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Introduction.

In reference [3), Caffarelli, Kohn and Nirenberg constructed a
speclal class of global weak solutions (suitable weak solutions) for the
boundary homogeneous (b=0) Navier-Stokes problem (0.1), whose main
Feature is to verify the local energy estimate (0.3). The main result in
reference [3] is the proof that the singular set S of a suitable weak
solution verifies ?1(3):0, hence ¥(S)=0. Weaker results in the same
direction were previously obtained by Sheffer {6], [7]. Here, § denotes
the set of the singular points of u in Jo,T[x(, RL(S) is the

one-dimensional Hausdorff measure of § in the four dimensional space

R x Ra y and ?1 (3) is a measure of §, constructed by using space-
time %arabolic cylinders (see [3], for details).

A simplified, and quite general, construction of snitable weak
solutions for the boundary homogeneous problem (0.1) was given in {2]
(see also [1]). In this note we utilize the method given in {2] to show that
also the non-homogeneous boundary problem (0.1} admits a suitable weak
solution, i.e., a weak solution which satisfies the local energy inequality
(0.3). Consequently, by using the main result in [3], one has

?1(S)= %' (8)=0. This is stated in theorem A below.
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Let us now introduce some notation. Let 2 be an open
bounded subset of Ra, locally situated on one side of his boundary [', a
differentiable manifold of class C°. Let n be the unit outward normal
to . Moreover, Qt:-.'. {t} x 2, QtE J0,t [ x 2, Zt”-—_i lo.,t [x . Tisan

arbitrary positive number.

Let LPE Lp(Q,R) and LI"?E ]LP(Q, Ra). The norms in both

spaces are denoted by | | . Similarly, || || denotes the usual
s
® 5 5 P s 5 3
norm in the Sobolev spaces W =W ({,R}) and W =W (3, R ).
P Y P P

k k
For a positive integer k we set H =W . H denotes the
2 o

oo 3 k -k k
closure of C (2, R ) inTH , and H  is the dual space of IH.
o o

00 a
Moreover, V is the set of divergence free vectorsin C ({),R ), and H
0 o

2 1
and V are the closure of V in IL and T , respectively.
0 o

For vector fields in 2 we define the norm

2 Y
||V||V=| Vvl | = (IQ|VVI dx) ,
2

2 3 2
where [Vv| =} (Bv /81‘:i } . We adopt the notations

=1 ]

|i11||qp = |fuli , liuliq TEllquqT
™ LYo, 510 ’ S

We denote different constants by the same symbol ¢. When

necessary, we will write co, C 4 C y..s
1 2

The Navier-Stokes equations are
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W' s (weVw - Aw=-Vir4g in QT’
Vew=0 in QT!
(0.1 < web on ZT’
w|t=ozwo(x),
\

where wW'=0w/0t. We assume, @ithout loss of generality, that the
density and the viscosity are equal to one. The initial data wo(x), the
external force field g(t,x) and the boundary data b(t,x) are given
functions. The velocity w(t,x) and the pressure w(t,x) are the

unknowns. We prove the following result:

10 5 5
Theorem A, Let —<pg ==, 1>—, and
9 4 3
2-(2/pm
we HMNWW '
o P

1 2 P
gel(0,T;L)NL (QT) .

2-(1/1), 1-(1/21) (1)
beB (z ) ? ben=0 on ): r
T T T

Then there exists in QT a sultable weak solution w, ™ of the

non-homogeneous initial- boundary value problem (0.1) such that

{1} See [8] chap. I, for the definition.
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2,0 L 2 P 2

(0.2) 7 w e LY m Y 0 LA,
Poxyld
LPwh.
we LY p)

Moreover, for every t € [0,T] and every non-negative real

function ¢ e c”(QT), with ¢=0 near T, the following local energy

estimate is satisfied

(0.3) f i + 2 I, |vWa2¢SJQ |wo|2¢+ I (AP +

t t o t

+ IJ'Q (|w|2+ 2wy weVe + 2 ”Q gewd.
t t

Finally, if g ¢ Lﬁ)c(QT), o > s/2, then the singuiar set $ of

w in Q. verifies PH$)=0, hence Y '(3)=0.

1. Preliminaries. Let us define

(L.1) Halli = lla} + Ha'll ,
T, T T 2 T
L (0, TyW ) E Q)
T T

ot 5r
(1.2) 5 = ——— , 5 = —u—,
5-2r 1 5-r

Note that for r> s/3 onehas s >5 and s >s/a.
We start by considering the auxiliary problem
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g a' - Aa=--Vqg in QT'
Vea =0 in QT,
(1.3) .
< a="b on LT,
a.lt'=o=h0(x)r
. 2-(2/1) . .
where the function boE ]Wr (£2) is choosen in such a way that
I Vobo =0 in €,
(1.4) bo=b on I', for t=0.

One has the following result:

Proposition 1.1 Problem (1.3) has a unigue solution a, Vq such that

(1.5) ae Lr(wr’), a' e LYILD), qe chwlr) .

In particular,

S s
(1.6) aell (Q), VaelLl(Q ),
QT QT
and

(1.0 llali _ + {IVal|
s, T s

i

<c llfalll _.
T ,T

¥

Finally a € C(0,T; L), and a and Va are bounded on

compact subsets of QT'

Proof. Existence of a unique solution satisfying (1.5) is proved

in [9]. Now, by interpolation, one shows that
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a € w?(o,'r;\wi(l’e)), V 9 e [0,1].

/

By choosing ©=2/5 and by using the embeddings W: 5(CI,'I) G

LS(O,T), and W:IS(Q) G LS(Q), one gets the first statements (1.6}, (1.7}
The corresponding statements for Va follow by choosing ©=1/5. The
continuity of a(t) with values in L® is obtained from the choice

9=3/5. Finally, the last statements are proven as in Serrin's paper [5].

1

As in [2], we define

0 -— 3

A={veC (Q ,R): vty eV , Vte [0,T]}
T o
and we introduce the guantities
¢ - 5/2
A LD =l | +lIEi lexp|Vall - -

_ / /
(e Ai(uo,f)::co[ lu0|:+ ilf!i:,z}[ui]Va.ii:/iT exp IIVaH: /:,'r]

B(uo,f) =c, iIuOH + czHE"p,T*

2~{2/p)D

“ + ¢ ||Val| Aw,B)+ Am,Dl+cllall A 6,
a q,T o} 10 o

a q,T 1
L

where co, CrEa€,C , are suitable positive constants, and
(1.9) q = 2p/(2-p), q = 10 p/(10-3p).

One has the following result:




Theorem 1.1 Let ve A,"?Jl EV,’E’EI[..R(QT). and let a be as in
0
(L.5) (with r > 5/3) and satisfying Vea=0. Then there exists a

unique solution u, Vp of problem

/u‘ + (voaVhu - Au + (aeV)u + (neVa = —Vp+?, in QT,

Veu =0, in Qr,
(1.10) <
1=0, on ZT,

1 =1,
[t=0 o

such that

(1.11) ve LAHYNC(W, v,Vp s}l.’{QT).

Moregver,
(1.12) i < A@G ,E)
©0, 2 0
2 - e
(1.13) |t\7uJL < A (m,f)
,T 1 o]

Proof. Existence and uniqueness are shown in [9} (theorem 15
or in [10] (theorem 4.2). Let us prove the estimates (1.12) and (1.13). By
multiplying { 1.3.0)1 by u and by integrating over (2, one gets

t5/2 | 12
L* ¥
s/z2 2

1d 2 1 2 ~
(1.14) — == ful 4+ - |[Vul < [E] luf +c|Va
2 dt 2 3 2 z 2
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where integrations by parts, Holder's inequality and Sobolev's
embeddings theorems have been utilized. Hence, (d/dt) |ul2 < i?lz +

+c |\7a15/2 lu} , from which (1.12) follows.
sf2' ‘2
By using again (1.14) one easily obtains, for every t e [0,T],

T P N L T
— + - u| + +
2 0,2, T 2 L,T_ O 2 1,2,T
/2

Sl 2ciboll”  (vall®
+ = + 2c a
2 o0, 3. T oo, 5

1 Z,T 2

This last inequality, togheter with (1.12), vields {1.13). Note
that, from (1.7), one has

{1.15) |IVail <c il a il

5/2,T 5/3,T"

L]

To conclude this section we prove the following result

o
Theorem 1.2 Let w, a,?fo and f be as defined in theorem
1.1, and let 1 <p < 5/4. Then the solution u, p of problem (1.10)

verifies the following estimate

o~ P
(1.16) el +IVpll < B , )+
T »T 4]

c (||lv + ||V ) ||V .
+ (1wl - Il ”z,T It ”2,1“

5 00,2,
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Proof. TFrom Holder's ineguality one gets

HeweDrull 1 < lvll 3 1Vl .

Moreover,
1-{2/q) a/q
livll . < Il IIVIL < c il + HVV%L ).
q,T 00,2, T +6,T 00,2, T 2T
Conseqguently,
(1L.17) i|(v0\7)uli,p,T <c (ﬂvllm,z,,r # ”VVHZ,T} ”quZ,T .
Similarly, [|(ueV)all < Jhull iVal| » which implies
D, 10/3, g .1
(1.18) (neV)a <el|lVa ( + IV ).
il It g Il "q_ T ilullmv?”T i ullz,T
L
Moreover,
(L.19) ji(aeV i} < djall V| .
pT Q.:T” I27T

Estimate (1.16) follows from [9] (theorem 15) and from (1.17),
{1.18), {1.19). Note that, since >5/3 and p < 5/4, one has 1/t £
(1/p)-(1/10), Thus, proposition 1.1 implies that a EILq(QT) and

q

1
VaeL (Q ).
QT

[

In this section we assume the reader familiar with reference

2. Proof of theorem A.

[2]. Let w_ and g be as in theorem A, and define
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(2.1) uO::'w-b y E=g-(aeV)a.

(n) 2
Consider sequences u eV, f el (QT} such that
0 n

(n)
e -uf <1/, ju - uj < 1/n,
o 02 o o 2-(2/p)p

HE - £l <1/n, |if - fI <1/n.
n 1,2,T n T

P

The following result holds:

Theorem 2.1. Let ui)n) and fn be defined as above. Then

there exist V. e A and uw p such that
— = n I T B

w4 (veViu - Au +(asViu+ (ueV)a s+ Vp =f in Q ,
n n n n n n n n T

Vesu =0 in Q
n T

2.2) &5 u =290 on Y,
n T
(n)
(u ) =11
nlt=o o
~
Moreover
H
{2.3) flu —v || < -,
7 n 2,T n
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and
r 1 1
2 H <A +—,f+- )
n ,2,T o n  n
2 2 1 1
2.y ¢ |IVu | <A +—,f+-),
n 2,T 1 0n n
1 1
Hia' 41 +|Vpll  <Bla +—,f+— )+
n pT p, T o n n
~
2 i
+c A +—,8+-).
6 1L O N n
N 2
Estimates (2.4) hold also for “vn“oo,z,‘l" |Q\7vn|lz'.l, and
I -

The proof of the above theorem is given in reference [2]

{theorem 2.1). On the right hand sides of (2.4) we assume that the terms
1/n are added to the norms of u and f appearting on the definitions
(1.8), and not directly to the functions v and £.

From the estimates (2.4) and (2.3) it follows the existence of
subsequences LG AR and functions u, p, such that

d uD—> 1 weakly in Lz( V), weakly in LI:'(’MII;2 ), and weak-¥*

[+.4]
in L (H).

P L
(2.5) £ PP weakly in L (W ),
P

z o
v v weaklyin L (V) and weak-*in L ( H).
v

N

Moreover, a well known compaciness theorem (J.L. Lions, {4],

chap. 1, theorem 5.1) guarantees that we can further select subsequences
(still denoted by the same index v) verifying
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(2.6) UL VoY, strongly in JLZ(QT); strongly in L3(Q),
for almost all t € J0, T[; and a.e. in QT'

On the other hand, .from the embedding Lo n L3(1L®) G
LYELY) it follows that the sequences (v‘}).1 (u“)j, i,i=1,2,3, are bounded

in Lz(lLalz). Arguing as in {4] p. 76, one has
(2.7) (v, (), 5 u u, weaklyin Li(L%2).
vi v 17

In particular, (v\)-V)u“ + (ueVh weakly in Lzﬂwgz).

Pinally, by recalling that a ¢ ]LS(QT), the first statement (2.5)

implies
1o0/3
I [(aeViu Jep » [ [(aeVIuleys , Vel (Q ).
Q v Q T
T T

Hence,

(2.8) (aeVu_ > (aeV)u, weakly in I.*%/ Q.
5/2

Similarly, since Va el (QT), the weak convergence of u

to u in L*L® implies

(2.9) (W oV)a > (usWia, weaklyin L'®/%(L*/%.

The statements (2.5) to {2.9) allows us to pass to the limit in

(2.2), as v » 400, to yield
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/u’ + (ueViu - Au + (aeVu + (weVda + Vp=f, in QT'
Veu-0 in Qp

4
(2.19 a=0 on Z'}:’
u]t:ozuo(X)'

N

By defining w and w as
{2.11) W =uta, T = p+q,

and by using (2.10), (1.3) and {(2.1), one shows that w,T is a solution of
problem (G.1).
Now we prove the local energy estimate (0.3). By setting

w 1 +a o= +
n n n-Ppt%

(2.12) <
L 8. ZF 4+ (aeVa, w(n) = u(n) +b,
n " n o o 0

equation (2.2) can be written equivalently in the form
rw 0 Awn + [(vn+ aYeV] W+ [(un-vn)-\?] a+ Vﬂn =g in QT'

Vown=0 in QT,

(2.13) <
w o= b on ZT’
(n)
(Wu)it=0 =w

Clearly, WS w and ﬁn + 7, in the same topologies in wich
u u and P, D respectively. By multiplying both sides of equation
(2.13} by q>w‘>, by integrating over Q . and by using suitabie
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integrations by parts, one has

2 2
2.14 Vi -
( ) lewul ¢+HQ! w‘)l b

t

{v) 2 1. 2
w | o+ — [J jw| (@+Ad) +
0 2 Q v

[

11’
2 0
0

dm

1
- J§ |w iztv+ aYeV +
2 Q v v

t

[

[(u-vieV]alewd+

‘”;Q{ VIRV v
t

4+ -

]

+J] 7w e¥Vo + [ g ew .
Q v v Q v v
i
By passing to the limit in {(2.14) as v » 100, one gets (0.3) (see
reference [2], For details), The terms with w = are treated now as the

corresponding terms with u‘} in reference [2). Moreover, {2.6) shows
that w_-v 20 and w -»w, a.e.in Q... On the other hand, since
v v v T
10/3 _ _©0, 2 2, .6 R
L (QT) GL (LY LYL™), the functions (11,‘>~\a'\))i(11'\r\))j are
uniformely bounded in LSIB(QT). Consequently (see [4], chap. I, lemma
10/a

1.3) it follows that (u\)» vu)i(w\))j <+ 0 weaklyin IL (QT), as v

+o0, Hence, recalling that Va ¢ L5/2(QT), one gets

I [ {[(u -v YeVia }ow ¢ = 0.
V3400 Q v v v
t
Finally, the last statement in theorem A follows by using (0.3),

togheter with theorem B, in [3]; the conditions g ele(QT), Veg=0 and

p=5/4 are not strictly necessary.

— 104 —




REFERENCES.

[1] H. Beirao da Veiga, "On the suitable weak solutions to the

Navier- Stokes equations in the whole space", J. Math. Pures

Appl., in the press.
[2) H. Beirao da Veiga, "On the construction of suitable weak solutions

to the Navier-Stokes equations via a general approximation
theorem", J. Math. Pures Appl.", in the press.
{3] L. Caffarelli, R. Kohn and L. Nirenberg, "Partial regularity of

suitable weak solutions of the Navier-Stokes equations”,
Comm. Pure Appl. Math., 35 (1982), 771-831.

[4] ]. L. Lions, "Quelques méthodes de re,soluti.on des pmblémes aux
limites non-linéaires", Dunod, Paris 1969.

{5] J. Serrin, "On the interior regularity of weak solutions of the
Navier-Stokes equations”, Arch. Rat. Mech. Ansl., 9 (1962),
187-195.

[6] V. Scheffer, "Hausdorff measure and the Navier-Stokes equation”,
Comm. Math. Phys., 55 (1977), 97-112.

7] V. Scheffer, "The Navier-Stokes equation on a bounded domain",
Comm. Math. Phys., 73 (1980), 1-42.

{8] V.A. Solonnikov, "A priori estimates for second order parabolic
equations”, Amer. Math, Sog. Transl.,, 65 (1967), 51-137.

[9]) V.A. Solonnikov, "Estimates of the solutions of a nonstationary
linearized system of Navier-Stokes equations", Amer. Math,
Soc. Transl., 75 (1968), 1-116.

(10} V.A. Solonnikov, "Estimates for the solutions of nonstationary
Navier-Stokes equations", J. of Soviet Math., 8 (197N,
467-529.

— 105 —




