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On a Stationary Transport Equation.

H. BEIRAO DA VEIGA (*)

1. — Introduction.

Let £ be an open, bounded subset of R», n>2, locally situated on one
side of its boundary I', which is a C! differentiable manifold. We denote hy »
the unit outward normal to I

Let v(z), a{x) and u be a vector field in £, a scalar field in 2, and a real
parameter, respectively. Let X be 2 Banach space of real functions defined.
in £2. In the sequel we look for solutions ¥ € X of the equation

(1.1) uy +v-Vy + ay =g,

where ge& X is given, Without loss of generality, we assume that uz0.
More precisely, we look for B e £[X], such that y — Bg is a solution of (1.1),
for cach g X. Here, C[X] denotes the Banach space of all bounded linear
operators in X. For convenience, we call this problem, the existence problem.
in X.

The above problem is more difficult to solve that its evolution counter-
part 2y/2¢ -+ v Vy -|- ay = g, since this last equation can be solved by using
the characteristic’s method. The title of our paper originates from the con-
nection between the two problems.

Our interest in equation (1.1) is due to omr reeent study [21, in which
we prove (among others) existence and unigqueness results in Sobolev spaces
W for the sfationary solutions of the compressible, heat-conductive,
Navier-Stokes equations in dimension #. However, the proofs given in
reference [2] use some results on the existence problem for eguation (1.1),
in spaces W-L», These results are stated here in theorem 5.2 and in corol-
lary 5.3. In order to prove these two statements, we start by studying the.

(*} Indirizzo dell’A.: University of Trento, Department of Mathematies, 38050/
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existence problem in space W;”; see theorems 2.3 and 3.3 below. As 2
by-product we esatblish also existence resuits in spaces Wh?; gec theorem 4.1.

Existence theorems in Sobolev spaces where previously established only
in the hilbertian case p — 2 (see K. O. FrieDrIOBS [6], P.D. Lax and
R. 8. Paicures [7], J.J. Koay and L. NIRENBERG [6]) and in the case
X = L() (see G. FIcuurA [3], [4]; see also O. A. OLEINIK and E. V. RADE-
KEVIC [11], and references therein).

In general, problem {1.1) is well posed in spaces L7(2) if y is assigned
on the set Iy, ={welMmwv»<0}. This was proved by FICHERA [3], [4],
for a more general class of equations. However, in view of the applications
given in [2], we are interested in studying equation (1.1) in spaces Wp?
{y = 0 on [I'), under the assumption »-» = 0 on I'. Tt is worth noting that
this last assumption is necessary (at least formally), and sufficient in order
to solve equation (1.1) in Wy®. In fact, equation (1.1) togheter with the
assumption gir = 0 and the requirement y|r = 0, implies that (Vy)|r is
parallel to », and that (v-Vy)ir = 0. Hence, it is not reasonable looking
for the existence result in W}”, without the assumption »-» = 0. This last
assumption ig also sufficient for solving (1.1) in W.*, as follows from theo-
rems 2.3 and 3.3 below. In particular, these theorems shows that the solu-
tion y € Wb? of problem (1.1) (gee section 4) must vanigsh on [, whenever
g vanishes on 7. Note that under the hypothesis »-» = 0 on I, the solution
of problem (1.1) is unique in the class W=, for u > (1/p) ldivei, + |6l..
Infact, by multiplying both sides of (1.1} by ly[*~*y, and by doing obvious
devices, one proves that

(1.2) (1 — (1fp) |Aivol.— |als) (yl<|gls .

For more general unigueness results see [4], [11], [9], [10].

Let us now infroduce some notations. We denofe by L*? the Banach
space L2(L)), 1<p<+ oo, endowed with the usual norm | |,, and by We»
the Bobolev space Whr({2), endoved with the nsual norm | |;,. Moreover,
WP is the closure of D(L2) in Whr, and W-¢ iz the dual space of W7,
pell, + oof, ¢ =p/(p—1). Furthermore, OF — O%(). These nobations
are adso used for functional spaces whose elements are vector fields
(@) = (v4(2), ..., va()).

‘We denote by 7 == r(p) a real number such that

r==p, if pein, 4} oo,
(1.3) r>mn, if p=n,

r=mn, if pe]l,n].
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In section b we will use o slightly different definition for r{p), by setting

r>n it pell,nf.
Tn the sequel we will assume that v < 0%, ae Wit and we define

L@) = max| 3 Den(o)&.L],
k=1

[8=1 14,
where Dy, = 2/0x,, b=1,..,n .\Mﬂreover,
(1.4) pp = 1jp |dive|. + |Dle + [ale + |Vai,,

where ¢, = ¢ (n, p, r) i3 a pos.tive constant such that |f|,<e|Vfl,, ¥fe Wi
Here, s is defined by 1)s = (1jp)— (I/n) if p<n, 1js={1/n}— (1fr) if
p=mn, 8§ = -+ oo il p>>mn The existence of ¢, i3 guaranted by well known
Sobolev inequalities.

In the sequel, ¢ denote positive constants depending at most on £2, »n, p, 7.
The same symbol ¢ will be utilized to denote distinet constants,

2. — The existence problem in W}*, pe]l, 2]
We start this section by stating the following preliminar existence
result in Wi*:

Levya 2.1. Let I'e 02, ve OYQ), vy =0 on I, and ac LN W,
where v = ¥(2)., Assume that
(2.1) >

Then, for each gc WL?, the problem (1.1} has a (unigue) solution y c W*.
Moreover,

(2.2) { (g0 — pta) |Vy!2-<-\ng'27

[ — (3) {divolo— |alo] [¥]e<|g]s-
Proor. - For each ¢ >0, let g, W** n W)* be the solution of

(2.3) {—eﬁys+uys+@-vh+ﬂye—g, in Q,

{ys)p = 0.

By multiplying both sides of (2.3), by Ay., by integrating in £, and by
doing a suitable integration by parts, since »-Vy_ = 0 on I, one easily gets.

(2.4) & Ayl3 + (n— p) V< |Vl VoL, -
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Hence, {(u— p,)|Vyelo<|Vygl, and limeldyle=0 as £-—0. Conse-
quently, there exists yc Wi* such that (at least for a subsequence )
Y. — 3y, weakly in Wp*, Clearly, ¥ is a solution of (1.1). O

We denote by B, = By(u)e Q[Wi *], the linear map g -y = B,g,

defined in lemma 2.1.
The nexf result, consists on a technical justification of an integration

by parts formulae,

LEMMA 2.2, Let pe 11, 2[, and lot I'c 0 Assume that ve 01, ye Wb,
and v-Vye Wrt Then

25) 3 [P I(Dey) [Vyl-2da =
o

=3 [Duo)(Da)(Dey) [Vyp-2ds — (1) [(@ivo) [Vyjoda.
2

Hl=1

Proor. — Let & c C(R®) be a compact supported vector field such that
# = v in 2. Next, extend y to all of R", by setting 5 = 0 in R*/2. Denote
by ¥; = @, %y the Friedrich’s mollifier of . A well known Friedrich’s
lemma (see for instance [8], corollary to lemma 6.1, page 315) establish
that

{2.6) llm[izrpa*(ﬂuta ) g (a*%{)]—ﬂ,

§<0t
in the W E") norm. On the other hand,

(2.7) 1im [pa % (# Vy)] = ¥ Vy ,
¢—0t

in the W42(£*) norm. Note that #-Vye WL2(Rs). By using (2.6),(2.7)
one gets

lim#% Vys = - Vy,
a0t

in the above norm. Consequently,

(2.8) lim D,(%- Vys) = D5 Vy),

f—>0F

{(k=1,...,n) in the L*(R") norm. On the other hand, a straight forward
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calenlation shows that
(29 3 ka(ﬁ-Vya)(Dkya) Vol da =
k=1
Rﬂ

= —(p)[(aive) [yl + 3 [(DBIDFoNDeFe) Vyalr-2as
R® R»

k=1

By pasging to the limit in (2.9) as § — 0%, and by taking (2.8) in account,
we show that (2.9} holds if ¥, is replaced by y. This proves (2.5), since
y e WP ).

TEEOREM 2.3. Let pe 11, 2[, and let the assumptions of lemma 2.1 be
satisfied. If
(2.10) p > max {g,, Ha) s
then the map Bi(p) can be uniquely extended to a map B, = B,(u) e L[W7]
such that y — B,g is the (unique) solution of equation (1.1), for each g W37

Moreover,
(211) { (16— i) | V9| [ Vgs

' H (o — (1) [Qiv ol alw) [y]s<lgls-

s

Proor. Let ge Wp* and let y = B,g. By multiplying both sides of
the equation

(2.15) vy 4 Di(v-Vy) 4 aDyy 4 (Dya}y = Dyyg

by |Vy|~2D.y, by adding with respect to %k, and by integrating over £,
we show that

(216)  pVy[z + [ 3 Dufo-Vy) Dey|Vyp=az 1 [olVylrdo +
02 o

- JAyIVyifM Vy-Vadr = f|Vy|”—“Vy-ngm .
a @

By using lemma 2.2, one shows that the inequality (2.11); holds, for
every g< W% TFinally, standard arguments yield the thesis. O

3. ~ The existence problem in Wp?, p e ]2, + oof.

In this section we introduce a different approximation method, which
allows us to consider the general case pe ]1, 4 oof, under the assumption

el




84 H. BEIRAC DA VEIGA

that the mean curvature x(z) of I' at the point # is non-negative, for all
zel

Tevma 3.1. Let pell, -+ ooly fet e €3, and assume lhat the mean
cwrvature y(x) of I'is everywhere non-negative, Furthermore, let y € war N Wit
be such that Ay = 0 on I'. Then, for every d > 0, one has

(3.1) — [ 407 [(1Vylr + 8)o-21 Ty dw 0.
2

In particular,

(3.2) — jA{Vy)-[wy;w—% Vyldes0 .
0Q

PROOF. An integration by parts yields
(3.3) —jA(Vy)-Vy(WW 4 §)o-iady =
0o

=3 J-Df(Vy)-Di[(!Vyp + §)-wis Vyldo —
ig
—f 2 (D) (Dsy) v({Vyje -+ B)e»ral.
r*

On the other hand, straightforward caleulations show that identity

(34) 3 DAVy)-DL(Vyl+ o) Vy] =

— (|Vyiz + (‘j)(pwa),'z zk (D:g'ky)ﬁ o+ 1'iuz__2 (|Vy12 + 5)(1:74:.'2 2 (—Da‘lv’yiz)z .

holdg a.e. in £2. This proves that the firs integral onthe right hand gide
of (3.3) is non-negative, if pei2, + oof. T pell, 2], gtraightforward
caleulations show that

(3.5) 3 D{Vy)-Dif(IVyl* + §)e-ol2 Vy) =
Si(p—1) [Vyl* + 81 (Vg 5 o) " 2 (DoY)
ik
a.e. in £. Consequently, the left hand side of (3.5) is non-negative in o,

for every p € |1, -+ oo
In order to complete the proof, we show that the boundary integral

that appears in equation (3.3) is less than or equal to zero. Since y{x)=0

£




ON A STATIONARY TRANSPORT EQUATION 85

on I, it suffices to show that

(3.6) — 3 @ = 1z (E)
IR H Y

in the usual trace’s sense on I. We will prove that (3.6) holds pointwisely
in I, for sufficiently regular functions y (say, ¥ € C%). Then, standard devices
show it in the above form.

Let #, € I. By doing an orthonormal change of coordinates we assume,

without loss of generality, that »(®,) points in the x, direction, and that
the principal directions of I' at =z, are parallel to the x, direciions,
+=1,..,n—1. Bince y = Ay =0 on I, one has

i,k=1

=3 (Phy)(Duyly = — (Do)(Duy) = (D) 3 Diy

By denoting with y(%,), ¢=1,...,n— 1, the principal curvature in
the x; direction (considered negative if y points toward the center of curva-
ture) one proves, without difficulty, that

Dy = y(2,)D,y.

This yields {3.6) at @,. O
Leuwa 3.2. Let p e 11, + oof and let £2 and I" be as in lemma 3.1, Assume

that veCY vv =0 on I, ac L™ N W', where r=1r(p), gc Wo*, and

(3.7) ’>

Then, for each £ > 0, the solution y. problem

_Ag I3 'Ve We — inQ
(3.8) { eAYe + pye + v Vye + aye = g, )

(yBHF = 0’
verifies the estimates

(3.9) { (4 — 1) Vel o < |V,
' (1 — (1p) |divojeo— |al) [ysls< |92 -
Proor. Let y. € W \ W.? be the solution of (3.8), From the assump-
tions on » and y. it follows that »-Vy. = 0 on I'. Consequently, Ay, = 0
on [I'y which is a crucial condition in order to apply lemma 3.1.
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For convenience, we set here A = (|Vye|* + d)=22 By taking the
derivative of both sides of (3.8) with respect to z,, by multiplying by AD, y.,
by adding with respect to &, and by integrating over {2, one shows that

(3.10) —EfA(Vye)-AVyedm + ,u,ways;w +

3 [rDg ADs ey + 3 [(Deo)Doyo(Deye) Ad -+
+ [ad(Vyeftan + [ AVyVado = [4Ty.-Vgao.

By using lemma 3.1, and by noting that the third integral on the left
hand side of (3.10) is equal to

— (lfp)f(div'v) (|Vael2 + 8)22dm
one shows that
(8.11) qulVyelsz(llp)j(diwf) (IVyel* + 8)eder +
+ fL(x)AWyEP dz + fﬁa!AiVMﬁ dr +f|va| el A|Vye| dz + fAIVygj (Vg dz -
By passing to the limit as § — 0, one finally gets (3.9),. 0O

Temmma 3.2 allows us to extend theorem 2.3 fo all values p € ]1, 4 oof,
under the additional assumption y(z)>0, Yoe I. For pe 1, 2[ the proof
becames more technical, moreover in that case, theorem 2.3 gives a stronger
result, Hence, we will take into account only the case p ¢ [2, 4+ oo[. By
the way, we remark that (by using Sobolev’s embedding theorems) the
proof given below applies as well, if p>2n/(n + 4). In particular it applies
for all pell, 4 oof, il ng4d.

THEOREM 3.3. Let pe[2, + oo, let I'e (3 and assume that the mean
curvature y(x) of I' is non-negative, for all x € I Furthermore, let v, a and
be as in lemma 3.2, Then, there ewists a bounded linear map B, = B lu) e
€ L[WL?] such that y = B,gq is the (unique) solution of problem (1.1), for each
g Wit Moreover

(,LL - (ij) |diV1?Em# Ea‘lm) Ey|w< |ng .

ProoF. From (3.9) it follows the existence of y & Wp” such that (at
leagt, for a subsequence #s) ¥ — ¢, weakly in Wp”. By multiplying both
sides of equation (3.8) by #., one easily shows that &|Vy,[; is bounded by
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a eonsiant independent of &. Hence, &y, -~ 0 in W) In particular, edy: — 0
in W12 (f}, By passing to the limit in equation (3.8), as ¢ — 0, we show
that y is a strong solution of (1.1). O

4. — Existence results in Wi», pc ]1, + oof.

As a by-produet of theorems 2.3 and 3.3, we will prove here an existence
theorem in spaces Wb, In this section we assume that I'e 0%, and we
associate to £2 a fixed open ball B, such that ¢ B. Moreover, we fix linear
continuous maps g —§, v —#, e — 4, from Wiv»() into WP"(B), from
D) into OY(B), and from L=(2) N Wi(2) mto L~(B} N Wi7(B), respecti-
vely, and such that §le = ¢, ¥l = v, @|o = a. Moreover, §, & and ¥ have
support contfained in a fixed eompact subset of B.

We define f, by replacing in formulae (1.4), 2, », ¢ with B, ¥, &, respec-
tively. Clearly,

{4.1) fo<e(L2ymy Py 1) ity

where ¥ = r{p). Here, pc]l, + oof.
Let 4 € W>*(B) be the solution of p§+ﬁ-Vﬁ+ d’g’?m g, in B. Clearly,
Y = §lo solves (1.1). Hence, one has the following result:

TowrorEM 4,1, ILet pell, + oof be fized, and set r = »(2) if pc 1, 2],
r=1r(p) if pel2, 4 ocof. Assume that e 0, v (', and ac L™ W,
Then, if g = ey, (0 case that p & 11, 21) or p > o, u, {in case that p € 12, + o]},
whore ¢, = (02, m, b, v) is a suitable positive constant, there exvists o linear
continwous map T e C{Wrr] such that y — Tg¢ is a solution of (1.1), for each
g€ Whr, Moreover,

(g — fin) [Yllp<e(82y 2y ) {gl1n -

Note that the solution % is unique in the class Wt if »-» =0 on I\
Otherwise, the above statement should be completed in accordance with
a result of [3], [4] refered in section 1. However, we didn't investigate in
thiz direction,

We remark that the clogure in L* of the map B, ¢ £[W,?] solves the exis-
tence problem in L (under the hypothesis of theorem 2.3 if p € |1, 2], under
the hypothesis of theorem 3.3 if p €12, -+ oof).

(*) By multiplying (3.8) by Ay,, onc could show that edy, — 0 in L%
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By using this result, and by arguing as above, one easily proves an
existence result in Lr-spaces, similar to theorem 4.1. However, existence
theorems in L», for a more general class of problems, are given in [3], [4], [11];
see also the references in [11].

3. — Existence of weak solations in spaces W-Lv,

Finally, we will study equation (1.1) in spaces W-%#, which is our main
concern, in view of [2]. In order to simplify the stafserhents, we change
in this section the definition of » = r(p), by setting » = p if p > 0, *> 0
it p<<n. This modifies definition (1.3) only in case that p < #. Since the
new value of r(p) is greater than or equal to the old one, all the statements
hold again if 7 is assumed to be defined as above. Furthermore, we assume
here that » = W=+, and that a € Wiw,

The following proposition iz a readjustment of theorems 2.3 and 3.3.

ProrostrioN 5.1. Let p € 1, 4 oof be fized, and let 2 be as in theorem 2.3
if pell,2]; or as in theorem 3.3 if pe 12, + oof. Let r = r(p) be defined
as above, and assume that ve Wa, ac Wb, and v-v = 0 on I. Then, for
a suitable positive eonstant ¢ = o(82, n, p, v), if

(5.1) w0l + lali.),

there exvists a map B,c L[Wh*] such that y — B,g is the (umigue) solution
of the equation

(5.2) py — div(ys) +ay =g,
for each ge Wr*. Moreover,
(5.3) [ el + et} 19000 fghs -
Clearly, the operated B, is invertible, Let us denote by A, the inverse

of B,, and by D(4,) the domain of 4,. The operated 4, is a closed operator,
moreover

(5.4) D(A,) = {ye Wo*: yy— div(yw) + ay e W} .

In particular, D{(2)c D(4,), and D(4,) is dense in W* for all
pell, + oof.
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Set ¢ = p/{p — 1), and consider the existence problems (1.1) in the space
W7, We assume that £2, v, and ¢ are as in theorem 5.1, and that u
verifies (5.1). ‘

If g = W-'+, we say that y e W-%1 iz a weak solution of problem (1.1) if

(5.5) (pp — divign) + ap, y> = g, 90, Ve D),

where (,> denotes the duality pairing between W;* and WL, In particular,
gye Wb is a weak solution of (1.1) if

(5.6) A, p, 90 = <@ 97 Ype D(4,}.
By deniting with A* the adjoint of 4,, equation (5.6) is equivalent to
(5.7) Ary=yg.

Since B — (A*) e W, and |B,]=|B}|, if follows that for each
g € W11 equation (5.7) has a unique solution y € W11, given by y = B¥g.
Moreover,

(5.8) [6= el elay + Jals)] Tyl 9] -

Hence, we have proved the following result:

THEOREM 5.2. Let p 1, + oof, and asswme that £2 is as in theorem 2.3
if p €1, 2], or as in theorem 3.3 if p€ 12, | oof. Letr=1p ifp>n,1r>n
if p<<n. Assume that v e War, vy = 0 on I'y and a e W', Set ¢ = p/(p— 1).
Then, for a switable positive constant ¢ = e(£2, n, p, v} the following statement
holds:

If u verifies (5.1), then y:Bz‘g is a weak solution of (1.1) (acmally, (5.6)
holds) for each g W b1, Here, B} € S[W™] is defined as above. Moreover,
{5.8) holds.

COROLIARY 5.3. Let g1, + oof, and ['e 0. 8et p = g/(¢— 1), and
let v be defined as in theorem 5.2. Assume that v and @ are as in this last
theorem. Then, for a swilable positive constant ¢ = ¢($2, n, p, r) the following
statement holds:

If u verifies (5.1), then there ewists a bounded linear map B e L[W14]
such that y = B,g is @ weak solution of (1.1), for each ge W-ts. Moreover,

(5.9) (5= o{loler + lali)] 19l aasedgl oo

where ¢, = (82, n, q) 18 a positive conslant.

£
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PROOF. Fix an open ball B such that O ¢ B, and fix linear continuous
maps v =4, ¢ —»d, g —+§, from W>'(2) into W'(B), from WY(£) into
Wy'(B), and from W=te(Q) inte W-b¢(B), respectively, such that
Ploe =9, dlo=a, §lo=g. Let e W-%(B) be the weak solution of
AF + - V§ + @ = §in B. The existence of # 18 gnaranteed by theorem 5.2,
for pu=> &(|dsns + |l1,s), where §— é(B,n,q,r). This last condition
holds if the congtant ¢ = ¢(&2, n, p, r), appoaring in eqaation (5.1), is
defined in a suitable way. Obviously, the restriction y of 7 to £, ver-
ifies (5.5). O

Finally, we show that the result used in [2] section 2, holds. Assume
that /" is of class G2, ¢ > #, and ve W, Seb r — ¢. By corollary 5.3, there
exist positive constants ¢ = (2, m, q), ¢, = ¢,(2, n, ) such that the following
result holds:

If p=> olv)s., then there emists a linear continuous map Be L[W-1dq
such that y = By is a weak solution of uy + v-Vy = g, Vg W-1a, Horeover,

()“ - Gilwﬁz,a) ﬁyH—l,aé 151 i]gH_m-

Pervenuto in Redaszione 1’11 luglio 1986.
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SUMMARY

Let 2, T, v, a, and X be as deseribed at the beginning of the introduction below,
lob p e]l, + oof, and set ¢ — p/(p—1). If p>> 2, we also assume that the mean
curvature y(x) of I' is everywhere nonnegative, In this paper we golve the existence
problem in spaces X, for equation (1.1) below, if X = Wie, or X = Wif Asa
by-product, the solvability of (1.1) in spaces WwWh? and L7 follows (without any
assumption on x{z)). For more general results on the above problem, see ref, [1].
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