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ARSTRACT

We prove the existence and the unigueness of differentiable and strong solutions for
a class of ncen-homogeneous bourdary value problems for first order linear hyperholic systems
arising from the dynamics of compressible non-viscous fluids, The method provides the
existence of differentiable solutions without resorting to strong or weak solutions. A
necessary and sufficient condition for the existence of solutions for the neon-homogeneous
problem is proved. It consists of an explicit relationship between the boundary values of
u and those of the data £, Strong solutions are obtained without this supplementary
assumption. See Theorems 3.1, 4.1, 4.2, 4.3 and Corollary 4.4; see also Remarks 2.1 and
2.4,

In this paper we consider equation (3.1} below. In the forthcoming part II we prove

similar results for the corresponding svolution probleam.

1. Introduction. The motivation for the prasent work was the equations of motion of a
compressible non-viscous fluid ir a domain with boundary. In order to simplify the

- : 3 _ .
expasition we consider the half space R_ = {x : Xy <0}, Let T > ¢ be fixed and put

x' = (KZ‘XSJ' The governing non-linear eguation are then

L vl = g,

i

ﬁg—+ vVp + p(gga_ div v = 0,
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a5 .
6E—+ w5 = 0,
.3 v 0% = 0,
vid,x) = VU(x),
p(0,x) = plxi,
510,x) = 5,(x),
where the velocity v = (vl,vﬁ,vj), the pressure p, and the entropy § are unknowns in

1-7,T[ = Ri. The functions g(E,x), vo(x), po(x) and SG(X) are given, Furthermore
the equation of state of the medium P = @{p,8) is a known function of p,S5 verifying
p >0 and dp/op > O.

The motion of compressible non-viscous fluids was studied by Ebin for small initial

data [5] and by us for arbitrary ipnitial data (21, [3]. {4](1). Howaver, the

ilinearizations used in these papers are not the simple ones which consists in studying the
first order hyperbolic system (the linearization procedure decocuples the variable S)

%% + (w*¥iv + a¥p = g,

%E’+ w*'¥p + b div v = L,
(1.2} v1(t,0,x') =,

w{0,x) = vlx)

p{0,x) = paix) ..

pere a(t,x) and b{t,x) are given positive functions and the given vector field
wit,x) wverifies w1(t,0,x') = 0.

As pointed out in Ebin's paper, the known results for linear hyperbelic systems do not
seem suitable for these problems, ¥For this reason we will study the problem of the
existence of differentiable solutions for a class of boundary value problems which contains
as a particular case the system {1.2} and other systems arising in fluid-mechanics. This
will be done in this paper (stationary case) and in a following one (part II, evolution
case). The method used hare zlso provides a simpler proof when the problem is posed in the
whole space. In this last case the statements and proofs are obtained by dropping all the
assumptions conceraing the beoundary.

In this paper we avoid the use of weak solutions, mollifiers, and negative norms by
proving directly the existence of differentiable soluticns which are our majn concern, in

view of problem (1.1). The existence of strong solutions then follows as a consequence.
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Recall that in the Fundamental works of X. C. Friedrichs {7} and P, D. Lax and R. S.
Phillips [B] one starts by proving the existence of weak solutions.

We prove the existence of differentiable solutions without assuming the boundary
space W ©o be maximal non-positive and the boundary matrix to be of constant rank on the
boundary. $See Theorems 3.1, 4.1, 4.2, 4.3 and Corollary 4.4; see alsc Remarks 2,1 and 2.4.

An essential tool in our method will be the introduction of a space Z of regular
functions verifying not only the assigned boundary conditions but also scme "complementary
boundary conditions" such that: (i) the boundary integrals in (2.10)} vanish for every

u,v € 3y {ii} 2 is dense in Y (roughly speaking: the complementary conditions loocse

sense in Y):; (iii) there exists an homeomorphism D from 2 into X for which {2.28)
holds; {(iv) Lu @ ¥, Yu @ Z. These conditicons ¢ould be weakened, but the above form is
sufficient for our purposes.
In order to simplify the exposition we treat the problem in the haif space |
However, by standard methods one can adapt the results to open regular subsets § of .
2. Basic Lemmas. Let RT = {x a Rm Xy < D}, Rm_1 = {x Xy = G} and
x' = (%y,00-,%,). The components of the outward mormal to the boundary are then
ng = 515, T =1,00.,m

Let Lz(nf) denote the space of all measurable real-valued (classes of} functions

m

which are square integrable on R_ and let Hk(RT) denote the space of all functions

which belong, togethexr with all the derivatives of order less or equal to k, to LZ(RTJ.
Moreover H%(RT), k ? 1, denotes the sehspace of Hk(nf) of all functions vanishing(zi on
the boundary Rmﬁ1 in the usual trace sense and H;(RT), k * 2,- denctes the subspace of
functions with vanishing noxmal derivative om the houndary. The space of all real bounded

and continuous functions together with the derivatives of order less or egual te k will

be denoted by Ck(lf)- The usual norm in this space is denoted by | | K Correspording
C

spaces on the boundary Rm_1 will be used, in particular the fractionary Sobolev spaces

HS(Rm_1J for s = -, %. Other notations will be clear from the context.

1
2
Finally we denote by ¢ different constants depending at mast on the integers m

and n. N denotes the set of all positive integers.

Let now H and AJ, J = 1,.ss,m, be n X n - matrix valued functions defined in RT.

We assume that H is diagonal with diagonal elements hk(x), XK= 1,...,n, verifying
(2.1) mg = inf hk(x) >0 .
1
xER_
18kSn
For convenience we define hix) = (h1€x),...,hn(x)). Moreover we suppose that the

matrices nJ, J = 1,..0,m, are symmetric:
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(2.2) al, (x) = ik, v o4k - Teeouin, wx e gt

Finally, for alz index i,k,d,

{2.3) yeafy @ cleRly |

Bemark 2.1. mhe results and proofs stated in thig Paper can be easily adapted if the

assumption “for every x g g, Hix) i diagonal® ig replaced by the more general assump-~

tion "for every x g RT, Hix) 4g symmetric, moreovar for every y e go-1 it has the form
H
p(x) 4
(2.4) H{x) =

o Hﬂ_p(x)
with Hp(x) and Hn_P(x) matrices of type p x P and (p - pl X (n - P respectively?

(definition of p ip (2.13)). The assumption (2.1) ig then replaced by "y yg uniformly

positive definita", In this more general case the scalar products (u,v)h and ((u,V))h

m
2 3
(definition below) are replaced by (Hu,v)  ana (Hu,v} + § (H .4 )

dx_* 3y’ Yespectively,
J=1 J
Moreover the Qperator p  ip {2.27) becomes py = Hv - div(HVv)(S) where vy < (v1,...,vn)-

Note that now equation py = ¢ is an elliptic system of g equations insteaq 9f n
single (decoupled} elliptic equations. Thanks te the boundary assumption (2,4) the
Gperator p g again an homeomorphism of Z onto X, nmoreover {2.28) holds(4j. The

reader eagily verifieg that our Proafs hold again,
Now let 7 pe the partial differential cperator

m
1.3 3
(2.5) =z § oy 'A‘Tf‘—
X
J=1 o)

whera 4 = (u1,...,un} is a vector functicn defined in RT. In equationg like (2.5} in

which Matrices act an vectors thesa last are always to ke considered ag column vectors.

Note that equations (1,2) gap be written ip the form

4
3 S 1
(2.6) f + § owlT —ﬁa: =f
g=1 J
where gy = (VJ'Vz'Va'P)’ f = (91,92,g L) ana
=1
a Wy 0 g a
-1
a 0 1] wy a 1]
(2.7) e . LAY .
a~1 0 0 w0
a b1 b o o wy
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o o 0 o Wy 1] il {1
0 [ & a 1 o o
- 2 - 3
pla2 - . wlad = .
a 0 Vo [¢] a 0 Wy a
¢ b 0 L 0 0 b W3
Let us return to the general case (2.5)}). Let us define EU = H-1AJ hence
~J -1 3 . . J _ )
a_k = hi a;x+ For convenience we will use the notations Ia“! I max"ai I I
+ s e i,k c
[P g = maxla™h g @nd similarly for the other matrices used in this paper. By definition
c J 4
ILE = ] = gl
kL g © max hkﬂ . Kl gt let be
c k < c
= R, y= m'e™IY, 7= Eet)n

and define the scalar products in X

n n
{u,v} = E f u, v, dx, (u,v)h = 21 f ukvkhkdx
k=1 S k= RT
and also the corresponding norms |+*| and |'|h {which are equivalent) and the scalar
products in Y

((a,v)) = fu,v) + (Y, Vv, Hu,vily = fe,v)y + (Vu,Vvlh
and corresponding {(equivalent) norms [+l ana H'ﬂh. By definition

3 3

(Vu,%) = § {32, _x“} + To point out that X is endowed with the noxrm |*]  we
by et xS h

sometimes write Xy, instead of X. A similar remark holds for V.

For the reader's convenience we state the following two lemmas (which proofs are

classical):

Lemma 2.2. For any pair u,v @ y the following identity holds:

(2.8) (Lu,v]h = —(u,Lv)h + dfu,v) + I V'A1u dx'

Rm—1

whare o 1is the continuous and symmetric bilinear form on X defined by

? T %8y
(2.9) a{u,v) = ~ E f ( Z 5;"—)u.v dx .
i g

Lemma 2.3. For any pair uw,v € 7 the fellowing identity holds:

mn
3 3
(2090) (v, = Hetvbh, + 8w + L [ F T M s T
=1 aen g 3 o

where B(u,v) is the bilinear continuous and symmetric form on v
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m
- - Bu B
(2.11) Blu,vi 3 Bew,w) + Blv,uy + 7 u[ﬁ—, é-;’—} + afu, v}
i=1 i

_ m
(2.12) Blu,v) = E T w— 4*—} .

kT i b
Proct. Clearly
m m ~J m
. 3a° 9n Iy o dy v
Cravidg = oy, + | (] g8, 20y 7 (2w 3y,
n go1 gmp g Bt Bl T L R By b

Gn the other hand (2.8) yields

a3 P a Ju 3 3
b o)+ v ) SR - R PP R
0%, 5 Lh B x

By adding the first equation with that obtained by switching u and ¥, and by using

the last equation above, one easily gets (2.10), a

¥ow let p be an integer, 0 € p & n and let us define

1
N =1{uenr"; g = oeee = v, = 0}, ¥ = {ue ", Ype YO0t =g = 0},
1
PNu = (up+1,...,un), PNu = (u1,...,uP). We assume that the boundarz conditions are given

i
by PNu = 0 on the boundary or more explicitly by

(2.13) G0,k =0, X =1,...,p, for x' e g,
o
We also assume that the boundary matrix a1 = X nJAJ verifies for each %' & B! he
I=1

following assumptions {the reader is also referred to the papers [7] and [8]; see in

particular the sections 5 and 8 af [7]1):

alan ot
R A1(Nl)C N,
Moreover we assume that for each x e )
t2.15) ‘ aw) cw, J=2,000,m .

With the boundary conditions in cancnical form (2.13) assumptions {(2.14) and {2.15)
are respsctively equivalent to the following ones: ‘'fhe matrices AY take on the boundary
the form

0 M R
(2.16) al= . at = . d=2,...m,

Tl o 0 g%
where M{x'}, RJ(x‘) and SJ{x') are p X (n - p), p Xp and (n - p) X {n « p)
matrices respectively. Mt dencktes the transpose of M. By preceding assumptions RY

and g7 are symmetric. The ranks of these matrices are frea.
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Mote that if p =10 or if p =n the conditions (2,15} disappear and condition

1

{2.14) becomes A = {J on the boundary; in case p = 0 it suffices that A‘

was negative
semi-definite; see Remark 2.4, Note also that in the particular case (1.2} one has
p = 1 and the matrices {2.7) verify the assumptions {2.16).

Finally, we describe the assumptions on the lower order term Bu in eguation {3.1).
We assume that B is an n X n matrix valued function @efined in Rf and verifying

1217 b e cli), B = tyeia,n s

Moreover we assume that for each x on the boundary one has
{2.18) BI(N} TN

This last condition means that on the boundary

By Q
{2.19) B =
Bz By
where By(x"}, B,(x") and Bylx') are matrices of types p ¥ p, (n - p} x p and

{n =~ p} x (n - p) respectively. Clearly B € [{¥;Y]; see definitions below.

We now define

[tBu,u), + T atu,u)l [ (tmu,ul), + 2 Blu,ul |

- 2 h 2

{2.20} ln = max{sup 2 ; Sup 2 .
uex |u|]1 uey nuuh

From our assumptions on the coefficients it follows the existence of a constant o
such that

= 1 1
. PO SRS L L an .
(2.21) o SR c[mo I L U L .

< my < < <

Moreover we define the following spaces:

vy {uey:ueHN op the boundaryl = {Hé(ﬂT)]P X {H‘(RT)]H_P A

and
z={ue? ;ua N and %&“ a Nl on the boundary} = [Hé(nf}]p X [Hé(ﬂf)]nwp
1
Note that % is dense in ¥ and Y is demnse in X.
Remark 2.4. Assume that, instead of (2.16)1, +the boundary matrix has the more general
form
1] M
A1 = MT o

where { is a symmetric and negative semi-definite matrix; this is equivalent to replace
condition {2.14)1 by condition

(2.22} u‘A’u <0, Vu e N, wx' e @1,
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Under this weaker assumpbion the existence results proved in our paper {including those of
section 4) holds again provided that one assume that A o> Ag instead of {A]| » AO‘ The
proofs remain unchanged in the essential features.

(ii) Energy estimates are obtained under weaker assumptions than those needed to get
existence. The a priori bound Iu!h < {|A] - AU)_;Ilu + Lu + Buih, wu € ¥, holds without
agsumptions (2.14)2, (2,15} and (2.12}; moreover assumption (2.14)1 can be replaced by
{2.22] if we take in account only the values A for which A > ln. Analogously the a
priori bound Wu“h < (A} - AO)—IMAU + Lu + BuNh, yy 8 %, holds without the assumpticns
{2,315} and (2.19); morecover if we take in account only values A > lu, the assumptions

: ; il 1
{2.14); and (2,14}, can be replaced respectively by (2.22) and by u*A u %0, Yu € N ,
wx' e EW"‘. Phe remaining assumptions (2-14)2, {2.15) and (2,39} are utilized enly to
get L{Z) C Y and B{(Y) CY; it seems clear that these asgumpkions could be weakened if
cni only wants to prove existence for strong solutions.

ue_thet (2.14} holds, Theo

{2,200 . (Lu,v)“ = f(u,Lv)h + af{u,v}, Vu,v B Y .
In parbiculac
(2.24) [t 4+ Bupuly ] € Anluli, veevy .
fn fack, under the hypobhesls of the lemma the last term in equation (2.8) vanishes.
nssume now buth hyporheses (2,14) and let u,v € %, If L # 1 the tangential
derivatives %§~ and %i; belong to N and from (2.14).i it follows that the
corresponding integrals in equation (2,40} vanish. This also holds for % = 1 as= one
shows by using (2.14), and by recalling that the normal derivatives %&; and %ﬁ: belong
e Nl. Hence one gets the following result:

Lemma 2.6, HAsswne that {2.4)} holds. Then

{2.25} ({u,vihy, = ={lu,nv))y flu,v), Yu,v € Z .

In particular

2
(2.26) | {lLe + Bu,u))h| £ lﬂﬁuﬁh, Yu 8 2 .

Lemra 2.7. The operator L with domain Y is precloged in X. Moreover its closure

f. verifies (2.23} for each pair u,v € D(L}.
The proof follows easily from {2.23).

Lemma 2.8. Assume that (2.14), and {2.15) hold. Then L @ L{Z:;¥}, d.e. L is a

bounded linear operator frem 2 into Y.

du 1

proof. Clearly L @ L{Z:¥}. Let u e 2. Then = &N on the boundary hence
3 a
“1{3_3"] @ N. On the other hand for J # 1 one has T:" € N hence AJ{-S—;w] en.,
1 I J

Consequently Lu € N on the boundary. m}
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pefine now the operators Dyg % hg - div(thg) and put
Moy 0]
(2.27) 0= . .
1] Dn

Lemma 2,9. The operator D is an homeomorphisn from % onto X. Morsover

{2.28) {{a,v})y, = {u,Dv), Wu €y, Vv & 7,

Proof. The firat statement Follows from well known results for the Divichlet spd
Heumann boundary value problems for second order linear elliptic equations; the reader
referred to the classical paper of L. Nirenkerg [9]. Eguation {Z.2B) follows by

integration by parts. =]

3. Classical Soluticns for E € Y. Stvong Solutions., The asaumptions in this

section are (2.1}, {2.2), (2.3), (2.14), (2.15), (2.17) and (2.18). Recall alse the

definitions (2.5) and {2.20). The boundary conditions are given by {(2.13}. Under these

assumptions we prove the following theorem of existence and unicity for di atiable

strony solutions of eguation (3.1)(5):

Thereom 3,1. Let the above conditions hold and let A & ® be such that |A] - 4

Then (i) for each £ & Y the equatiocn

(3.1 At + Lu + Bu = E

has a unigue differentiable solution u € ¥. Moreover

1
. [] [ .
(3.2} [T h T3] 5y Ied

(ii}) For each f € X the equation

(3.3) Ao + Lu + Bu = f

has a unigue solution u & p(L). Moreover

1
(3.4) fuly, < o I£ly, -
il

Proof. We give two different approximations., By Galerkin's method and by elliptic

regularization.

15 wethod. Let [as}, s e N, be a base for Z and put

£
£
(3.5) T S LY
E 5
a=1
Select the real numbers cil) as the solutions of the linear non-homogensous system
%) L
{2.6) (' a s v @ met™ e = ey, v <.
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For each % & N this problem is uniquely sclvable. By using (2.26) and (2.20) it

easily follows that

1
H -
T

2
{3.7) <
h
This gives the unicity for the linear homogensous system hence the existence for the

non-homcgeneous system (3.6). Frow {3.7) and from the weak compactness of the spheras in

(v)

Hilbert spaces it follows the existence of a subsequence u and an element u € Y such
v v
that u‘ [N u weakly in Y. Since 1L € [{Y;X] one has Lu( N Lu weakly in X.
. (v} (V) - =
Using now (3.6) and {2.28) one gets (Au + (L + Blu - f,Dar} =0, r=1,e+.,% and
by passing to the limit
(3.8) (Aa + (L + B)u = £,0a) = O, vr e N,

Since {Dar} is a base for X equation (3.1) holds. Estimate (3.2} follows from
(3.7). Finally let u e ¥ be an arbitrary solution of aquation (3.1}. By multiplying

scalarly in Xh the eguation by u and by using (2,23} cne gets (3.4). Hence the
(%)

solution is unique (in particular one gets the convergence of all the sequences u and

(2}
u

L in the proof given above).

We prove now the second part of the theorem. Let £ & X and consider a sequence

() L, (1

£ ey, f in X. Let u € ¥ be the solutions of
(3.9} Au(l) + (L + B)u(i} = f‘g)(ﬁ)
By taking the scalar product in Xy, ©f the difference of the &-th and@ the %k-th
equations with u(E) - u(k), one gets Iu(z} - u(k}lh S (Al - AO)_1|E(Z) - f{k)lh. It

[£3] (2}

follows that u *u £ X strongly in X. Hence 3mu * Bu and from {3.9)

2 -
LU( } + £ - Au - Bu strongly in X. This means that w € D(L) and that (3.3} holds.

Let now wu & DIL} be an arbitrary solution of {3.3). Then from Lemma 2.7 one easily gets

tke estimate (3.4) hence the unicity,

2th method. Let £ > 0 be a parameter and look for u € Z such that

£ [ E
(3.1¢0) Aliu ,v))h + (({L + B)u ,v))h 1z E((u ,V)}Z = (£, 9))y,, ¥Wves,

We take +8 if A > AU and -€ {if A < -A ., The left hand side of the above

0

equation is a bilinear continuous and coercive form over %, vconsequently by a classical :
£
result of P. D. Lax and A. N. Milgram there exists a unigue solution u of problem
: £, € e 2 €
{3.10). By taking v = u it follows that {Ix] - Au)ﬂu li + ellu ﬂz < lfﬂh"u ﬁh. Hence

£.2 1
. o il € ————— JIFk
(3.11) WAL S T M
0
€
and from the first estimate above it follows that elu "; is bounded by a constant

€
independent of €. Thus there exist a subsequence © and an element uw € Y such that
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€
u —> 1y weakly in Y ,

3.12
12 et v 0,
when € + 0, 1In particular (L + E]uE == {L + B}u weakly in ¥. By using now (2.2B) we
write (3.10} in the form (luE + (L + Blug - £,0v) = 7T E((uE,V)}Z, ¥v € Z., By passing to
the limit when € + 0 it follows that Au + (L + B}u - £ = B. The remainder of the proof
1St

is as in the method above. ]

4. The Won-Homggeneous Problem. For convenience define

5 = ] =1, p
HE = mo(E" 3]

% or % and p € N. 1In this section we consider non~homogenecus boundary
i

condition PNu = w or more explicitly

{4.1) w0} = w (x'), k=1,...,p, for x'e @1,

et £ @X and w @ H;/Z + We said that u € X is a strong sclution of problem

{3.1), (4.1) if there exist sequences u(z) ey, fll) @ X, e N, such that

2 3 i
Au(z) + Lutﬂ) + Bu( Y. f( J, ?NU(E) = w on the boundary (in the usual trace sense) and

ulll +u, f(ﬂl * f strongly in X,

Theorem 4.3, Let f @8 X and wa H;/Z be given, and let [A] > 10. Then there

exists a unigue strong solution u of problem (3.1), (4.1). Moreover

¥,
p ‘2
(B o

c ~
. S e + Al - A+ + il ! .
(4.2 lely, § =5 (161 + ez - A, + 480+ ip O)EWnH;/z}
o < c P
Proof. Consider a linear continuous aperator w * w from H;/z into ¥ such that
.

PNW = w on the boundary R?_1 {in the trace sense) and PNG =29 in R By carrying out

the change of variabies u = W + v and by using Theorem 3.1 the result follows easily. [

Por differentiable solutions a corresponding result fails. We start by giving a

necessary condition, later on we will prove its sufficiency. Define smooth soluticon as a

differentiable solution which belongs to 2. Let now F e Y and let u be a smooth
selution of equation (3.1) with the non-homogeneous boundary condition (4.1). At each

point x @ ' one has

Lwl 1 9
P A = H MRy,
1o-17 -1J i
(4.3) pNH AT = HP RPy, T =2, e,m ,
p'LB-Bp
| I

where the operators act on column vectors of R" and H;1 is the p %X p diagonal matrix
with diagonal elements h;1(x), k= 1,...,ps Hence by restricting equation (3.3) to the

i
boundary and by applying PN to both sides one gets

|
|
|
|
|
|
:!
|
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4 du 3un
{4.4) e M{E;EJ cens 5;_] =
1 1
where by definition
_ L
(4.5} F =t - Fylwl
and FA is the operator
m
_ -1 _J 9w
4.6) Fylul = dw + i WO g+ Byw
J=2 J

which acts on vector fields wix') = (w1(x'J,.-.,wp(x')) defined on the boundary R?_1. Hence

(4.7) Flx) € range of 3;1(x)M(x) a.e. on the boundary ,
is a necessary condition for the existence of a smooth solution. In order to reverse

condition (4.7) we want to state it in texms of the functicnal spaces used in this paper.

One has the following result:

H;/z be given and

Theorem 4.2 {necessary condition). Let the data f €Y and we

define F by equation {4.5). If there exists a smooth solution of problem {3.1), (4.1}

then the squation
-1 -
(4.8) Hp M(gp+1,-.-,gn) = (F1,---.FP)

1/2

admits at least one solution g € Hn—p‘

Proof. HNote that FA e L[H;/Z;H;/Z]- Hence F € H;/Z. Let now u € Z he a soluticn
du
du y p+1 n 1/2
of (3.1), (4.%). Clearly PN[ax } = ( A F e ] 8 HP onr the boundary. Morecver
d
from equation (4.4) one shows that PN[5§-] is a solution of equation {4.8]. 2l
1

We will now prove in the next theorem that the necessary condition stated in Theorem

4.2 is a sufficient condition in order to get a differentiable solution u & Y.

Pheorem 4.3 (sufficient condition). Let £, w and F be as_in Theorem 4.2. If

1/2

aquation (4.8B) admits a soluytion g € Hn—p then problem (3.1), (4.1) is uniquely solvable

in Y (hence in ¥ if w = D). Moreover the Following estimate holds

t
clhk ‘;;2
< -
. L e -
(4.9) fal, < TS o [[1+ ®ezial - A + lAﬁc1 + ﬂBﬂc1)]HfH +

+[203] = A, + dnE o+ asp _][1+ ROAD + uRE o+ EBE ) b !
0 o o o o P

P

where K is a real number such that (recall (4.8))

{4.10} Tgh L SKERD e
H

n-p P -

Proof. For each ¥ € HZIRE) denote by Yow and Y1¢ the vaiues (in the usual trace
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3
sense) of Y and 5{“ on the boundary. It is well known that there exist right inverses

1
zG’ e L2 @ 0% (RM] and ﬁ‘ e LiH/2E ] ot v, and Y,

. . -~ -1 ~ -1
respectively. Define up = YD Wor J=1,.-4,p, and uy = Y1 9y J=p+ 1,0..,n. Clearly
“;“Z < c(IwHH3/2 + NgﬁH1/2). Carry out the change of variables u = v + ;. Equation
(3.1} becomes P P
4.31) Av + Ly +me= £, 3£ - (A + L6+ BU) -

Obviously f, € ¥. By using {2.16), (2.1%) and (4.8} one easily gets f, € N on the
boundary. Hence £; € Y. By Thearem 3.1 equation (4.11)} has a unique solution v € ¥,
wmoreover

1
£ —_— .
ta.12} Il < 5 - ke b

This means that equation {3.1) admits a solution u € Y wverifying (4.1) and verifying
the estimate

1/20,~ 1 ~ o
] < Ihi fal + ———— 1ku + + - £} .
uﬁh h 0 [ u i - u + Lu + Bu ]

A
C q
Recalling the above estimates and recalling also that

F fwll < g(|Al + EAE , + WBl Mt

H1/2 c1 ¢ H3/2
P P

and that ﬂprH < clfl, the estimate (4.9} follows with straightforward

H1/2
calculations. The uniqueness is obvious. O

Consider now the matrix M(x). We say that rank M{x} = p uniformly for x & 1
if the sum of the squares of the determinants of order p contained in M(x) is bounded
below by a positive constant independent of x, 1.e. if
(4.13} I brat>o, weem'.

.agr

Corpllary 4.4. Assume that(71

{4.14} rank M{x} = p, uniformly on 1.

Then to each pair (f,w} € ¥ x H;/z corresponds a unique differentiable solution u € ¥

of problem {3.%), (4.1}, Moreover u verifies (4.9) with a value K such that

x<%m Ink if p=1,

r
d C1 C1

(4.15)

s P A e, if po> 1.,
R A

4 me
where the norms concern the boundary spaces € e 1), L=0,1.




1148 BEIRAO DA VEIGA
Proof. Let I be the set of all p-tuples of integers a = (ml,...,a } such that
b
1 % u1 g see & up € n - p. Denote by AJ, J= 1,0, = p the J~column of the matrix

M, by L (31,...,ap) € I, the value of the determinant whose ¢olumns are

Aa ,...,ﬁq and by Mi(F) the value of the determinant obtained from M by replacing
1

the J-column A“J by HF(E1,..-,FP) = (th1.-.-;hPFP). Let finally Iu = ‘91""'gn—p)
i
be the vector column such that 9, = Ma{F) For i = 1;,...,p and 9 =0 for
k ¢ [u1,...,ap}. From the definitions one has Mg = f Aa 9, and arguing as in the
i=1 i i
proof of Crammer's rule one shows that Mg = Muﬂp(Fi""'Fp)' The vector

-1
_ 2
(4.16} a=(1 w} I mga,
agT gL
verifies equation (4.8} i.e. the wector g{x) is a solution of {4.8), for x € B¢_1.

obviously g & HA{S. Finally estimate (4.15) follows from (4.16) with straightforward

calculations. Recall that HEN < clEl iInt . a
- 1 - -
H1/2 b] 1) i - l) 51/2i - 1)

Remark 42.5. Condition (4.7) determines the linear subspace of data (f,w) for which
a differentiable solution u of problem (3.1), (4.1) exists.

For simplicity assume the homogeneous boundary condition w 2 0. By neglecting w
the above linear subspace becomes(a)
¥y = {teVy: Pif(x) e range of H;1(X)M(x) a.e. on the boundary} .

If we want to solve (3.1} for every y € ¥ ({this means ¥, =V¥) conditicn {4.7)
becomes rank M{x) 5 » on the beoundary. In the other extreme case, namely rank
M{x) £ 0 on the boundary, ¢ondition (4,7) says that (smooth) sclutions can not exist if
£ @ Y. In intermediate cases for which rank M{x} = g, 0 < q % p, explicitly necessary
and sufficient conditions could be cobtained Eroﬁ equation (4.4) and from ‘Theorem 4.3. This

was specified only for g = p {Corollary 4.4} because this is the situation in problem

{1.2) where M = [@ @ 11, consequently g=p = 1.

Foctnotes

1. Later, in a paper independent from ours, Agemi exrended the approach of Ebln to
arbitrary initial data (see [1]).

2. Only the function. Not necessarily the derivatives,

B mo Lo, Bvi
3. This means that (Dv), = igz by vy - le e (izl ki, B—XJ—_), for k = 1,...,n.
4. Clearly with ((u,v))h replaced by the scalar preduct indicated above.

5, See also Remark 2.4, (4i).
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6.
7.

B,

[#]

[2]

i3]

(4]

{5}

[6]

[71

[8]

9]

Actually one has (u(i),Lu<E)) eY XY, ¥ e N.
Note that comdition (4.14) can't be verified if 2p > n.

Note by the way that Y o Yl o ¥,
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