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Ezistence and Asymptotic Behavior for
Strong Solutions of the
Navier-Stokes Equations in the Whole Space

H. BEIRAO da VEIGA

We shall consider the initial value problem for the nonstationary Navier—
Stokes equations in the whole space, namely,

v —pAv+{(v-V)o=f-Vp, im]0,T[xR",

V.o=0, in [0,T[x R™,
(0.1) v =a(z), in R™,
14— 400 ¥(2, ) = 0, for t € 10,71,

where T € ]0, +00], g is a positive constant, v = dv/9t, and

k(3

a
((v- V)v Z’U, v;, j=1,..,n.

The vector field v(t,z) and the scalar field p(t,z) are unknowns. The initial
velocity a(z) and the external forces f(t,z) are given. The pressure is determined
by the condition limp(t,z} = 0, as |z| — +oo. Moreover,

(0.2) V- f=0aem|0T[ andV-a=0

The first condition (0.2) is not strictly necessary.

Our main concern will be the asymptotic behaviour of the solutions, and the
core of the paper are the a priori estimates in §§1 and 3. Appendices and proofs
concerning the existence of the solutions (estimates of §1 apart) are presented
mainly for the sake of completeness. The reader acquainted with Navier—Stokes
equations should skip §2 and appendices, or do them by different methods. It is
worth noting that some technical difficulties can be avoided by assuming more
regularity on f (as for instance, by assuming that f € L?(0,T; L%}, or that
f € L>(0,T;L*), instead of (1.1)).

By a solution of problem (0.1) we mean a divergence free vector field v(t,z) €
LY0,T; L2 ) such that

loc
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for every regular divergence free vector field ¢(t,z), with compact support re-
spect to the space variables, and such that o(T,z) = 0.

In the sequel, ¢,c¢q,¢1, ..., denote positive constants depending at most on
o and n. The symbol ¢ may be utilized (even in the same equation) to indicate
distinct constants.

In §1 we establish some basic a priori estimates for the norm |v(t)|, in
L*(R"), and we determine explicitly a lower bound T, for the time of existence
of the solution of {0.1) in the class above. The main a priori estimate in §1 is
the following:

Theorem 0.1. Let o > n, and let a and [ verify the assumptions (0.2)
and (1.1). Let v be a solution of the Nuvier-Stokes equation (0.1)1 2 3, belonging
to the class (1.2). Then there exists a positive constant ¢ such that

(03) (D)l < e L) 1)
In particular, if v € L0, T; L%), where
(0.4) L
g «
one has
(0.5) [o(t)|o < exp (c“—(n+a)/(a—n)||v{|"Lq(o‘t;Lo,))

(o)l + 11122 0,81 2 )
for every t € [0,T]. In particular, v € L>=(0,T; L*).

The second part of Theorem 0.1 follows by noting that ¢ = 22 and by

xX—N

applying the estimate (0.3). We are grateful to P. Secchi for calling our attention
to this fact.

The a priori estimate (0.5) can be utilized to show that if a solution v of
(0.1) belongs to the elass L9(0,T; L}, then v € L°°{0,T; L*), and (0.5) holds.
We leave the technical details to the interested reader. Note that the existence
of a solution in the class L9(0,7"; L} is an open problem.

In §2 we assume that o € L® and f € L'(0,T;L%), and we state two
existence theorems. In Theorem 2.1 we prove that there exists a {unique) solution
v € Cy(10,Tof; L*) of (0.1), such that Ju(t)|s < y(t), Vt € [0,T4[, where T, is
defined as the time of existence of the maximal solution () of the o. d. e.

y' = cu~mte)/lamn)ydta 4| (1)), | with initial data y(0) = |a|e. We de-
note by C,([0,Tu[; L*) the space of the weakly continuous functions on [0,7%|
with values in L%,

In Theorem 2.2 we assume that ¢ € L*NL? and f € L'(0,T;L*NL?),
and we prove the existence of a {unique) solution v € C([0,7,[; L? N L*), such
that |v(t)]|a < y(t).
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Since we are mainly interested on finite energy solutions (in view of the
results of §3), we prove the strong continuity only in Theorem 2.2. However,
strong continuity could be proved also in Theorem 2.1.

An existence result, related to Theorem 2.1, was proved by Fabes, Jones and
Riviere [2], by assuming that a € L* and f € L9{0,T;L*), ¢ > 1. Under these
conditions, they show that there exists a (unique) solution in Z?(0,7*; L), for
some T > 0; however, the value p = +o00 is not attained. Other interesting
(related) existence results in the R™ case are proved by Kato [6] and, in the
bounded domain case, by Giga and Miakawa [4]; see also Giga [5].

The uniqueness of the solution in the class L?(0,T; L*), with n < @ < 400
and %+ B <1, was proved by Fabes, Jones and Riviere [2].

In §3 we obtain some sharp estimates for the solution of (0.1) by assuming
a smallness condition on the data. More precisely, we will prove the following
results:

Theorem 0.2. Given o > n, there exist two positive constanis ¢; and cq,
depending only on « and n, such that the following statement holds:

LetT €)0,+ 00|, andleta € LN L2 and f € L0, T; L*)N
LY(0,T; L?) verify (0.2). Moreover, assume that the dala a
and f verify

08 [lalz+ N0z, 2)
and that

©1)  lale+ 1Nz o,z 22

(@=2)/ai{n-2)

2(a—n}/a(n—2}
7 ala < cap ,

(6a—2n}/a(n—2)
] 170 2o 0,252

< 62#2(an+a-—n)/a(n—2) )

Then, there exists a (unique) solution v € L*(0,T; H')NC([0,T); L2NL?) of
the Navier-Stokes equation (0.1). Moreover,
(0.8)

lollo o, 2=y < era™@ /D fialy + ) fll 1 o r, 1)

In the absence of external forces, we will prove the following decay estimate:

] —2{a—n)/a(n—-2)

Theorem 0.3. Given o > n, there exist positive constants cz,cq and cy,
depending only on o and n, such that if f =0,a€ L°NL?*, V-a =0 and

(0.9) a2 ey (a2 a(n-2)
then there exists a (unique) solution v € L*(0, +o00; HY) NC([0, +oo[; L* N L?)
of problem (0.1). Morcover,

- —-1/8
(0.10) [v(0)la < lola [1+caBulal; lalle]
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for every t € [0, + oof, where § = ta‘%)n. In particular,

(@=—-2)n/4a
) o viso.

(.11) ol < eslals (ﬁ

Remarks
(i) Actually, the solution v in Theorem 0.3 belongs to C°°(]0, +oo[ x R?),
since it is bounded in L*(R"}, for @« > n. By regularization, one can

obtain estimates for stronger norms than | j,.

(ii) The uniqueness of the Leray-Hopf solution, in Theorems 0.2 and 0.3, follows
from the uniqueness theorems of Prodi [14], Lions and Predi [10], Foias [3],
and Serrin [16]. See [9], Chapter 1, Theorem 6.9.

(1) Conditions (0.6}, (0.7), and (0.9) are invariant under scale change in space—
time.

(iv) In view of results proved in [2], [6] it looks possible to replace in Theorems
0.2 and 0.3 the L?-norm by an L¥-norm for ag < n. However, we did not
investigate in this direction.

At the end of §3 we prove that the statements in Theorems 0.2 and 0.3
hold again, by setting & = n. In this particular case the formulas simplify
considerably; see Theorem 3.3.

Some results, related to those presented in this paper, can be found in Fabes,
Jones and Riviere [2], and in Kato [6]. In the latter paper some asymptotic
estimates are given, especially in the case a € L™ and f = 0. It is interesting
to note that, by setting p = 2 and ¢ = n in estimate (1.5) of reference {6], one
has |v(t)], = 0(1/t»=2/4), as t — 400, which is just the asymptotic behavior
implied by our estimate (3.17). However, in [6] the result is proved under the
assumption that the exponent “T_?‘ is less than 1.

For other results, more or less related to ours, see, e.g., Giga and Miyakawa,
[4], Giga [5], Masuda [12], and Weissler [20}. See also [21].

The results proved in our paper were obtained independently of those of the
papers above. The method utilized is quite different, too.

§1. In the sequel with the symbol L* | 1 < a £ 400, we will denote either
L*(R™) or [L*(R™)]™. Both norms will be denoted | |o . Similarly, W**?, s € R,
p € [1,+oo| will denote the Sobolev spaces W*P(R"™) and [W*?{R")]", and
| ls,» will denote the respective norms. For convenience, we set W*% = W2,
[l ls = |l lls,2- For definitions and properties see [7], [8], [11]}, [19]. We also define
H={uel> V.- u=0}and V = {u€ H: V-u=0}. In §2 we will utilize the
Bessel potential spaces H*P(R™) {see [7], [11], [19]}). Recall that H"P = WP
for any integer a. For a vector field v, we define

v - n ij 2
=3 (52)

i,j=1
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Sometimes we will utilize abbreviated notations, such as |Vu|, instead of
| W0 |, LP(X) instead of LP(0,7';X), and so on. Standard notation will
be used without an explicit definition. Moreover, unless otherwise specified, the
domain of integration with respect to the space variables is R™.

For the sake of convenience we define the quantities

= f|vt;|2 lv|*~2 da,

M, (z) E/lV|v|°‘/2|2d1‘.

These guantities will play a leading role in the sequel.
In this section we assume & > n (except that in Theorems 1.4 and 1.5, & > 2

would suffice) and
(1.1) ea€L®, felLY0,T;L%).

Here we will establish some a priori estimates for solutions of (0.1}1,2,3. In order
to justify the calculations that follow, we assume in this section that

(1.2) ve L'(0,T;W>*), + €L'(0,T;L%).

Obviously, these assumptions are not strictly necessary. Assumption (1.2)
implies further regularities for v and p. Specifically, since

El ”1,a S C’ 11/2” il;/azw
assumption (1.2) implies v € C({0,T]; L*) N L2(0,7; W) . On the other hand,
a well-known Sobolev embedding theorem [8] implies Vo € L1(0,T'; L*°), hence
from equation (0.1); it follows that Vp € L! (O,t; L),

Moreover, since v € L*™(L®}NL23(L>), one has v? € L*(L%). Conse-
quently, by using Calderén-Zygmund's inequality [18], equation (1.10) yields
pe L?(0,T;L%).

We start by proving the following result:

Lemma 1.1. Let v be a solution of (0.1)1,2,3 belonging to the class (1.2).
Then v veriﬁes the estimates (1.5), (1.8} and

()

a— 2

(1.3) | i+ 5 B Na() +4

(o — 2
< C2E [ o= do ot flalol
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Proof. Note, first, that
(1.4) |V Jo]*/2 | < g|v|"‘/2_1|Vv| a. e. in R®.

In order to prove {1.3}, we multiply both sides of equation (0.1) by |v}*~ 2,
and integrate over R™. After suitable integration by parts (recall that V - v = 0)
we obtain the identity

1
(1.5) 7 [Pla + #Na(v) +4H 2 Malo) =
—/Vp-v!v|a“2 al:J:—!—ff-v|u|“"_2 dz.
On the other hand, one has

(16) pr olo|* 2 dz

= (- 2)Zf 8 uguy|.u|a 2 gy

i,5=1
_ 2{a—12) al2-2 = ) - _C‘_)_ a2
= 22 o o) | X (1017 | o
From (1.5) and (1.6),, since
< [v]* |Vl

(1.7)

2 vy g:z:

%,

one gets

g 1 |v|°‘+,uN () +4p 2
<(a-2) / p11Vo] 1012~ da + | fla[ol3
Since
(@=2) [pl1veliop= o < T2 [l as + £ o),

(1.3) follows. i
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Lemma 1.2. Let v be a solution of (0.1)1,2,3 in the class {0.2). Then
14d )
adi

(19)

lvla

a—2 o ~
< c-(m;i [olads + 1 flafuly ™"
Proof. Holder’s inequality gives

[0 101 o < [l ol

On the other hand, by applying the divergence operator to both sides of
equation (0.1) one gets

62
(1.10) —Ap = Z 5502, (vivy).

4,7=1

By using the Calderén—Zygmund inequality [18], one obtains

(1.11) |Pl(a+2y/2 < C|'”|gz+2-
Consequently,

(1.12) [Pl da < ez,

Equation (1.9) follows from (1.3) and (1.12). ol
Lemma 1.3. Let we W4, Then

(1.13) [lats < elola™™ (M (o).

In particular,

(1.14) |U|§i§ < efolg PN ()]
Proof. Define 2* = . Since

2(;;2) = 2ﬁ+é£*’ for = g
one gets

(1.15) l9l2(at2)/a < lgly ™™ D |glpl @2,

On the other hand, by a well-known Sobolev’s embedding theorem [8] one
has [g|e+ < ¢|Vg|. By applying this estimate, together with {1.15}, to the func-
tion g = [v]*/?, one gets (1.13). Moreover, (1.13) and (1.4) yield (1.14). O
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Theorem 1.4. Let o > n, and let v be o solution of (0.1}1,2,3 in the class
(1.2). Then

1d o, H
(116) a‘ a‘il’l)la"f'zNa(U)
< C#(—n+0)/(a—ﬂ) |U|g(a—n+2)/(a—n) + IfIal'vlg_l .
In particular, (0.3} holds.

Proof. From (1.9) and (1.14) one obtains,

a—2

1d, ., M —
Ealula+§Na(v)+4,u 7 M, (v)

C _ _
< 2 INa(@™ la™ 4 [fla ol

By applying Young's inequality, with exponents a/n and «/{a —n), to the
first term on the right-hand side of the inequality above, one gets (1.16). The
estimate (1.16) yields (0.3). g

Now we state an immediate consequence of (1.16). For convenience, define

200
= k= —(a+n})/(a—n) .
q a—n ¥ Cgjlé

Consider the following Cauchy problem for o. d. e.,
y =ky' 1 +|f(B)la, >0,
y(0) = ala-

Let T, be the time existence of the maximal solution y(t) of {1.17). One
then has the following result.

(1.17)

Theorem 1.5. Let o > n, and assume thet ¢ and f verify (0.2} and (1.1}.
Let v be a solution of (0.1}1,23 in the class (1.2), and let y(t) and Ty be defined
as above. Then

(1.18) lo(t)|a <y(t), Vte[0,Tal.

Proof. Note that inequality (1.18) has the following meaning. Given 7 €
10,T[, if v is a solution of (0.1)1 2,3 in }0,7{, which belongs to the class (1.2) in
10,7], then (1.18) holds in [0,7].

By defining z(t) = |v(t)|a, from (1.16) one has 2’ < kz?+|f(t)]a,
#{0) = |a|o. The result follows by comparison theorems for o. d. e. O

§2. In this section we prove the existence theorems 2.1 and 2.2. For the
reader’s convenience, some auxiliary results are proved in the appendix.
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Theorem 2.1. Let ¢ > n, and assume that a and [ verify (0.2) and (1.1).
Let Ty be defined as in Theorem 1.5. Then, there exists a (unique) solution
v € Cu([0,To[; L*) of the Navier-Stokes equation (0.1). This solution satisfies
inequality (1.18).

Proof. The uniqueness follows from [2]. In view of the uniqueness, it is
sufficient to argue on an arbitrary interval [0,7], for 7 € [0,T,[. Let a, and
fn be regular functions (say, C*° functions, with compact support with respect
to the space variables) verifying (0.2), and such that a,, - ain L*, f, — fin
LY(0,T; L*}. Denote by Ty the time existence (in Theorem 1.5) corresponding
to the data a, and f,. Since To, — T, as n — +00 we may assume that
Tomn 2 7. Due to the regulafity of the data a, and f,, it is well known that there
exists a (unique) local regular solution v, . In particular, v, € L®(H)NL (V).
From the a priori estimate of Theorem 1.5, it follows that if v, is regular in [0, s[,
0 < s <7, then v, € L>{0,5; L*). On the other hand, if v, € L*°(0,s; L*),
then vy, is regular and in [0,s5]. This is a well-known result {in line with Serrin’s
paper [15]), which can be proved by using a boot-strap method, together with
(1.10) and with regularity results for the solutions of the heat equation.

The results stated above imply that the regular solution v, exists in all
[0,7].

Since the sequence v, is uniformly bounded in L°°(0,7;L*) (by Theo-
rem 1.5), there exists a subsequence which is weak—* convergent to a function
v € L*®(0,7;L*).1 Clearly, the regular solution v, solves the following weak
formulation of the Navier—Stokes equation (0.1),

(2.1) /(;T-[[vn-t,o’+,uv,1-Atp+[(vn-V)tp}-vn+fn-go] dz dt

= — [an-(0)ds,

where ©(¢,2) is any divergence-free test function, with compact support with
respect to the space variables, and such that ¢(r,z) =0, Vz € R™.

To prove that the Hmit function v is a solution of the Navier-Stokes equation
(2.1), with data a and f, we adapt to our case (@ # 2 and {1 = R" ) the method
of Lions, described in [8], Chapter I, §6. We will prove (in Appendix A) the
main point, namely, that there exist subsequences v, such that
(2.2) lim v, =v in L?(0,7;L%(Br)), YR>0.

v—r o0

Here, Bg = {z € R™: |z| < R}, and p € [1, +oo[ is arbitrarily chosen.

Since the convergence in L!(]0,7]x Br) implies pointwise convergence for a

1 Actually, by the uniqueness of the solution v [2], it follows that the sequence itself con-

verges to v.
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subsequence, we can assume that v, (¢,z) — v(t,z) almost everywhere in ]0,7[ x
R®. This is the main tool used to pass to the limit in the nonlinear term of
equation (2.1).

Since v € L*°(0,7; L*)NC([0,7]; X), where X is the Banach space X =
W-la L We=20/2 s < 1, the weak continuity of v(t) follows easily. Note that,
as a consequence of (0.1){, one has v’ € L*(0,7;X); see (4.3)2 and (4.4); in
Appendix A. ]

In the next section we will be particularly interested on finite energy solu-
tions. Hence, we establish here the following result:

Theorem 2.2. Leta € HNL*, f € L*(0,T;HNL*), a > n, and let
To end y(t) be defined as above. Then there exists a (unique) solution v of
the Navier-Stokes equation (0.1) in the class C([O,Ta[;HﬂL“) nL? (O,Ta;V).
Moreover, (1.18) holds.

This result can be regarded as a consequence of Theorem 2.1 and energy
estimate (2.3). However, it seems more natural to pass to the limit in equation
(2.1) by using the energy estimate

(2.3) ”ﬂn“Lm(O,T;H) + N”'URIIL2(0,T;V} <lanlz + ”f"”Ll(U,r;H) 3

which is now available. In this case, the regular approximating data a, and f,
verify the assumptions a, — a in HNL®, f, — f in L'(0,T; HNL*). By
Theorem 1.5, one again has

(2.4) < constant independent of n.

“Un“L"“(O,T;L“)
The proof of Theorem 2.2 follows the same ideas as in Theorem 2.1, except
that for the compactness argument, which is now similar to that utilized {see
[8]) for the usual Faedo-Galerkin procedure.? In fact, integrating by parts and
by Sobolev’s embedding theorem, it follows that the map

@*‘/()T/[(UR.V)Un]-pdxdt, VgoGLz(V),

defines a uniformly bounded family in L?(V'). Here, we utilize (2.4), and also
(2.3) if n = 3. By using (0.1);, it follows in particular that », is uniformly
bounded in L1(V'). Hence, for every R > 0, one has

2.5) “U””L”(O,T;V(BR)) < constant,
.||v§;”L1(O,T;V,(BR)) < constant,

2 Here, however, by using (2.4), we get stronger a priori bounds, which are independent of

the dimension n.
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uniformly with respect to n. By using (2.5), it is easy to prove that there exists
a subsequence v, , strongly convergent to v in L? ((],'r;L2 (BR)), VYR > 0, and
pointwise convergent, almost everywhere in [0,7[ X R™ {(see the end of Appendix
A). The uniqueness of the solution follows as in Prodi [14], Foias [3], Serrin [16].
See also [8], Chapter I, §6. The strong continuity of v will be proved in Appendix
B.

§3. In this section we prove global estimates and deeay properties for the
norm |v(t)fs, t € [0, +00[, @ > n, of the solution v € C([0, 4+ oco[; L* N L?) of
the Navier—Stokes equations, constructed in §2, Theorem 2.2.

The global a priori estimates of this section, together with the Local Exis-
tence Theorem 2.2, vield the global existence of the solutions. Obviously, the
global estimates of this section are proved first for solutions belonging to the
class (1.2), hence for the approximating solutions v, utilized in Theorem 2.2.
By passing to the limit when n — +00, one shows that the estimates hold for
the }imit function v (argue as done for the local estimate (1.18) in Theorem 2.2}.
For clearness, and in order to avoid tedious repetitions, we will argue directly on
the solution ».

Lemma 3.1. Leta > 2. Then
(3.1) Nafv) > C|U§;(4°‘)/(‘IA2)T*|U|g+(4rx)/(a—2)n‘

Proof. From (1.4) and from Sobolev’s embedding theorem (|g|a« < ¢| Vg2,
2* = 2.3, one gets

(32) Na('u) 2 Clvlgnf{n—i’)‘

Furthermore, if ¢ = Tami‘:m, one has

1 9 1-9
S =5t
n—2
Consequently
4/(d4+(a—-2)n a—2)n/(4 —2
(33) ol < o/ G jof & D/t ),
From (3.2} and (3.3), one gets (3.1). O

Let now v be as in Theorem 1.4. By using (1.16) and (3.1}, a straightforward
calculation gives

(3.4) Y < calegploly” — pm et (e Ty 40 4
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where for convenience we define y(t) = |[v(t}|«, 8 = ﬁﬁ, = %ﬁ;—i%
Let T €10, -+ 0o]. It is well known that for every ¢ € [0,T}, one has

(3.5) )k < lala+ [ 1) dr =K.

If K =0, then v(t) = 0, V¢ > 0. Hence we assume that K > 0. From (3.4) one
gets

(3.6) y < —egeouE P — pm (el lamm)y 140 4 (1]

Let us prove now the following result:

Lemma 3.2. Assume that (3.6) holds. If

(3.7) y(0)" < KA/

and

(3.8) )]s < cw’%& K-8 [M2ﬂ’/(a—n)%9K_ﬁ] (1+8)/~
almost everywhere in [0,T}, then

(3.9) y(ty? < 2pPelmmEE, e (o,1].

Proof. For t =0, (3.9) holds. Moreover, by using (3.6) and (3.8), one easily
shows that whenever (3.9} holds with the equal sign, then y'(t) < 0. This proves
the lemma. D

Theorem 0.2 foliows from Lemma 3.2, by setting ¢; = (Cg/z)l/ ey =

cg (69/4) (69/2) (48} .

Let us now consider the homogeneous case f = 0. By setting c3 = (CQ / 2)
assumption (0.9) is nothing but (3.7), since K = |a|o. Hence, from (3.6), it
follows that

1/
1

y' < —eqplals Pyt P,

for every t € [0,T], where for convenience we put ¢; = cgcg/2. Consequently,
by comparison theorems for o. d. e., one gets

y(t) < y(O0)[1 + capBlalz Py(0)72] "7,

This yields {0.10) and (0.11). O
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Remark 3.3. In a bounded domain 1 (with the boundary condition v =0
on 80}, by using the following Poincaré inequality lgla < ¢(Q,n){Vylz, Vg €
HE (), one gets No(v) > c(a,n,Q)|v|% (compare with (3.2)). Hence, from
(1.16), one would obtain

d - -
(310) a |U]Q +C|Ula < Cplvl({fa )/ (a—n) + |fla)

which would immediately give quite a strong estimate for |v(t}|, ; in particular, if
f =0, one would have an exponential decay for |v(t)|o. However, some devices
must be introduced in order to obtain estimates like (1.9) (not obtainable from
(1.12) alone).

In the remainder of this section we present the asymptotic estimates for
the limit case @« = n (here, the positive constants ¢ depend only on n). We
wish to point out that these estimates will be proved only for sufficiently regular
solutions (say, in the class (1.2)}. However, one can apply these L™ estimates,
together with the uniform estimate in L (H)N L%(V), to a sequence of regular
approximate solution vy, in order to get (by a compactness argument) a weak
solution v € L®(H)NL2(V) N L>®(L"), veritying the L™ estimate under consid-
eration. Alternatively, one can utilize the methods introduced by Kato (sece for
instance [6]) to get the existence of the solution.®

By starting from (1.9} and (1.14), we obtain

1d c _
o Gl G Na(0) < G2 N@) olf + ISl ol
where c14 i3 a suitable constant. Hence
1d n H C10 4, 12 n—1
(3'11) ; a I'Uln < _ENTL('U) 1- ,U._Q [Ugn “+- Ifln |’U|'n .
From (3.11) and (3.1) it follows that

d mo M —(4/(n=2)) 42/ (n— ¢10
& ok < =B eulely /i [1- Bz g,

provided ciop~?|v}2 < 1. Recalling (3.5), one shows that if |a|, < p(2c0)~/?

and if
7 afin—2) { _H i
—_ — —
||f||L°°(U.T;L"} = gcllK (VZCIO) ,

then [v(t)], < p(2e10)~"2, ¥t € {0,7]. In fact, L|v|n < 0, whenever |v], =
#(2c19)~1/%. This proves the first part of the following result.

3 For uniqueness results in Lo (L®(Q)) , we refer the reader to [17].
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Theorem 3.3. Leta € L"NL? and | € Li(O,T;Lz)ﬂLm(O,T;L”)
verify (0.2). Assume that v is a sufficiently regular (say, in class (1.2)) solution
of (0.1). Then there exist positive constants cg end cia such that if

(3.13) lal, < cep
and
4/(n—2) o (et
(3'14) [IaI2 + ”f”Ll(O,T;LZ)] ||f||L°°(O,T;L") S 612#' ﬂ/(ﬂ ) 7
one has
(3.15) ()i < con,  VEE[0,T].
Moreover, if f =0, and if (3.13) holds, then

BV —({n-2)/4
(3.16) [0 < laln [+ calaly ™/ falt/5=2¢] ,
for every ¢ € [0, + 0o[. In particular,

1\ (24
(3.17) O <dds(5) . w0,

In order to prove the statement concerning the case f = 0, we remark that
if a verifies |a|, < u{(2¢10) 1/, then

d - -
vl < — Bl D e v >0,

Now {3.16) follows, by using comparison theorems for o. d. e. m]

Remark. Note that the estimates proved in Theorem 3.3 are just those
proved in Theorems 0.2 and 0.3, by setting there a = n.

§4. Appendix A. In this appendix we prove the statement (2.2). We start
by establishing an auwxiliary lemma, whose proof is given for the reader’s conve-
nience. For the sake of brevity we utilize here some results on parabolic semi-
groups. More direct computations could be done, by using the heat potentials
in the whole space.

Lemma 4.1. Let u be a solution of the heat equation v —Au = f in
10,T[ x R™, with zero instial data. Assume that 1 < p < +oo and 1 < g < +00.
If f € LP(0,T; L9), then u € LP(0,T; W), ¥s € [0,2[. If f € L¥(0,t; W19},
then u € LP(0,T;W*9), Vs € [0,1].
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Proof. By a well-known device, we can replace —A by A= —A—+1. Since
—A is the generator of a holomorphic semigroup in L9, and 0 € p(A4), one has
|A%e* 4 < ct=?, 0 < ¥ < 1. (see [L3]). Hence,

9 T ¢
A0uele < [t e,

By utilizing well-known results on the convolution of functions, one shows
that u € L? (D(A?)). The first statement in the lemma follows, since D{A?) =
H?4a s W64 for ¢ > 0 (see [7], [11], [19])}. The second statement follows
from the first one, by using the isomorphism A=1/2, from W~ onto L?. O

Let now v, be defined as in the proof of Theorem 2.1. We want to show
that there exists a subsequence v, verifying (2.2). Let p, be the pressure cor-
responding to the regular solution v, , and consider the solutions u, and w, of
the equations

(4.1) {“51 — 4ty = —Vpn+(vn - V)vn i J0,7[ X RY,
' Up =0 fort =0,
and
(4.2) {w;'1 — plhw, = f, in]0,7[x R,
’ Wy = On for t =0,

respectively. Note that it is possible to consider each scalar equation sepa-
rately. Clearly, v, = u, -+ w,. Since the sequence v, is uniformly bounded in
L>(0,r; L*), the terms

a
(U - Vv, = Z . (Vn,iVn)

are uniformly bounded in L®(0,r: W 1/2), The same holds for Vp,, as a
consequence of {1.10} and of the Calderén-Zygmund inequality. By Lemma 4.1,
one has

(4 3) ”uﬂ,“Lm(Ws,ﬂjg) S COIlStB,Ilt,

||U:'1”L00(W3_2=q/2) < constant,

where s < 1 and the constants are independent of n. On the other hand, one
has

“w"”Lp(Wl.u) < constant,
(4.4) ’
”wn“Ll(W_llﬂ) < constant
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for every p € {1,2[. The estimate (4.4}; is proved by using an argument similar
to that utilized in the proof of Lemma 4.1, and by recalling that L? (D(AY/?)) =
LP(W 1), The estimate (4.4); follows from (4.4); and (4.2);.

Define Br = {z € R™: |z| < R}. Clearly, the estimates (4.3) and (4.4) hold
with R™ replaced by Bg . Moreover, the embeddings W*%/2(Br)} < L*(Br),
s > n/a, and W'*(Bg) — L*(Bgr), are compact. Consequently, well-known
compactness theorems (see Lions [8], Chapter I, §5, and Aubin [1]) show that
the sequence v, is relatively compact in LP(0,7;L*), 1 < p < 2. Actually, this
result holds for every p € {1, + ool, since in addition the sequence v, is bounded
in Lo(L).

Finally, fix a sequence of radius R,, such that IimR, = +co as m —
" 400, and select convergent subsequences {successively, with respect to m) in
L?(0,7;L*(BR,,)). The diagonal subsequence verifies the desired property
(2.2). O

§5. Appendix B. Here we prove that the solution v in Theorem 2.2 belongs
to C([0,7]; L*), for every € [0,Ta[. We start by proving the following result:

Lemma 5.1. Let a,f and v be defined as in Theorem 2.2, let ¢ € [1,2],
B € [2,a], and assume that Vv € LP(0,7; L?). Define ~ by the equation 1/~ =
(1/a) +(1/8), and let s € |nfa,1[. Moreover, if v > n, assume that 8 > n/f7.
Finally, define 31 by the equation

One then has

Ve L? (0,r;L0) i L > L,

B 44

(5.1) e
Vo e LP(0,7; L* if — < —.

©OrsL?) i g <k

Proof. Let v = 4+ w, where u and w are the solutions of the linear equations
(4.1), (4.2) after dropping the indices n. Since v € L°{L*), one has (v - V)v €
LP(L7). Moreover, —Ap == div (v V)v implies Vp € LP(L"). From Lemma 4.1,
one deduces that Vu € LP(W*).

If 1/8; > 0, then by Sobolev’s embedding theorem one has W7 — Lf1.
Hence (5.1); holds for Vu. Similarly, if 1/8; = 0, then W7 «— L%, hence
(5.1)2 holds for Vu. Finally, if 1/8; < 0, then W*7 — L° and (5.1); holds
again for Vu. Equation (5.1) holds also for Vw, since Vw € LP(L* N L?) (argue
as for the proof of (4.4);). O
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We prove now that v € C([0,7[; L* N L?) . By starting from the value § = 2,
and by applying successively Lemma 5.1, one shows that Vv € LP(L*), Vp €
[1,2]. Consequently, (v- V)v and Vp belong to L?(L?), Vp € [1,2[, Vg € ]1,a/2].
By using Lemma 4.1 we show that (v = u+ w, as in the proof of Lemma 5.1),

we LP(WsP) nWhP(Wwe24) V0 <s<2.

Hence,
u e Wl_if)’p(Ws—z(lf'ﬁ);Q), VO < '19 S 1-

By choosing ¢ = §, 72 < ¥ < 1 s=201-9)+2, = < p < 2, well-
known embedding theorems yield « € C(L®). By choosing ¢ = 53_%, one gets
u € C(L?). Hence u € C(L*NL?). On the other hand, well-known results on

the Cauchy problem for parabolic equations give w € C{L*NL?). O
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