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Summary. — See Introduction.

1. — Imtroduction and main results.

Let £ be a bounded connected open subset of Re, locally situated on one side
of its boundary I We assume that I', a differentiable manifold of class C+2, has a
finite number of connected components I',, I, ..., I, such that I 7 =15 By oy W,
are inside of I'; and outside of one another. We denote by n = n(z) the unit outward
normal to the boundary I

We denote by H*(£2), k non negative integer, the Sobolev space of order & with
the usual norm | [, and by (, ) and | | the scalar product and the norm in H(Q) =
= L*{2). We denote also by H*(®) the space (H*(£2))® of the vector fields v = (01,
yy 03) SUCh that v, e H¥RQ), i = 1,2, 3, and by ||, the norm of the vector » in
(H%£2))®. The same convention applies to the other functional gpaces and norms
used in this paper.

Let T'> 0 be given. We denote by L=(0, T'; H*) the Banach space of the (mea-
surable) essentially bounded functions defined on (0, T) with values in H*), The
norm in this space is denoted by | | rr. The subspace of the continuous [resp. lip-
schitz continuous] functions on the closed interval [0, T] is denoted by C (0, T'; H*)
[resp. Lip (0, T'; H*)]. As remarked above we write L=(0, T'; H*) instead of (0, T
(H*)?), and so on. Finally [ Jsr denotes the usual norm in the space LYo,
I 7Y,

In this paper we consider the following system of equations

%:——I—('U'V)'U:_Vﬂ in QT;QX]O,T[’
(1.1) e =9 o

v =0 on ZTEFX.]O;' T[J

V]mo = () in 0,

where the scalar fleld 6(t, «) (verifying the compatibility conditions (1.5), (1.6)) and
the initial velocity field a(x) are given. We prove in this paper the existence of a

(*) Entrata in Redazione il 5 maggio 1979.

Hev—29



280 H. BETRA0 DA VEIGA: On an Buler type equation in hydrodynamics

unique vector field »(f, #) and a scalar field z(t, #) solutions of (1.1) in @y where /i
given by (1.7), is maximum when 6 = 0. The uniqueness of x is up to an arbitrary
function of . Remark that if 0(¢, ) = 0 on @, the equations (1.1) are those of the
motion of an incompressible ideal fluid.

We introduce in this paper a combination of the « curl method » with a fixed
point in the context of L(0, T'; H*) spaces, which avoid the use of lagrangian
coordinates and Hélder continuous functions, inadequate for our purposes. Really the
equations (1.1), or more precisely the equivalent system of equations (1.1') - (1.1"),
will be utilized in a forthcoming paper (see[1]) in giving an existence theorem for
the general motion of a compressible ideal fluid (*). To do this we use the solution
» = o[f] of (1.1) in a suitable hyperbolic system of two equations of the first order,
whose unknowns arve 8 = div v and a function of the density mass (¢, #); this last
gystem is equivalent to a single second order hyperbolic linear equation. We com-
plete the proof by proving the existence of a fixed point d=10.

Recently we have seen an independent paper of Ebin (see [3]) where a theorem
is stated for subsonic initial velocity a(z) and initial density near constant. It is
interesting to point out that our hyperbolic system is equivalent to the hyperbolic
equation (2.10) of [3], with the same boundary condition (2.4).

The method introduced in this paper is useful also to study problems in
which dive = 0. See for instance the subsequent paper [2].

Let us return to problem (1.1). We assume in this paper that

(1.2) a(@)e H*(Q), an=0 on [,
where k=1 is an integer. We define
(1.3) a(@) =rota(®), y@) = diva(@).
Furthermore we assume that 6(¢, #) .veriﬁes the following regularity conditions

0 e L0, Ty; H*),

1.4 do ;
S O e 170, T HY,

and the following compatibility conditions

(1.5) Ja(z, @)dw =0 in [0, To],
0

(1.6) Blio = p(@) in Q;
Recall that 6 € Lip (0, T,; H*) as follows from (1.4).

(1) The results on the continuity of the map 0(i, @) — v(t, x), established in Section 4,
will be useful in this context.
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Let now the vector fields w@), 1 =1,2,.., N be those defined in section 2,
and consider the following systems (T'<T;)

divy = ¢ in @y,
roty = ¢ in Qg,

(1.1') v o= in Xn,
(V]tmo — @, u®) = 0, l=1,2, "
(%)+('0-V)v,uf"):0, b= A &y I

and
o .

e, aTON—CV)o=—6 g,

{lemo = atfax) in Q.

If v is a solution of these Systems there exists a & such that (1.1), holds since a
vector field in Q ig g gradient if and only if it is irrotational and orthogonal in 7.2
to the funetions u®, From this last property and from kiuown results for the Neu-
mann boundary problem, (1.1), follows easily,

Reciprocally if (1.1) holds we apply the property just referred to get (1.1"), and
(1.1");. Hence (1.1) is equivalent to (1.1') plus (LAE):

In this paper we brove the following results:

THEOREM 1.1. — Let k=1 be an integer and let a(w) and (¢, z) verify the assump-
tions (1.2), (1.4), (1.5) and (1.6). Let a(z) and y(x) be defined by (1.3). Then there
exists a constant ¢, — 6(k, £) such that there exists a (unique) solution » of (1149,
(1.1") (or equivalently of (1.1)) in a time interval [0, T'] where T is given by

T %
d) g ”“’”fm + “B”k+1,Tn .
Moreover
v e L0, T'; Hw+e)
(1.8)

G0, T Ho,

and the following estimates hold:

(1.9) lollxsam<en( s + [6]e+1,2)
d df 2
(1.10) d—:} e 0 Efﬂw + &[o)3a,r,

where ¢,, ¢, and ¢, depends only on k and 0.
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For the applications we have in mind the following regularity result will be useful:

THEOREM 1.2. — Under the assumptions of theorem 1.1, and if

2
%t_?"e L=(0, T'; H*)
then
12
(1.11) (d—tfe L7(0; T )
dt 420 dv
(1.12) T k,T<G4 RE—EL_!’T'{" Ga“’UHkq.z,T a ik

where ¢,, ¢, and ¢, depends only on k and 0.

A uniqueness theorem and results on the continuity of the map f — v are stated
and proved in section 4.

Tinally we remark that we can add an external force field — f(t, #) to the first
side of equation (1.1). This is equivalent to adding the force — f to the term v/t +
+ (v-V)v in (1.1'); and rot f to the second side of (1.17);. In this case results and
proofs remain essentially the same. On following our proofs the reader easily veri-
fies that the theorem 1.3 below holds. For the reader’s convenience we state in sec-
tion 5 the main equations, established for the case f =0 in the other sections; we
denote corresponding equations by the same number, with an asterick in the case
f=0 (as for example (1.12) and (1.12)*).

THEOREM 1.3. — Assume that in our equations we add an external force field
f(t, #) as described above. Let

(113) f(t’ m) ELI(O, Tn; Hk+2) N L°°(0, Tu, H‘H'l) .

Then theorem 1.1 holds again with (1.7), (1.9) and (1.10) replaced by (1.7)%, (1.9)*
and (1.10)* respectively (see section 5).
If moreover

(1.14) %};eLw(O, I 8%

then the theorem 1.2 holds with (1.12) replaced by (1.12)*.

Tn this paper we denote by ¢, ¢, 61, - positive contants depending at most on &
and .

REMARK 1.4. — Assume that the conditions of theorem 1.8 are fulfilled with (1.4)

replaced by the stronger condition

1
6 € I7°(0, Ty; H*?), ge I2(0, To; H*).
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'Dghbte by T*(k), k1, the leagt upper bound of the ¢, ]0, T,] for which a sola-
o tion, veritying (1.8) in [0, %], exists in [0,1,]. One can prove as in [B] that T*(k) is
- independent of k. Moreover, as in [5], a ¢*({2 x [0, T#[} regularity result holds.

"2, — Auiliary results.

In the following 7'< T, is a pogitive real number, whose value will be fixed later
by eq. (1.7).

By the hypothesis on the domain £ it follows that if £ is not simply- connected
one cal make it 50 by means of a finite number of cuts. If ¥ is this number it is
known that there exists N vector fields «®(z), 1 =1,2,..., N, defined on £ and
such that div w" =0, rotu» =0 in Q, w®.n =0 on I, (u®, ) = §,; (see for
instance [4]).

For convenience we put

(2.1) B = 16]e+1z, -

The system (1.1'), {1.1") will be solved by nsing a fixed point theorem on rot v.
Thus we begin by studying the system

dive =6 in @y,

ot =¢ In @y,

v =0 on Xy,

(Vo — @y uV) =0, t=1,2 .., N,

7
Cfﬁ('v, w®) + {(v+V)w, u®) = 0 clagsically in [0, 7], 1=1,2,..,N.

Let the vector field p(f, #) verify the hypothesis

(2.3) g € L0, T; H¥1) A 00, T; H*

{2.4) Plimo = ()  in £,

a.nd.

(2.5) divg =0 in 0, J.(p“ndf’ﬂO i=1,2,..,m,
Iy

for every { [0, T]. Condition (2.5) is equivalent to the existence of a vector func-
tion w such that ¢ = rot w; see [4], Prop. 1.3. We assume that ¢ belongs to the
bounded set

(2.6) lplissrz<D ,

where D is given by (3.1).
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PrOPOSITION 2.1. — Let 6 verify (1.4), (1.5), (1.6) and let @ verify (2.3), (2.4), (2.5).
Then (2.2) has a unique solution v(¢, #). Moreover v(f, #) verifies (1.1), and

(2.7) v e L*(0, T; H+?) N 0(0, T; H*)
with (2)
(2.8) |o]koz<e(B + D + |a]) exp[e(B + D) T] .

ProoF. — The solutions of the elliptic system (2.2),,; under the hypothesis (1.5),
(2.5) are given by

N
(2.9) o(ty m) = 0t 2) + 3, 0,(t) u¥(a) ,
=1
where v° is the particular solution of (2.2),,, such that
(2.10) (@% u=0, 1=71,2,..,N.

Here ¢ is a parameter. For the particular solution v° one has ||[v°]| e <<e ([|rot v°] iy +
+ [div v]|+1), hence

(2.11) |o*)to,z<o(B + D).
Moreover
(2.12) e 00, T'; H¥)

since 0, @ € C(0, T'; H*) (3).

We will now determine continuously differenfiable real functions 6,(¢) in such
a way that the vector field (t, #) given by (2.9) also solves equations (2.2),5. It fol-
lows easily that

(2.13) ((v: V)0, u®) = ot¥(t) + 2 aP(t)0,(t) + Z ) (8)0,(2)0,(t)
id=1
where
(2.14) o (t) = — [B0r-unda— [[(0*V)u]- 0
a it

(®) If @ is simply connected, i.e. N = 0, one has obviously [v|;ts,»<¢(B + D) and the
proof is finished.
(®) Recall that 6 is a scalar and ¢ a vector.
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(2.15)  aP(¢ jﬁu(” W do — J[ (v°- V) utb]- u”’dm-f[u”’ V)uh]-v'de ,
(2.16) i = _f[ (w® V) u®] - da

Hence
(2.17) «O(t), (1) € €0, T; R) 4,§,1=1,2,..., N.

On the other hand using the identity
(2.18) (v, ) = 04(2)

one gets from (2.2),;

dﬁ; == 4 11 Z a0, + z a00,0;, 6,(0) = (a, u®),

(2.19) == Z,

l=1,2,..,N. This system of ordinary differential equations have a unique local
solution. We will see now that the solufion is global. Put

N
(2.20) vt = 0,(t)u™(z) .

=1

Multiplying (2.2); by 0,(t) and adding in [ one gets

(2.21)

BO| =
&]Q,,

||qﬂ )2+ ((v-V)o,9t) = 0.

On the other hand, with integration by paits, one see easily that
((v-V)o, v1) = — (6, [v2[2) — (6°, v*) — ([(+° + v*)- V]v%, o°) .

Hence if we define

N
(2.22) y(t) = 2 (6.(1))*

it follows in particular that

2

d L - e Y
& <0B +Dyy) + oB + DPVIE),  y(0) = X (@ V).

Thus

(2.23) y(t)<[c(§ + Dy + % (@ um)ﬁ] exp [¢(B + D)1],
=1
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and the solution of (2.19) is global. Moreover
(2.24) o) || 3 e <ey(t)

where ¢ depends only on the quantities |u|;+., hence on 2 and k. From (2.24),
(2.23) and (2.11) one gets (2.8). 0O
We consider now the equation (1.1”). One has the following result:
PROPOSITION 2.2. — Let 6 verify (1.4), and » verify (2.2), and (2.7). Then (1.1") has

a unique solution (¢, #). Moreover

fel>(0, T'; H*),

(2.25) B yers 1.
age L (0, T, H ) ’
and
121,20 < el isx €xP [T ([|0]]1s2,2 + [10]i4,2)]

<e([oleae + 10]1,2) [ w422 -

I,

(2.26) s
dt

By using proposition 2.1 and 2.2 one gets the following result:

THEOREM 2.3. — Let 6 and ¢ verify the hypothesis of proposition 2.1 and let v
be the corresponding solution of (2.2). Then (1.1”) has a unique solution £ and moreover

Ielea,2< lafisa exp [eT(B + D + |a]) ecFmn]

. d _ B
(2.27) H Zﬁc i <o(B + D + |a|) exp [¢(B + D) TT({||x1,z -

PROOF OF PROPOSITION 2.2, — The construction of a solution of the linear sys-
tem (1.1") with the aid of the method of characteristics is classical and we leave it
to the reader. This method gives also the uniqueness. We prove now the estimates
(2.26) (4. Let DP, B a multindex, be a derivative of order |f|<k 1. Apply D’
to both sides of (1.1"),, multiply it by D and integrate over 2. Recalling that

(2.28) ((v-V).D8Z, DEL) = — 3 (dive, |DBE)?)

one gets eagily

1d

= — |D8f|t<c| D" Dx(Dw)| | D DE Daf| | D :
5 1D0elr<ol Dot 5. N\peoo)| DrEil + oloc], 5 19eol 0ve]

(%) We can use (2.26) as an a priori estimate, and afterwards prove the existence of a
solution by an approximating method. Alternatively one can prove (2.26) by estimating the
solution constructed by the method of characteristics.
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By adding in §, for ]ﬁ lgk + 1, it follows that

2 i ||C(t Y2 e el o e + [6C0) M er) 1@

since H*H is an algebra. Recaliing that (0) = «, We apply the Gronwall’s lemma

to get (2.26),.
On the other hand from (1.1%), it follows that for almost all ¢ one has

H

- LEMMA 2.4. - Under the assumptions of theorem 2.3 the golution ¢ of (1.1%) verifies

<o(folus + 101 1Sk »

and this gives (2.26},,

dive =0 in 2, jz;-wr:o i =1,2..,m,
for every te[0, T].
PRrOOF. — From (1.17),, (2.2), and from the general formulae

(2.30) (0-V) — (- V)o = v div{ — ¢ dive— 1ot (0AL)

it follows that

(2.31) 8@ —|— pdive = rob (PAL) .
Applying the divergence to both gides of (2.31), using the general formulae
(2.32) div (v dive) = (v- V) div{ + (divIHdivo)

and using alse (1.1"), one gets

Q(E;;Q + (V) divi =—8div{,
(@ oo = 0 ;

this trasport equation has a unigue solution div ¢ == 0. Finally utilizing (2.31) one hasg

%fé%d]’ = ——J‘(divé')'v-fndf +Ir0t (ALY ndl =0,
Iy Iy

hence
jc-ndfzju-ndr.:o. o
Iy Iy

19 ~ dnnali di Malematica




288 H. BEIRK0 DA VEIGA: On an Huler type equation in hydrodynamics

3. — Construction of the fixed point,
TIn this section » and ¢ are the solutionsg of (2.2) and (1.1") respectively. Furthermore
(3.1) D = 2oty -

From (2.27), it follows that there exists a constant € = ¢k, 2) such that if T
is given by (1.7) then

"C"k+1,i"<~.D )
(3.2) ac

‘ % :.-.5['<‘D1 ]
where '
(3.3) D,=¢B + D+ |a|)D.

In this section 7' is given by (1.7). We define now

(3.4) 8= {pel~0, T; H)N C0, T; HY):
lpleszr<D and ¢ verifies (2.5) on [0, T'] and 2.4)},

and we denote by ¥ the operator

{ = Flg],

which is the product of the composition of the operator «p — v » defined by (2.2)
with the operator «» — & » defined by (1.2").

LemmA 3.1. — The operator I has a fixed point in .

PROOF. — We will utilize the Schauder’s fixed point theorem in the gpace X =
= 0(0, T'; H*). We easily see that 8 is closed and convex in X ; furthermore from (3.2)
and lemma 2.4 one has

ag

(3.5) 7(8) c{ces: -

Q-D1} .
kT

In particular 7(8) is bounded in Lip (0, T'; %), and from Agscoli-Arzela’s theo-
rem F(S) is relatively compact in X,

Let now ¢, p.€8 (n=1,2,...), . ¢ in X, and denote by »? the particular
solution of the elliptic system (2.2),25, With data ¢,, for which (2.10) holds. Since
v, —° in C(0, T; H*") it follows that the coefficients of the gystem (2.19) con-
structed by using the »° converges uniformly in [0, T] to the corresponding coefficients
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constructed by using v°; hence the same holds for the corresponding solutions 6, 6,.
Tt follows now from (2.9) that the solutions v, of (2.2) converges in C(0, T; H*1)
to the solution v of (2.2), where v, corresponds to the data ¢, and v to the data ¢.

Let now £, be the solution of (1.1”) when v is replaced by v,. By taking the dif-
ference between the two equation and multiplying it by {— (. we obtain atter inte-
gra.ting over £ that

I* + elgalalo — vallallE — &l

:)

where (2.2),, and the Sobolev’s embedding theorems arve used. Denoting by ¢ a
constant depending at most on k, 2, D, B and |a| one has

2 pr 2 1¢— talr<ellEalalo — vl + ol

4 e — el < O(Ile —&allt + o —oallul = &) 1€ =L@ =0
Since |v — v,], — 0 uniformly on [0, T] it follows that ¢,— £ in L=(0, T; L?),
hence in X. Thus F is continuous on § and Schauder’s theorem applies. E!

PROOF OF THEOREM 1.1. — Let £ = ¢ be the fixed point of lemma 3.1. By propo-
gition 2.1 and theorem 2.3 the corresponding v verifies (1.1'), (1.1") on [0, T'] (*) and
also verifies (1.1),. We obtain (1.9) from (2.8), (3.1), (1.7). We prove now (1.10)
and (1.1);. Equations (2.9), (2.10) give div ¢* = 0, rob v* = Cin Qp, v*n =0 in Xy
and (% w®) =0 in [0,T], I =1,..,N. By differentiating with respect to ¢ one
obtains corresponding equations fm 87)“/ ot, with 6 an ¢ replaced by 20/2t and of/d¢
respectively. Hence

I;,T) ’

df
dt ol

@
dt

dv®

dt

=]
o

41,7
and using (1.1"), one gets in particular
df
dt k,T

dv®

(3.6 - + el olisss

=
k4-1,T

In particular it follows from (3.6) that (1.8), holds, consequently (2.2); yields (1.1');.
Moreover (2.2); gives

dn,(t

BO__(9)0,u0),

hence

py <Cleloz 1ol

(3.7) H i,

where ¢ depends only on % and £ (via the quantities [[u®]s).

(5) For the moment (1.1'); holds only in the weak sense (2.2);.
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From (2.9), (3.6) and {3.7) one has the estimate (1.10).
Finally from (1.1%), and from

ot (2 4 0-9) v) = V) — (Vo 4 67 = 0

one obtains the existence of a(t, #) such that (1.1), holds. The unigueness of the solu-
tion follows from lemma 4.1, proved in the next section. [J

' PROOT OF THEOREM 1.2, — By differentiating with respect to ¢ the equation (1.1%),
one easily gets

a2 ¢ dv
(3'9) ”E‘%} ‘kgl,ﬁ" <G”UH»‘J+2,T “d}“ - .

On the other hand by differentiating twice the system of equations satisfied by v°
(see the beginning of the proof of theorem 1.1) one gets

d2y° a2 d:4
3.10 Z= i .
(3:10) dis kﬁ“( [ R k_l,m)
Moreover, by differentiating with respect to ¢ the equality stated after equation (3.6)
one obtains d20,/dt* = a((v-V)o, #(9)/d¢; hence in particular
a6, dv
3.11 T ¢l e .
(3.11) ” . <efofr a0 0 i

From (2.9), (1.9}, (1.10) and from the estimates just obtained one getis (1.12). O

4. ~ Uniqueness of the solution and continuous dependence on §.

LemMya 4.1. ~ Let v, and o, be the solutiong of (1.1) corresponding to 6; and A
respectively, Assume that (%)

(4.1) 01y b€ I=(0, T'; L3y,
and that (¢ = 1, 2) ‘
v € L2(0, T; Iy,

Vo, e L0, T; I°) s

(4.2)
%fe L0, T; L) .

{*) These assumptions are not the best possible, but are sufficient for our purposes,

|
.
&
E
E
i
N
5
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Then

(4.3) v, — | 0,75 29 < ajie,— 8]l pogo, 7 1) 2

where ¢ depends only on £ and on the norms corresponding to the assumptions (4.1),
(4.2). In parbicular the solution is unigue in the class (4.2) for data in the clags (4.1).

Proor. — One easily sees that 4,
o0,
—l-' (’U,;'V)'Ui 4_.0.
at 150, I9)

Moreover from (1.1), it follows that — Vo, € T3(2) (i =1, 2) for almost all t {0, T].
By choosing with mean value zero in & ib follows that |z < ¢l Vo, for almogt:
all [0, T], where ¢ depends only on £2. Hence

(4.4) il o, 0 < C.

Leb w = v, — v,. From (1.1) we dedace that (dwfdi) + (v Viw + {w-V)yv, ==
= — V{m,— m,) and divw =0, — 0y In @y, wn= 0 on Zp and W= =03 with
standard calculations we obiain

4
di

[

bl + (190 —5 0y l) = (s 0= 0

Now from the assumptions on Vo, and 0, and from (4.4) one obtains
g (1) <alt)y(® + by plt) ,  y(0) =10

where y{t) = |lw(t)j?, pll) = [l (8. — 6t} and the coefficients a(t) and b(t) belong
to L0, T).

By comparison theorems for ordinary differential equations it follows that y{t)<
<Out). O

T.et now B>0 and B; >0 be arbitravily gived and define

%

*5 T =5 falvee

where ¢, is the constant thal appears in (1.7). Define also

dt

(4.6) Rx{ﬁ:ﬁveriﬁes (1.4), (1.B), (1.6) in [0, 7] and j0]uax<By uﬂw ‘ éBl}.
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Let now v be the solution of (1.1'), (1.1") (i.e. (1.1)), which exists by theorem 1.1,
and define @, by

(4.7) v = ®,[0].

One hag the following result:

LeymaA 4.2, — The operator
D,: B — C(0, T; H1)

ig continuous, when R is provided with the X norm.

Proor. - Let 6,, 6 e R, 0, —0 in C(0, T; H¥), and put v, = @,[0,], v = D,[0].
From (1.9), (1.10) one easily gets that

(4'8) "'Un”LilJ((],ﬁ.";H’”l)g G ] "Un(t) k+2“<-0 Vt (= [0: -T];
where the constants are independent of n. Hence by Ascoli-Arzela’s theorem the
set {v,} is relatively compact in €(0, T; H*1). On the other hand v, — » in L=(0, T;
L?), by lemma 4.1. These two statements imply the result. O

Define now

dazf

By = {6 eR: pm

éBz}y

k—1,T
where B, is a positive constant. One has the following result:

LEMMA 4.3, — Let 0, € Ry, 6, — 6 in C(0, T; H*). Then

dan dv
L ki) H . Ik
pr _>(Et in C(0, T'; H¥)

where v, = @[0,], v = @,[6].

ProOF. — The proof is analogue to that of the preceding lemma; instead of (4.8)
we use now the estimates

dv,
at

dv,

(4.9) T

<(C, for each te[0, T],

Byl

<
Lip(0,T; H*)

which follow from (1.10) and (1.12). 0O

In the case of an external force field f(t, #) (see the end of section 1) the lemmas 4.2
and 4.3 hold again as one easily verifies. One has then:
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LEMMA 4.4, — Assume that one adds an external force field f(t, #) to the equa-
tion (1.1) and let f verify the assumption (1.13). Furthermore replace (4.5) by

Co
4.10 T =g T ales + Flesar.
( ) B + “ﬂ"k+2 + [f]-’l‘+'1.Tn

where &, = G(k, £2) is now the constant appearing in (1.7)% Then the statement of
lemma 4.2 holds. Moreover, if f verifies the agsumption (1.14) lemma 4.3 holds.

5. — Motion in an external force field.

We give here without any comments (see the end of gection 1) the modified main
equations corresponding to the case when an external force field f(t, #) verifying (1.13)

is added to the equation (1.1):
0
(1.1)% EE+(1J'V)’U—~](=—~V.TE,

(L1 (%g + (v-V)v—f, u‘”) =0,

0
MUY Z4 @ VE+ @V =—0C + ot

C

e = . ————
( ) “ﬂ:" 2 + "GH 141,T, _!_ [f]l;-i-').,ﬂ"o,

(19)* ”ﬁilk‘wﬁ!‘\(ﬁc(”fﬂu.w»z + “0” k41T '*’ [ﬂi‘+2"f)

Ll de db
SRR Py T o O Nolsne + elflere
(1.12) D ﬁ.,;'"‘c” P k—l,T—I—Gllv“k-l-g’T 7 k+l,T—r S lnw

(2.2)s %(v, ) + ((v-V)v—1, u®) = 0 classically in [0,T], 1=12,..,N.

(2.8)* ””"Hz,réﬂ(ﬁ + B -} "a" i [f]o,T) exp [G(B + D)I1.
“C“k+1.7‘<(ﬂ°¢||k+x + G[f]k+z,m) exp [CT( H”“m—z,r -+ H@||J.:+1,T)] )
(2.26)* d
L NE], <eltehins + 101ichs + el

HCH J':+1,T‘<\(HOCH1.:+1 o= cl[ﬁrurz,ﬁ') exp [GT(E + D+ Ha" + [ﬂn,'f‘) eem+oIT]

(2.27)* 'dc

QU(E + D Ha'u == [ﬂ.ﬂv-;-z,’f) exp [G(B + D) T]“E"JH-LT + Gn;fn;.-_p,:r .

T

dt
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(3.1)* D= 2{“05”k+1 + cl[f]k+2,Tn) "
(3.3 Di=o(B + D+ o + [hg) D + offlerns,
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