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ON THE CONSTRUCTION
OF SUITABLE WEAK SOLUTIONS
TO THE NAVIER-STOKES
EQUATIONS VIA
A GENERAL APPROXIMATION THEOREM

By H. BEIRAO DA VEIGA (%)

Introduction

In this paper we continue the study (initiated in [2]) of methods of construction of
suitable weak solutions to the Navier-Stokes equations.

Basically, a suitable weak solution is a weak solution ueL? (0, T: VINCyo (0, T; H)
which verifies the local energy inequality (0. 3); other properties requested in the definition
(see [3]) follow directly from the equations if the data are smooth enough.

Caffarelli, Kohn and Nirenberg proved in [3] that the one dimensional Hausdorff
measure of the set of the interior singularities of a snitable weak solution is zero. Weaker
results were proved previously by Sheffer; see [7], [8], [9]. At the light of that result it
seems quite natural to require the local energy inequality as an additional property to be
verified for the weak solutions of the Navier-Stokes equations. In fact, on deducing the
various differential equations of Mathematical Physics from physical principles it is
generally assumed that the functions describing the physical quantities are “sufficiently
smooth”.  Under this assumption, physical principles and differential equations are more
or less equivalent. On considering weak solutions this equivalence could disappear. In
that case, in order to maintain the physical meaning of the description, one has to
complement the differential equations with the lost physical principles.

There is no evidence that solutions obtained by Faedo-Galerkin method verifies the
local energy estimate. Scheffer [7) constructed suitable weak solutions in the whole
space. Caffarelli, Kohn and Nirenberg [3] constructed them also in bounded
domains. For the whole space case, we proved in {2] that by adding eA%u, (£>0) to
the main equation and by letting & go to zero one obtains a suitable weak solution as
limit of the u, 1In the case of a bounded domain the same approach gives a weak

(*) Facolta di Scienze, Univ. di Trento, 38050 POVO (TN) Ttaly.
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322 H. BEIRAC DA VEIGA

solution to the Navier-Stokes system (see [1]). We are convinced that (as for the whole
space) the same approach gives a suitable weak solution. However, the proof would
require long calculations in order to obtain for the linearized equation with the term A% u
results similar to those of Solonnikov [10] for the linearized equation with —Au.  The aim
of this paper is to introduce a different approach, which seems us particularly simple
and elegant, based on an abstract approximation result (see theorem A). It allows us
to prove the local energy estimates up to the boundary, i e, without assuming the text
functions in equation (0. 3) with compact support in Q (see Theorem B).

We give a complete proof of Theorem B below, without assuming the reader familiar
with the Navier-Stokes equations. A certain length of this paper is due to these facts.

NOTATIONS AND RESULTS. — One has the following approximation theorem:

TueoreMm 4. — Let K be a non-empty, convex and compact subset of a Banach space
X, and let Q3K be a dense convex subset in K. Assume that S:Q — K is a map such
that its restriction to the convex hull of every finite number of elements of (0 is continuous.

Then, given &> 0 there exists a couple of elements v,e @, u €K such that u,=Sv, and
lu—v, | <

Let us briefly illustrate this result. In general we want to solve a non-linear equation,
say @ (u, u)=f, where ¢{v, u)=f is solvable in u for each fixed smooth v {e. g., for the
construction of weak solutions of the Navier-Stokes equations, replace in (0. 1) the term
(u.Vyu by (v.V)u). Let Y be a Banach space in which an g priori estimate is known
(e. g., for the Navier-Stokes equations set:

Y ={u:uel®(0, T,H) N L0, T; V), w’ e L**(0, T; V)}(2);

let &€ be the corresponding ball, and let @ be the set of smooth elements of . Let X
be a larger space, with respect to which K is a compact subset [e. g., for N.S. equations
set X=L2(Qq} ()]. Denote by u=Suv the solution of ¢p{v, u)=/, for each fixed veQ.

For the Navier-Stokes equation the map S is not continuous, except for quite strong
topologies. 1In this last case, however, we loose the inclusion S Q< unless small
values of T are choosen (local solutions in time). A similar situation appears very often,
for non-linear problems. However, S is continuous on finite dimensional subspaces,
since all norms are then equivalent. Hence theorem A applies. Hence, from v, y,e K,
||, —u,llx <& it follows the existence of snitable subsequences u, - u, v, - 4, weakly in
Y. Moreover ¢(v, u,)=/f, since Sy,=u,, By going to the limit as e —» 0, and under
natural assumptions on ¢, one gets ¢ (u, u)=F.

The proof of Theorem A will be given in section 1.

We present now the main notations:

Q, an open, bounded subset of B>, locally situated on one side of his boundary I, a
differentiable manifold of class C2.

Q=% Qp=]0, TIxQ =10, T[xI, for Te0, +ool

(?) In the next section a different choice will be taken, since we want to construct weak solutions verifying
the additional properties (0.3} and «/, u, VpeL3*{Q,).
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ON THE CONSTRUCTION OF SUITABLE WEAK SOLUTIONS 323

L7, | |, usnal L?(Q) space {1 Sp=< + o), and usual norm in L7,

W2, || [ls, ,» Sobolev space W5 (€2), 1 =p < + 0, s R (see [6] for definition and proper-
ties), and usual norm in W,

W*, Closure of CF(€Q) in W, k positive integer.

The norm in W} (Q), k non-negative integer, is:
k 1ip
£l o= (% 5 0g)”

1=0 fa|=!

As done for scalar functions, we define for vector functions v=(v,, v,, v;) the spaces
Le, Wi, Wi’ and so on. Norms will be denoted by the same symbol in both cases.

For vector functions we also define:

3 2
Vol= ¥ (f?—)
; ox

i, j=1 i
172
lolh=19ela=( [ (vopax)",
Q

> oy
w.V)o= Y w

i i=1 axi

and:

As usual we define:
¥ ={ve[C2(QP: V. v=0in Q),
H={vel*:V.0=0in Q, v.n=0on I'},
V={veWi:V.0=0in Q).

H is the closure of ¥” in L* and V is the closure of ¥ in Wi,

L7 (0, T; &), Banach space of strongly measurable functions in 10, T] with values i
the Banach space &, for which:

T
“ﬂ@mnm=jﬂﬂﬂ%m<+w
0

with the usual modification if p= + co.

C(0, T, 2); Cyep (0, T; &), space of continuous fresp. weakly continuous] functions in
[0, T} with values in Z.

L& (0, +o0; &), space of functions defined in ]0, +oo[ with values in &, whose
restrictions to [0, T[ belong to L7 (0, T; &), for every T >0.

For convenience we adopt the notation:

@ p T= L2 (o, T; L2 () > Uitg, 1= U}y, 4. T
full ]l o [l e=(l)

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES




324 H. BEIRAO DA VEIGA

We denote by ¢ positive constants depending at most on Q and on the fixed parameter
p. For convenience we denote different constants by the same symbol ¢. Otherwise,
we will write ¢, ¢y, €5, --.

The Navier-Stokes equations describing the motion of a viscous incompressible fluid
are (0<T= +oo):

w+w. Viu—Au=f—Vp in Qr,

V.u=10 in Qg,
(0.1) :
u=0 on Zp,
ulx:oﬁuo (x) in Q,

where u'=0ufdt. We assume, without loosing generality, that the density p and the
viscosity p are equal to one. The initial data u, (x) and the external force field f(t, x)
are given. The velocity u (¢, x) and the pressure p(t, x) are unknowns. In this paper
we prove the following result:

TueoREM B. — Let upc HNWZ 27 and fe Ly (0, +o0; LA N LL (0, +oo; L?), with

loc

10/9<p=5/4. Then there exists a weak solution u, p of system (0.1) in Q. ,, such that:
ueLi (0, 4+c0; V) N Caep (0, +00; H) M LE(0, +00; WD),

(0.2} weLil (0, +oo; W, 1) MLE(0, +o0; L),
peLL (0, +o00; W)

loc

Moreover, u, p verifies the local energy estimate up to the houndary:

0.3 J|u|2(p+2j |Vu[2<pgj lug |2 @
O Q Qg

+J |u|z(cp’+A(p)+.[ (|u|2+2p)u.V(p+2J fuq,
Q

Q: Q

Jor every t>0 and for every e C*(Q, ), e=00n Q, .
Finally, for every T>0 one has:

#llw, 2. r=| o2+ || 1, 2
|Vull3, v =|uolz+2]| FIB. 2

ey, v+l o, 7, wh | Ve,
<colluollz-m, st il llo, r+es(uo 5+ £, 2 0

Remark 0.1. — As in [10] equation (172), we assume the pressure p(f, x} determined
by the supplementary condition:

(0.5) Jp(t, x}dT’=0, for almost all t>0.
r
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ON THE CONSTRUCTION OF SUITABLE WEAK SOLUTIONS 325
Alternatively, we could utilize the condition:

{0.6) j p(t, x)dx=0, for almost all >0,
a

1. The approximating problem
We begin by defining the set of vectors:

A={peC®(Qp:v(t)e¥, for all te[0, T},

where T is an arbitrary positive real number, and by considering the linear system;

W+ Viu-Au+Vp=Ff in Q,

V.u=0 in Q,
(1.2) Qr
u=_} on X,
ul,_ o =1l in Q,

for ve A. For convenience we define:

Aoy /) =uto 2 +]| fI1, 2, v
(1.3) Altup N=luoli+2][ S, 2. v
B (uo, N)=¢o | 4o [|2- im0t | £llp. 5
where the constants ¢, and ¢, will be defined in the proof of Theorem 1.2. One has

the following result:

THEOREM 1.1. — Let ve A, dyeV and feL2(Qy). Then there exists a unigue solution
u, Vp of problem (1.2), which verifies:

usL?(0, T, W) NC(O, T; V),

(14) UJELZ(QT),
VpeLl?(Qy),
and.
1.5 l4lc, 2. 2= A (o, 1),
1Vallo =A@ .
Proof. — Existence, uniqueness and regularity follows as for the usual lincarized

Navier-Stokes  equation; alternatively, one can wuse Theorem 4.2 in [I1],
page 487. Estimates (1.5) follow easily by multiplying equation (1.2), by u, by integra-
ting over Q and by doing some well known devices. [J]

Let now 1<p<5/4 and define g=q(p) and r=r(p) as follows:

111 1_1-Qjg 2g_1_2

g p 2 r 2 6 2 3q
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326 H. BEIRACQ DA VEIGA

Since 0<2/g <1 it follows that:
(1.6) ol <Jo, |72 03 s o720 Vo 2,

where we used a well known Sobolev’s theorem {see for instance [4], Chap. I,
Lemma 3). Consequently:

(1.7) el o r=cllolle, 2 vl V0], 0

We now prove the following result:

THEOREM 1.2. — Under the hypothesis of Theorem 1.1 the solution u, Vp of problem
(1.2) verifies the estimate:

(1.8) |

u flp, v+l |, T;W,%)"‘” Vo, 1
§B(an })"‘Cz (” U”w, 2, T+” VU“z, 1) ” V””z. T

Proof. — Note that L*(Qg) 5 L?(Qq) and Vo H ¢ W2~ *7. Estimate (1. 8) follows
from Theorem 15, paragraph 17, p. 102 of [10], by taking in account the estimates:

(0. Vyull,, +=[oll, vl Vuil, +

and (1.7). Note that |||, 7 is bounded by ¢ times the left hand side of (1.7), since
g=10/3=r.
Now we prove the approximation theorem stated in the introduction.

Proof of Theorem A. — Let >0 be fixed. The compactness of & guarantees the

existence of a finite number of elements &,, . . ., fye K, such that:

N

Ke | BB, g/4),

i=1
where B(x, 8) denotes the ball with center in x and radius & in the space X. Since @ is
dense in K there exists elements v, Q, i=1, ..., N, such that:

N

Ke U By, &f2)

i=1

Le now @, be the convex hull generated by the elements v,, .. ., vy and let P: K = Q,
be a continucus map on K, such that:

{1.9) “Pu—u||<£, Yuelk.

If X is an Hilbert space [in the sequel we will utilize Theorem A with X =1%(Q,)] it
suffices to define P as the projection on to @, In this case P is continuous, moreover:

|Pu—u|= inf |o—ul<ef2.
v el
In the general case it is notf difficult to prove the existence of a continuous P
verifying (1.9), and we leave the construction to the reader.
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ON THE CONSTRUCTION OF SUITABLE WEAK SOLUTIONS 327

Consider now the restriction of the map PS to @, PS:@,— @, This map is
continuous from a finite dimensional bounded, closed and convex set on iteself. By
Brower’s fixed point theorem there exists v,e (3, such that PS v,=v,. Defining u,.=Su,
it follows from (1.9) that:

o=l Pu <. T

For brevity we will use the notation LP(#)=L*F(0, T; &), where & is a Banach space
and:

W, (@) ={vel?(Z):v eL¥()}.
We define the Banach space:
Y=L*(H) N L} (V)N W, (L),

normalized according to the definition. Let A, A, and B be non-negative real numbers
and define K =K (A, A, B) as:

(1.10) K={veY:||v]lo, 2 A || Vo2 r<AL |

v Hp +<B}.

[ is a convex compact subset of X =L2(Q;) (see [5], Chap. I, Theorem 5. 1). One has
the following result:

Lemma 1.3, — The convex set:
Q=ANK,
is dense in K in the X topology.
Proof. — Let ve . We assume, without loose of generality, that v verifies strictly

the inequalities appearing in definition (1.10). Extend v by reflexion to [T, 0] and to
[T, 217, and define in the usual way the mollifiers:

{1.11) u,,(t):jjn(t—t)v(‘c)dt, n=1,2,..

Since v, e and v, — v in X when n— + oo, we don’t loose generality by also assuming
that ve CH(0, T; V).
Let now £ >0 be fixed and choose w=w(g} such that:

|v(t)-—v(s)l2<8, ||u(t)—v(s)||v<£, U’(I)—v’(s)|p<s,

whenever s, te[0, T], |s—t|<w®. Fix points t, in [0, T} verifying :

O=to<t, <. .. <t,=T,

n

and:
|t,-+i—ti|<m for i=0,1,...,n—1
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328 H. BEIRAO DA VEIGA

Finally fix &, =g, (g) such that:

n—1
ef ), (s —t) TP SEn
i=0
Define v;=v(t)eV, i=0, ..., n, and fix clements w,e ¥ such that:
|w,—v,|,<e, | wi—v:|lv<e. bw— |, <z, for i=0,1,..., n
Consider the function w(t), which is linear on each interval [t, t,,,] and verifies :
wi{t)=w;, for i=0,1,...,n
Arguingr separately in each interval [z, t,, ;] one easily shows that :
|w(®)~v(0),<de,  ||w@—v@)|y<4e

hence:

(1.12) lw—v|?2 0, 1662, lw=1||n, 2 rS4e

On the other hand, for telt, t,.,],

3

W (£) = Digp— 0 + (Wi =0 ) —(w;~ 1)
Lag—i Ler — 5
consequently:

lw () —v' ()], = vt )—o(t) 2¢,
L.

v ()| + .
P17 4 14 ti+ 1 ti
By using the mean value theorem for functions with values in a Banach space, it follow
that;
2g;

Iw (@) —v (), <e+ -

i+1 i
for every telt, t;,,]. Taking in account the definition of €,, one easily shows that:
(1.13) |w' =o' |5 r (27 P T+22 27 e,

From (1.12), (1.13) it follows that welK, for ¢ sufficiently small. Moreover, w—v
in Y, hence in X, when & - Q.

The proof of lemma 1.3 is accomplished by approximating w by mollifiers w,, as in
(1.11). Recall that w(z) is piecewise linear in [0, T], with values in ¥, [

Let now (ily, f)e Vx L2(Qy) be fixed and define a map:
S5: A-X,

by Sv=u, where u is the solution of problem (1.2) corresponding to e A. We claim
the following result;
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ON THE CONSTRUCTION OF SUITABLE WEAK SOLUTIONS 329

LeMma 1.4 — The restriction of S to every finite dimensional subspace of A is
continuous, with respect to the X-topology. In particular, the restriction of S to the convex
hull of a finite number of elements of Q is continuous with respect to the X-topology.

Proof. - Let A, be a finite dimensional subspace of A, and let v, v,e A,, lo,—v]| -0
when n—+ o0, Since in a finite dimensional vector space all norms are equivalent, one
has in particular;

lim |lv, —vllct 5, =0.

n=+m

Let u,=Swv,, u=Sv and consider the difference (side by side} between equation {1.2),
written for the couple u, v and written for the couple U, D, By taking the scalar product
in L of u, —u with both sides of the equation just obtained, the thesis follows {without
difficulty) by using well known devices. [

Finally, we prove the following lemma:

LEMmA 1.5, — Let fy, feVx12 (Qp) be given and Jix K by choosing in definition
(1. 10) the values:

A=A(dy, J),
(1.14) A=A (g, ),
B=B(u,, f)+c2(A+A1)A1.
Then the map S, defined via the system (1.2), verifies:
(.15 S{h<lk,

Proof. — The result follows from the estimates (1. 5) and (1. 8), since velk, O

With the definitions given above, all the hypothesis of theorem A are verified,. Asa
consequence, one obtains the following approximation theorem:

THEOREM 1.6. — Ler f,eV and FeL*(Qy) be given, and let l<p=5/4  Then, in

correspondence to every £>0, there exist v.EA, weY, pel?(0, T, W) verifving the
system:

Ut (0. VIt~ Au +Vp,=F in Q,,

L
{1,) [,ZO:ED in Q

and for which:

(1.17) 0.5, <.
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330 H. BEIRAO DA VEIGA

Moreover, the following estimates hold:

& it ]l 2, v<A Gy

V1|2, r<A2 (o, ),

4 |lp. v+ e ller owz + 1 Y Pell, 1
S By, P+ey A2 (i, .

Estimates (1. 18), and {1.18), hold also Sor v, and V v, respectively, and estimate (1.18),
holds for o,

(1.18)

Remark, — 1If in definition (1.10) one add the condition [vl[ir (o, 1, w2 =B, then
(1.18), holds also for || v, |lie 0, T, w2y

However, this would not be useful.
2. The limit problem

Let uye H M W22 and feL' (0, T; £?) M L?(Qy) be given, (*) and consider sequen-
ces u’e V and £, e L2(Qy) such that:

[uf?—uo | <n™, |4’ —uollz-2pp p<n”,

”fn_f“L ar<n’l, ” fn*f”p, <t

Let now (u,, v, p,) be the solution of problem (1.16}, for e=1/n and with data u,=
w?, f=f. For the reader’s convenience we rewrite theorem 1.6 for this case. One

has:

(2.1)

Tueoresm 2.1. — Let ug, f, ul", f,, u,, v, and p, be as above.
Then:

‘ u,+ (v, VYu,—Au,+Vp,=f, in Qr,

V.u,=0 in ,
(2.2) : un QT
( ul|=0 on ZT’
() o= in 0,
and:
(23) “uu_vrl“Z, Tgn_l'

(%) We put u, and f directly in equation (2. 2) and we drop 1/n in equation (2.4), if u,eV and f¢ L2 Q).
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ON THE CONSTRUCTION OF SUITABLE WEAK SOLUTIONS 331
Maoreover:
1 1
II 1!n“uo, 2, TéA g+ —, f+ -1
n n
2 A2 1 1
(2.4) (Vu]3, r=A uo+;,f+; ,

Fall, w41 st llor s 11V 2l =

1 1 1 1
gB(u0+ - [+ )+c3A§(uo+ - [+ )
n A R

]

Finally, estimates (2.4), and (2.4), hold for v, and Vv, respectively, and (2.4), holds
SJor v,

On the right hand sides of (2. 4), the term 1/n is assumed to be added to the norms of

u, and f, appearing in definition (1. 3).

From the sequences u, and v, we can selct subsequences converging both to a solution
u of problem {0.1). This is done by using well known devices, which we recall for the
sake of completeness; see for instance {4], [5], [12], [1]. Note that the “usual” non-linear
term (u,. V) u, is replaced by (v,. V)u,. However, (2.3) guaraniecs that the Sequences u,
and », have the same limit,

By using the estimates stated in Theorem 2.1 and the property (2.3), it follows the
existence of subsequences u,, v, and p, and functions u, p such that:

u,—u weakly in L? (V), weaklyin L? (Wﬁ), and weak-* in L= (H).
{2.5) py—p weakly in L?(W}).
v,—u weakly in L?(V) and weak-* in L™ (H).

Moreover, a well known compactness theorem ([5}, Chap. 1, Theorem 5. 1) guarantees
that we can select subsequences (denoted by the same index v) verifying:

(2.6) U, = u, B, — U,
strongly in L2(Qy); strongly in 12(Q) for almost all te]0, T[; and almost everywhere
in Q.

On the other hand, from the embedding L=°(1%) M L2(L%) o L4(L?), it follows that
the sequences (v,); (1,};, for which i, je {1, 2, 3}, are bounded in L2(L3?). A well known
device (see [3], p. 76) gives:

2.7 (©); ();—uu, weakly in L2 (L),

In particular (v,. V)u,— (v. V)u weakly in L2(W;?). The convergence of the other
terms in equation {2.2}; to the corresponding terms in equation (0. 1), is clear. Hence
u, p is a solution of system (0. 1). Finally, the estimates (0. 4) follow from the correspon-
ding estimates (2.4), by taking in account the lower semi-continuity of the norms with
respect to the weak convergences.
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332 H. BEIRAQ DA VEIGA

Now we want to prove the local energy estimate (0. 3), for every ¢e C?(Q,), ¢=0 on
Qr. By multiplying both sides of equation (2.2), by @u, and by integrating over Q,
one easily shows that:

(2.8) ij|uv:2¢>+ﬂ fVuvlch=1j |us'>!2(p+lﬂ 0,2 (9" + Ag)
2 Q Q 2 Qg 2 Q,

1
+Ij |uv|2vv.V@+JJ pvuv.V(p+Jj fou, 0
k 2 t Q¢ Q

Note that the limit functions ¥ and p are not smooth enocugh to giustify a similar
calculation starting from equation (0. 1).

Now we pass to the limit in equation {2.8), when v >+ . We start by proving
(0.3} for the values ¢ for which u,(t) - u(¢) strongly in L?. Later, we extend (0.3) to
every te|0, T].

It’s clear that the integrals over Q, and €, in equation (2. 8) converge to the correspon-
ding integrals in (0.3). On the other hand, D, (w);—Dyu; weakly in
L*(Qq). Consequently \/5 D, (u,);— \/(}5 D, u; weakly in L?(Qy), hence:

jj [Vul*<lim ian] |Vul? 0.
r v tw Q

The convergence-of the second and of the last term on the right hand side of (2.8} to
the corresponding terms in (0. 3) is obvious. Let us consider the two remaining terms.

From the embedding L2 (L% M L*{(1%) o L3 (Q,), one gets
| [, [* |l ose, r<Const. Takingin account the pointwise convergence in Qy, one shows
that |u,|* v, converges weakly to |u|?u in L'%°(Qy); see [5], Chap. I, Lemma 1. 3.

lim Jj |uv|2v\,.V(pzj [uf*v. V.
vorba JJQ, Q¢

Finally we consider the pressure term. From (2.5}, and from a well known Sobolev’s
embedding theorem it follows that:

In particular:

(2.8) p.—p weakly in L¥(Q, T, L?"),

where 1/p* =(1/p)—(1/3); we assufiiec now that 10/% <p <5/4. Consequently the relation:
lim J-Jv p.u,. V(P:JJ pu. Vo,
vt Qr Q

(2.9) _ u, — u strongly in L? (1L®""),

is proved if we show that:

where in general ljo'=1—(1/a). There are not loose of generality on assuming that
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10/9=p, <p <6/5, since p’ and (p*)’ are decreasing functions of p. Estimate (1.7} for
the value g=10 show that:

(2.10) ||z, HP.O’(I,BJ.,TgConst.,

since po=10 and (p§) =30/13. On the other hand, for pEll0/9, 6/5[one has p’€]2,10],
(p*Y €]2,30/13[. Hence, by fixing a value 8]0, 1] for which:

l; 8 1—9.
4 pa 2

1 > 0 %149
"y e 2

3
one obtains:

(2.11) lue—ully, oy, vSc|lu,—u ”f:o T [l =i

Statement (2.9) follows from (2. 10) and (2.11), by recalling that u, — u strongly in
L2(Qy).

To accomplish the proof of Theorem A it remains to show that (0.3} holds for
every te[0, T. Let ¢, be a sequence of values for which (0.3) holds, and such that
ty—t  Consider equation (0.3} for the values t,, and take the lim inf when
n—+c0. The function u(t) /o (7) is weakly continous in {0, T] with values in 12, since

the same property holds for u(z). Consequently,

j [u,ztp<hm 1nff |u|? @
o,

The convergence of the integrals over Q,, to the corresponding integrals over is
obvious, []

In order to prove theorem A in the time interval [0, + oof, we proceed as follows. We
start by fixing an increasing sequence of positive values T, converging to +co [replace
also in (2.1) the value T by T,].

Then we apply our approximation argument to each fixed interval {0, T,,l. by starting
cach time from a subsequence of indices for which the convergence to (u, u, p) holds in
[0, T,,— ] We obtain a solution u, p in Q, _, verifying all the requested properties, by

selecting a diagonal subsequence.
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