViu= 3 (D)(DiDw), [V]=max

=1 e

’z’: (Dlvf) &é&l .

Moreover, (u, w) :fu-w_

In general, if X and Y are Banach spaces, .E(X , Y) denotes the Banach
space of all bounded linear maps from X into Y. We set £(X) = £(X, X).
Let us consider in @ the equation

(1.1) At (v-Viu +au=f,

where AeRY, v(x)=(vi(x), ..., vu(x)), a(x)=(aw(x)), j, k=1, ..., N,
Fx)=(filx), ..., fu(x) are given, and u(x) = (uy(x), ..., up(x)) is the
unknown. Here (au);= Y, ay uy. One has the following result, which will
be proved in the follo_\;ﬁllg sections:

THEOREM 1.1. — Let k= — 1 be an integer, and let p € Jn/(k + 2), + =|.
Assume that 'e C*3, ve W32 g e WEH2e gnd '

(1.2) vev=10 on I'.
If
(1.3) . A= M= c(Mle+3,p +llalle+2.,) 5

- then there exists a bounded linear map B € L(W5P) such that u=Bf is a
solution of (1.1), for every fe W5P. Moreover,

a4 (= 2 el < &l fller -

If k=1, then u e W§* if and only if fe WE?. For k=0, one has é =1 (c
and & are suitable positive constanis, depending only on Q, n, N, p, k).

REMARKS 1.2. ~ (i) By definition, if k=0 [resp. k= — 1], u is said to
be a solution of (1.1) if the weak formulation (2.18) [resp. (2.19)] holds.

If k=1, the solution u is unique; see theorem 2.1.

Uniqueness can be proved also for the case k = 0. For the case k= —1,
the weak solution exists and is unique if it is defined by using equation
(2.33) instead of (2.19).

(i) one can improve theorem 1.1, either by weakening the
assurnptions on the coefficients or by extending the statement to all values
pe]l, + [ However, theorem 1.1 is proved here in the above version,
since in our previous paper [2] we used it just in that form.
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(iii) In theorem 2.1 and 2.3 we assume that f=0 on I" and we look
for solutions u verifying the boundary condition # =0 on I'. It is interesting
to note that problem (1.1) is well posed in the space L* if u is assigned only
on the set I't={xel:v-v<0} (this was shown, in the case N=1, by
Fichera [5], [6]). At the light of this result, when assumption (1.2) holds
one should not impose the boundary condition u = 0. However, it is not
difficult to show that (1.2) is a necessary and sufficient condition to get the
solution u in W§?, for every fe WiP(k=1).

Existence theorems in Sobolev spaces where previously established in
the hilbertian case p=2 (K. O. Friedrichs[7], P. D. Lax and R. S.
Phillips [9], J. J. Kohn and L. Nirenberg [8]) and in L? (G. Fichera [5], [6];
see also O. A. Oleinik and E. V. Radekevic [12], and references contained
therein).

The study done here (see also [3]) was motivated by our previous
paper [2], on the stationary Navier-Stokes equations for compressible
fluids. In reference [4], the reader can find a short revue on some of the
ideas developed both here and in [2], and on the relationship between the
‘{wci subjects. For subsequent developments and applications see [13], [14],

15].

2. For convenience, we assume in this section that I'e C'. Let
pe]l, + [ be fixed. We denote by r=r(p) and s =s(p) two reals such
that: r=pifp>n;r>nifp=nr=nifp<n;ands=pif p>n/2;s>n/2
if p=n/2; §=n/2 if p<n/2. By using Holder’s inequality and well known
Sobolev’s inequalities, one easily verifies that there exist positive constants
c=c(Q, n, N, p, r,s) such that

(2.0) 1F wll, < clFl W, . |G IDW]l,<clGllIwlk,, ,

for every we W5°, FeL*, GeL".
From (2.0) one easily deduces that there exist constants c¢;=
=c¢{Q, n, N, p, r, s) such that

J Vv : Vw|, < c¢i|Dw|s [Aw], ,
o) Db <clason,.
|A(aw)|, < cs(llall,s + lal,  + |alw) [aw], ,

for every we Wy?. Note that |[Aw|, and |wl|,, are equivalent norms in
War

0 - .
Define

] [
(2.2) 6, =; |div Ve + 2¢1| DV + co|AV|, + cs(lall,s + |lallr. . + |als) -
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The following result is the core of our paper:

THEOREM 2.1. — Let pe|l, + = [. Assume that
(2.3) ve W WL, ge W n WA L®,
and that (1.2) holds. Then, if >0, and fe W§P there exists a unique
solution ue Wy? of problem (1.1).

Moreover '
(2.4 (= Olaul, < av], .
and estimates (2.12) and (2.15) hold. In particular

(A — 0,)(|aul, + |Dul, + lul,) < |Af|, + |Df, + | fly -
Proor — Let ¢>>0, and consider the problem

C—=edu,t Au A+ (v-Viu tau,=f, in 2,
(2.5)

(us)iP = O -

For A sufficiently large, this problem has a unique solution u, € Wg?.
Since u,=0 on I, it follows from (1.2) that (v-V)u,=0 on I. This
relation, together with (2.5), yields

(2.6) Au, =0 on I'
Let now & be another positive parameter, and set A = (& + |4u|?)'?.
For convenience, in the calculations which follow we will denote the

solution u, of (2.5) by u.

By doing an integration by parts, and by taking in account equation

(2.6), one gets

e[ Aau) 42 au = [ Y D(Au)- DA au) .

On the other hand, the following identity

" - 2
S, Dy(Au) - Da> ? du) = 422 | Dawf + =40 v (),
i=1

holds. Hence,

2.7) —sz(Au) AP Au= ejAP“2|DAu[2+ep IAI”4|V(|Au|2)|2 .
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This proves that the left hand side of (2.7) is non-negative, for p =2. We
get again this result if p € ]1, 2], since

S D(8u) - DA~ 4) > [(p ~ 1) |Auf + 8403 D w)P

Hence, the left hand side of (2.7) is non-negative for every p e |1, + oof.
On the other hand, one has the identity

APTED(Au) - Au= %AP“ZD,-(IAMF) = %AP‘ZD,-(S+ |[Au|?) =§~D,-AP .
Hence, an integration by parts shows that
(2.8) f(v-V)Au-AP“ZAu=—if(divv)/l”'.

Equation (2.8) and the identity A[(v-V)u]= (v-V)Au+2Vv: Vu +
+{dv-Vyu, yield -

@9 fajo- V.)"_L_l]._"'.'/_l*:":‘zdu =~ L] +
L2 (v s+ [1av-vyu]- 422 u .

Let us now return to equation (2.5);. By applying the 4 operator to
both sides of this equation,: by taking the scalar product on R¥ with
AP % Ay, , by integrating in £, and by taking in account (2.9), it follows that

(210)  —efa(au) -4 -2au+ AflAuEPAP-z—P%j(diw)Aps

< 2f |Vv: V2| |Au| AP -2 + f |(4v- V) u,||an,| A7 -2 +

+f|A(aus)[IAuefAP‘2+f|Af| |Au,|AP=2

Since 0= |Au]AP"2<AP~!, the Lebesgue’s dominated convergence
theorem applies as 8— 0*. By taking in account that the first term on the
left hand side of (2.10) is non-negative, and by passing to the limit as
§— 0" one gets

@11)  2flauf - i— [ (@ivvylaufr <

<[ @IV P u + 1@y ) + [acau)| + af) lAufpt |
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This shows, in particular, that (A — 6;){4u,|, <|4f],. Since the u, are
uniformly bounded in W%P?, there exists a subsequence u,, weakly
convergent to a limit u as e— 0 (actually, the all sequence u, converges to
u). Clearly, u verifies (2.4). Moreover, by passing to the limit in (2.5), as
e~> 0, it follows that u is a solution of (1.1). Note that c4du,—> 0 strongly, as
¢— 0. Uniqueness, and the estimates (2.12), (2.15) will be proved in the
sequel. O

Let m, and M, be constants such that, for every £eRY, |f| =1 the
estimates '

N
22 aﬁ(x)%ék E;AJas

fk=1

N
m,= ES aﬂ(x)%ik;
fe=1

hold a.e. in Q.
Define 8, = (1/p) |div v|. — m,. Clearly,

6o < (1/p) |div v]w + M, < (v}, + |2]o).

THEOREM 2.2. — Let ve W™, ae L™, fe L?, let u € W}? be a solution of
(1.1) [resp. ue WF be a solution of (1.1), under the assumption (1.2) for
the coefficient v], and let 2> 6.

Then

(2.12) (= 60) ul, <71, -

In particular, the solution, if it exists, is unique.

Proor. — By multiplying both sides of (1.1) by (8+ ju[)® 22y, by
integrating in £, and by passing to the limit as &-»0% one gets
(2.12). O

Let aeW-'nL=. Since ||Dal|w||,<ddl Wi, and |w;,=s
< c|{Dw|,, one easily verifies that

(2.13) |D{aw)[, < csllal. + |al=) | Dw], , Vwe Wi,

where ¢, =¢4(Q2, n, N, p, r). We set
1,
(2.14) 6, mI_J |divv]w + [[VV]|w + collalls,, + |al.) .

THEOREM 2.3. — Let p, I and v be as in theorem 2.1 (actually, the
assumption v € W27 can be dropped) and let ae W' N L™, If fe WS and
A> 0, the problem (1.1) has a unique solution ue Wy*. Moreover

(2.15) (= 6){Dul, < |Df|, ,

and (2.12) holds.
In particular, (A~ 6))|lufls,, <||flh.,-
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PRrOOF. — (i) Assume that a =0, and denote by 6, the right hand side of
(2.2) (for a=0). Assume that A > 6,. Let f,, € W4? be a sequence, such that
Jm—f in W§? as m— + o, and denote by u, the solution of Auw,+
+(v-V)u, =f,. Set, for convenience, A= (8+ |Du,|*)"*, where ¢>0.
One has

(2.16) Ié[(u-V)D,um]-APZD,um=Il)J‘(v-V)AP.

By taking the scalar product in R" of both sides of the equation
ADyu, + (v - V) Dy, + [(Dyv) - Vu, = D,f,, with A?"?Dyu,, by adding
for I=1, ..., n, by integrating in Q, and by taking in account equation
(2.16), one gets

i
2.17 A [DuyPAP =2 —=|divv|. | AP <
217) 2 |Duy| Sldivl. |

<[ [9V1|Dun 422+ [ |Df||Du| 472

By passing to the limit as §— 0%, we show that (A — 6;) |Du,,|, < |Df,|,,
where 6; denotes the right hand side of (2.14) (for a=0). It easily follows
the existence of we Wp?, solution of Au+(v-V)u=f, such that
(A - Gl)lDuLD = Df|p.

(i) Here, we extend the result proved in part (i) to the case in
which 2> 6,. Fix A>6,, and denote by u= Tw the solution of problem
au+ (v-Vyu=f+ (1 —2)w, for an arbitrary w e W§?. If i = Tw, one has
(A —6,) |D(u— )|, < (2 — 1) [D(w — w)|,. Hence, T'is a contraction in W?.
The _fixed point u is a solution of iu+(v-V)u=f Moreover
(A —01) |Dul, <|D(f+ (2 — 2)u)|,. Hence (x—6;)|Dul,<|Df|,.

(iii) Finally, we assume that a#0, and that 2> 6; (hence, A >>0,).

Let w € Wy?, and denote by u = Tw the solution of Au+ (v-V)u=f—aw.

Let a=Tw. One has (A—6)|Du—a)|,<|Dla(w-w)|,<
< c4(Ua||1,, + |al.) |[D(w —W)|,. This shows that T is a contraction
in Wy? since A>0;. The fixed point u = Tu is a solution of (1.1). More-
over, (A—#6y) |Du|p S |D(f_ au)’p = |Df|p + C4(““I|I,r + lalm) |Dqu- Hence,
(2.15) holds. O

Assume that ve W™, ae L*, u, fe L”.

We say that u is a weak solution of (1.1) if

(2.18) M, 9) = (S Dig) W)+, 9)=(f5)  VoeWh,

where g=p/(p—1), o= (o1, ..., on).
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CoROLLARY 2.4. — Under the hypothesis of theorem 2.3 on v, a, I' and
A, there exists a bounded linear map G € £(LP) such that u = Gf is a weak
solution of (1.1), for every fe L?.” Moreover, (2.12) holds.

PRrooF. — Let u, € Wy? be the solution of Au,, + (v- Vu, +au, =f,
where f,, € Wi is a sequence which converges to fin LP. From (2.12) 1t
follows that (A — 6o} [,y — w,|, <|f,,— f.|,. Hence, the sequence u, is
convergent to a function # in L7, as m— + . One easily verifies that u is
the desired solution. a

REMARKS. — The assumptions v e W>” and a € W'" are superfluous.
Moreover, the map G exists for every A > 6. Finally, from the existence
theorem for the adjoint problem ip—(v-V)gp— (divv)p+a*y =g, it
follows an uniqueness result for the above solution u, at least for
sufficiently large values of 2.

Now, we turn out to the study of equation (1.1) in spaces W 9,
g €]1, + [. Set p =g/(qg — 1), denote by {, ) the duality pairing between
Wi and the dual space W19,
DeFINITION 2.5, — Let fe W19, We say that ue W19 is g weak
solution of equation (1.1) if
(219) Do 3 D00+ as, J=(of)  Veca@,
i=]

where ¢ = (1, ..., gy), and a* is the transpose matrix of a.

Letv, a, I'be as in theorem 2.3. From this theorem it follows that there
exists a positive constant cs depending only on Q, n, N, p, r such that if

(2.20) 2> 68 = cs(|[vll, , + [[vll,  + llally,  + |a]=}

then there exists a bounded linear map B e L(W§?) such that ¢ = Bg is the
(unique) solution of the equation

(2.21) de—(v-V)o—(divv)p+a*p=g,

for every g e Wy?. Obviously, the operator B is invertible. Set 4 = B!,
and denote by {A) the domain of A i.e. the range of B. The operator A is
closed in W§?, moreover,

(2.22) DAY= {oe W§?: (v -V)p e Wj?} .

In particular, one has ®(Q) c D(A). Hence, D(A) is dense in Wk,
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Denote by A* the adjoint of A. Since A™'= B e £(W}?) a well known
result on Functional Analysis guarantees that (A*)™!=B* e £(W 19)
(moreover, ||B*||=|Bl).

Consequently, the equation A*u = f has a unique solution u = B*f, for
each fe W 9. This equation is equivalent to (Ap, u)= (9, f),
VYo e D(A); hence it is equivalent to

(2.23) <}\gp - 52::1 Die;v) +a*y, u> ={o, ) Voe D(A) .

In conclusion, u=B* is a weak solution of (1.1),
-1, <Billlf]-1.,, and (2.24) holds. We have then proved the
following result:

THEOREM 2.6. — Letqe|l,+ = |, p=g/{g~1), r=r(p). Let v, a, and
I' be as in theorem 2.3. Assume that 2 verifies (2.20). Let B* € £(W~"9) be
defined as above. Then, u= B*f is a weak solution of equation (1.1) for
every fe W™ b4 (actually, (2.23) holds). Moreover

(2.24) e S o] 7 I ) I

3. In this section we prove theorem 1.1. We start from the main a
priori bound: o

ProrosiTion 3.1. — Let p, k=0, v, f, and a be as in theorem 1.1. There
exists c=c(Q, n, N, p, k) such that if » verifies (1.3) and if ue W**# is a
solution of (1.1}, then

(3.1 =2 lledle, » < Bk, -

Proor. — Let a=(xy, ..., @,) be a multi-index, |«| = k. By using an
abbreviate notation, the application of the operator D* to both sides of
equation (1.1) yields

(3.2) ADu+ (v-V) D+ S [(D)(Du) + ... + (Dv)(D )]+
+ S (DAt ...+ a(DA)] = D

Set A=(8+|D*ul)"®, where & is a positive parameter, and
|D*u|* = ¥ | D*w|%; this summation is extended to all o such that |«| = &, and
to all j, 1 <j=< N. By multiplying both sides of equation (3.2) by A? " 2D,
by adding side for all index « such that |« = k, by integrating in 2, and by
taking in account that the third term [resp. last term] on the left hand side
of (3.2) is bounded by ¢|Vlss, e, [resp. dlalerz ], it follows
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that
A [ 4P 2| Dhuf < leivvl. af +
+ (Wl s.p +Halh2,p) e 1412 = + | DAEF Jaje =1
By passing to the limit as é— 0% one gets
(33) D uly < el 1y + el 2, bl + (D],

Clearly, (3.3) holds for every integer kg such that 0 < ky, < k. By adding
side by side all that estimates, when ko= 0, 1, ..., k, one gets (3.1). N

ProOF OF THEOREM 1.I. — Theorem 2.3 together with the first
statement of theorem 1.1 show that « =0 on I"if and onlyif f=0on I The
proof of the first statement of theorem 1.1 will be divided in three steps, as
follows.

(i) Here, we prove the statement of theorem 1.1 for the values
k=-1,0,1,2.
Let T be a ball such that Qc/ and fix linear maps T; €
€ L(W e WE+3p(]y), Ty e L(WFH2p, WE2p([)), and T, e
€ £(Wh?, WEP(D), such that (TwVa=v, (T =a, (T o =f; Here,
Wor =L, and Wy P = W-12_Jp case that & = 0 we define the map T by
setting (731)(x) = f(x), if x e, (T3/)(x)=0 if x¢Q. We put v= Ty,
a="Tha, f=T,f. Note that if k=0 then |flo.r=1f], (this allows us to
choose ¢=1, in this case). By using Sobolev’s inequalities, one easily
proves that the coefficients v and 4 verify, in the ball I, the assumptions of
theorem 2.6 if k = — 1 (*); of corollary 2.4 if k= 0; of theorem 2.3 if k = 1;
of theorem 2.1 if k= 2. Denoting by # the solution of the equation Az +
+ (V- V)d + an = fin I (whose existence is guaranteed by one of the above
theorems, depending on the value of k), one easily verifies that u = Qpis a
solution of (1.1), and that all the desired properties hold. We leave the
quite obvious details to the reader.

(if) Here, we prove the first statement of theorem 1.1for k=3 and

p > n. We assume that the thesis hold for a value k = 2, and we will prove it

for the value k + 1 (by step (i), the thesis holds for the values k=1, 2).

Letve W7 vy =0onTl, ac WEtde fe Wr*Lp and assume that 2

verifies (1.3). By the induction hypothesis, there exists 2 (unique) sotution
ue We? of (1.1). Moreover (1.4) holds.

(*) Here we use the statement of theorem 2.6 with the roles of p and g exchanged,
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From (1.1) one has, for each index [, 1<I<n
ADju+(v-V) Du+ aDju + [(Dy) - V]u=D,f— (Da) u .

This is again a system of type (1.1), on the nN variables Du;. By the
induction hypothesis, there exist é=c(nN, k), and &nN, k) such that for
every A> X =¢(|[vllr3, + lallk+2,,), one has Due WeP and

G4 0= )IDul,< N, K)UDF e, + a1, ol ) -

Hence ue W**!». Moreover, the estimate (1.4) for the value k + 1
follows from that estimate for the value k together with (3.4). Set, for
instance, c(N, k+ 1) = max{c(N, k), c(nN, k)} + é&nN, k), é(N, k+1) =
=max {¢(N, k), énN, k)}.

(iii) Here, the main point is to prove the first statement of theorem
1.1 for k=3, p > n/(k + 2). However, in order to show that ¢=1if k=1,
we will assume that k=1 and p > n/(k + 2). Fix a real p, such that p,=p,
and p,>n, and let v e Wst*P g e Wk+3m (this additional assumption will
be droped later on).
Let {f,}, m € N, be a sequence of functions belonging to W**L17 and
such that f,,— f in w*?. Let A verify the additional assumption

(35) A= C(‘Qa n,. Na Po;, k+ 1)(”""l|k+4-Pu * ”a”k-" 3:Pn) =

and let u,, € W**1? be the solution of Au, + (v- V) u,, + au,, = fin» whose
existence was proved before. By proposition 3.1, the estimate (3.1) holds
for the pair u,,, f,,. It follows that {u,,) converges in W*? to a function u.
Clearly, u is a solution of (1.1), and u verifies (3.1).

' Now we drop the additional condition (3.5). Assume that 1 € ]y, u], fix
a value 2>y, and consider the problem u + (v- V)u+au=f+ (i — 1) w,
w e WP, By arguing as in the part (i) of the proof of theorem (2.3) one
easily proves the thesis.

Finally, we drop the additional assumptions on v and a. Let v and a be
as stated in theorem 1.1, and consider sequences v,, € W+ 4m, g, € Wk+3.p0
such that v,,-v=0 on I, v,—v in W**>?_ and g,—a in W<*2P, ag
m— + . Let u,, be the solution of Au,, + (v,,* V) t,, + @, u,, = f, where 2
verifies the assumption (1.3) (*).

By (3.1), one has (2 — X) |l » <I|f]k,,- Let u be the weak limit in
WP of a subsequence of the sequence {ttn}. Then, u is the desired solution
of problem (1.1). O

(*) Hence, for sufficiently large values of m, (1.3) holds if v and a are replaced by v,
and a,, respectively.
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