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On theEuier Equations for Nonhomogeneous Fluids (I).

. Hueo BEIRA0 DA VEIGA - ALBERTO WATLI (¥)

1. — Introduction and main resnits,

In this paper we consider the motion of a non-homogeneous ideal
incompressible fluid in a bounded connected open subset £2 of R

‘We denote by »(t, #) the velocity field, by g(f, #) the mass density,
and by n{t, ) the pressure. The Euler equations of the motion are
(see Bédov [18], chap. IV, §1, p. 164}

o [%r%—i— (fu-V)@)——b] =—Vr in @,=[0, T,]x 2,
dive =0 in Qr,,
v =0 in [0, TIx I,
® 1, |
5E+?)-Vg:0 in ¢r,,
0li=0 = Go in 2,
T — in 2,

where # = n{z) is the unit outward normal to the boundary I” of 2,
b = b(t, x) is the external force field, and ¢ = a{z), gy = gol#) are
the initial velocity field and the initial mass densily, respectively.
Non-homogeneons ideal incompressible fluids are considered by many
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authors; see for instance Sédov [18], Zeytounian [23], Yih [22]; see
also LeBlond-Mysak [13].

¥or the case in which the fluid is homogeneous, i.e. the density p,
(and consequently o) is constant, equations (E) have been studied
by several authors (for some reference see [2]). For non homogeneous
fluids, Marsden [15] hag stated the existence of a local solution to
problem (K), under the assumption that the external force field b{t, x)
is zero. Marsden claims that his proof can be extended to the case
in which b(¢,#) is divergence free and tangential to the boundary,
Le. divd =0 in @, and b-n =0 on [0, T,Jx]" However for non
homogeneous fluids a general force field can not be reduced to thig
particular ease (for homogeneous fluids this can be done by sub-
tracting a gradient).

Marsden’s proof relies on techniques of Riemannian gecmetry on
infinite dimengional manifolds. Our preof is quite different and ig
related to those of Wolibner [21] and Kato [9]. However the gener-
alization of the technigues used in these last papers gives the existence
of a solution only under the additional assumption [Vgo/ge]e<K,
where K is an a priori fixed constant depending essentially on Q (see
our previous paper [2]). The aim of this paper is to drop this con-
dition by introducing an essential device, the elliptic system consisting
in the seventh, the eighth and the ninth equation of system (A),
in §4. The system (A) does not contain explicitly Jv/ot (compare
with system (4.17) in [2]) and this allows us to drop the referred
additional assumption.

We prove the following result:

e

 THEOREM A. Let Q be of class (A 0< A< 1, and lel ae G+
with diva =0 in Q and a'n =0 on I, g, € CLHHQ) with p,(z) > 0
for each xe 2, and be Q).

Then there exists Ty €10, To), ve OV Qy), o€ CFA1THQL ), me
€ 0940y, ) such that (v, o, ) is a solution of (B) in Q.

A unigueness theorem for problem (E) is proved by Graffi in [6];
see also [2]. :

For a mathematical study of non-homogeneous wiscous ineompres-
sible fluids see Kazhikhov [10], LadyZenskaja-Solonnikov [11] and
Antoncev-Kazhikhov [1]; see also Lions [14] and Simon [24].

In the forthecoming paper [3] we prove corresponding resulis for
the three-dimengional case. Since the publication of this paper has
had some delay, a new result of the authors has appeared in the
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meantime: we give an easier existence proof in Sobolev spaces, without
the use of éh;t.i-a.cteristies, and we prove a 0% regularity result (see [4]).
Finally the authors remark that the extension to the ease when
42 is not simply connected follows an essentially well known argument,
(193, [21). Fowever, for the sake of completeness a preprint eontaining
all the computations is available (see On the Buler equations for non-
homogeneous: fluids (I), £ not simply comnected, Trento 1979).

2, = _Nétaiions.

- Tt O be a bounded connected open subset of R%. We denote by
S CMHOV with b a non negative integer and 0 << 1< 1, the space of
- k-times continuously differentiable functions in {J with 4-Holder con-
tinuous derivatives of order k. Ior each T'e€]0, 7,] we denote by
Q) the space of continuous functions in Qr and by O4Q,) the
space 0f continuously differentiable functions in Qs

We det
" wrs Bl
o D"?’zaTw DD*q":amglawgeaf’
C*MQr) -~ ={pe Q)| D"Dig e 0o(Qy)
o it 0<j<k, |o|<h and j + |a|<max (&, b)),
CH0 (@) = {p e 0Q,)|p

is A-Hglder confinuous in ¢, uniformly with respect to x} ,

0@ ={pe @y

is A-Holder continuouns in z, uniformly with respect to t},

CHAMQp) = {pe Cbr(Q,) |D=Dip e CH0(Qy)
if j - |o) = max (k, &) or if j=k},

G4+ XQa) = {pe C4(Qu)|D=Dip e (@)
if §+ la| = max (k, ) or if ja| = A},

CHHAMI QL) = CHHMQe) 1 Hh4(Qy)
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We denote by |- |. the supremum norm, either in £ or in 92, by
[ the usual A-Holder seminorm in {3, by [-1*** the usual i-Hélder

norm in C**4(£)). Furthermore we define

. |p(t, ) — (s, @)
= & —_——  F
[9lio t,steg)g‘l [t—s]? ’
8

zeld

[p(t, ) — @lt, 3)|

[9910,3 = SUP |.’.B—yl"

PR

?
TPy
(0,7

o l?’(ta "‘f’“) — (s, m)l
(@ hio,0 —t,sf;?[&]lo},)il‘] ,t —_ .S" s
ze2
Jip = —

z,veR l:ﬂ - ?)‘l

wFEY
tel0, 77

Corresponding definitions, with the same notations, are given for vector
fields u = (u,, u,). Every norm and seminorm is computed as in the
following example:

[#]; = sup sz——w«-) — )| .
w,veld laj*yll
Y

Moreover we set
2 1
[Dut, z)| = [ Zl[Dfuj(t, m)‘a] v [ Duf E“s;lg [Du(t, =) ,
i b)) EQT

iyf =

and analogously for all other norms or geminorms. We puf

ROWE(@B 8_'?’),

ow,’ Oy

du,  Suy

oty =—-—--7+
“ om, Ox,’

where ¢ is a scalar function and o — (%1, ;) 18 2 vector function.
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3. — Preliminaries.

In the'f.ol'lowing, P(t, @) € C%*(@,) will be a generic element of
the sphere .
CRIT Igloz<4
whete .ﬂ_lé_;- radins A4 is a po\sitive constant, which we wiil specity below
(see’ (4.11)).
- We.denote by ¢, ¢, ¢, ..+, positive constants depending at most
on:'A and 0.

- Lt p be the solution of the problem

— Ap(t, x) = p{t, ) in 2,
{WHZO,

for each te[0, T]. We pui

(3.3) = Rotyp,

and we write » = F1[g).
. One has

- LEMMA 3.1, Let p — Figl. Then ve C140.) and

(3.4) o

0,144 <c”§p"0,2 <ed .
Moreover

(8.5) diveo =0, robo=g in Qp, vn=0in [0, Txr.

For the proof see [2], Lemms 3.1.

We now construct the streamlines of the vector field »(t, ). We set
Ulo, 8, @) =y(0), 0,t€[0, T, xc , where ¥(o) is the solution of the
ordinary differential equation

(3.6) % = oo, y(s)) in [0, T],

yit) =@ .
This solution is global since v-7 = 0 on [0, T]x{. Moreover U e (1.

([0, T1xQ7) since ve 0%1{Qr) (see for instance Hartman [7], chap. V,
Theor. 3.1, p. 95). We put [D; Ule= sup. [-D; Ufe, +, *)}w; an analo-
oelD,
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gous convention holds for all norms and seminorms eoncerning I7
and its derivatives.
We have

Lenma 3.2. The wvector fm':ctian U(o, t, @) salisfies the following
estimates

[Ulo,uo < eXP [ T[0]o, 0] << XD [¢T 4],
[Tlip,0<< 2] eXD [T[0]o,00] < 04 exp [6TA] ,
|Di U exp [T]Dv] ] < oxp [¢TA]
@0 [Di Uy 5 < T[Dv] 10xp[T(21Dv] oo + Alv]g,up) | <eTA exp [eTA],
[Di Ul o< (T Do)+ T[Doly s ho)| % exp [AT[0] 0]} -
cexp |20 Do||~] <eT*~*A(1 4 T*A4%) exp [¢TA] .

Proor. TFrom the resolving formula

(3.8) Ulo, 1, 8) = & + f o{z, Ulty t, o)) dr
[

we obtain

o

j‘g Uz, t, @)~ Ulr, 1, y)| dv| .
[

| Ua, t, 2} — Ulo, 1, ?])l < Im‘?f' + ['U]u,ltp

Hence from Gronwall’s lemma
|U(o, ty &) — TUlo, by y)| < jw—y| exp [T[v]op] 5

i.e. estimate (3.7),.
Analogonsly

|U(o, t, @) — Ulo, 8, 2)| < +

f|fu(r, Uz, t, x))| dr
{

-+ Uh}(r, U(z, t, 2)) —v{z, U(t, 5, @)} dz

8

=

IIU(T, 1, @) — Ulr, 8, )| de| -

L]

< "v”w,t_si ”l"" ['v]o,lin

From Gronwall’s lemma we have (3.7),.




On the Euler equations for non-homogeneous fluids {I) 157

On the other hand (3.8) yields
D, U0 t, w) = ¢, - f S Dyo(z, Ulz, t, ) D, Un(s, 1, v) dr
e J %

where ¢, is’the unit vector corresponding to the i-th axis.
By using: Gronwall’s lemma to estimate [D,Ulo,t, x)l, |D,U-
oy 5wy — D Uo, t, y)| and |D,U{o, t, ) — D, U(o, 8, )| we obtain
respectwely (3.7,

[D Uly 2 < T[Dv), A[U]u lip [-D; Ul wexp [T Do]l]

anfl ;
[D U]Ao<(T1 Do)+ T1D0)o 2L Ulip,o) 1D: Ullw 0xp [T Dvfle] . O

'-Gwen a velocity o(t, x), we denote by p == F?[v] the solution of the
problem

do .
(3.9) Er Vo=0 in @,
thg = Qo in Q .

We denote by &, &, 6, ..., positive constants depending at most on
Ay 82, 00, b
The following result holds

LeeMa 3.3, Let g, € O} with gow) > 0 for each ze . Then
the solution of (3.9) is given by

{3.10) olt, &) = QQ(U(O, t, w)) .
Moreover pe CL1H4Qy), Vo e C%Q) and

D,

’ Q:Q \’Y%J‘ 1D, U||w<CexpleTA],
1] -

D;‘Q] [VQO:I

| < Ul D, U w

[Qz 0,4 o [ ]ﬂipli H

(3.11)
VQ"] [D, Ulya<e(l + T4)exp[eTA],

[DiQ]i,O\‘/‘-. [VQn]A [ UJlip,OHDi U" o "VQo" m[Di U}Z,OQ
<6A*1 |- TA)yexp [eTA].
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Proor. By using the method of characteristics one easily obtaing
{(3.10). From this lagt formula it follows that

D p(t, ) = i,Z_i')hg[,(l"f(l), t, 2)) D, Uy(0, %, x) ,

and we prove (3.11) by direet computaiion. O

Now we wish to study the following equfbﬁ'on-, which will be useful
in the next section:

ila e .
(3.12) Fr + -V = y in @,
Llimo = a in 2.

We easily obfain the formal selution of (3.12) by using the method
of characteristies:

t
(3.13) £(t, @) = a{U(0, t, 2)) +Jy(r, Ulx, t, w)) dr .
0

By direet computation of this formula we obtain

Lumwa 3.4, Let a ¢ OM), y € C%*(Qy) and let  be defined by (3.13).
Then { e CQr) and
1€k llot] oot Ll 0 »
(314 Rloal@al U} 5o+ Tyl UL o »

[Eln0 <[]t [UFp0+ Tyloal Ulpo+ T2 7 ]oo -
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4. ~ Ex:stence of a focal solution of the auxiliary system (A) when
2 is sunply-connected

We wish to‘ prove the existence of a local solution of the following
system o

C Rot .
|z o vE=p 4+ =25 in Qs
. .:'1'0{".'0:5 in Qy,
dive =0 in @,
v =10 on [0, TIx{",
d
= f0Vg =0 in Qo
(A) 3
9]510 = @o in £ '
rotw = 0 in Qr,
. Vo o .
divwx—g—-w+gz(l),-'t)5)(l)m,-)mg divd in @,
i
wn =—g > (Dmn;)v,0,—pbn on [0, Tix T,
gf.{:o = o in D‘,

where a(x)=rota(x), f(t, ©) =106 b(t, #), and we have extended the
outward normal vector #{z} to a neighbourhood of I
Fn st of all we study the system

"rotwmo in 2,
. Vo . .
(4.1) divew ——=-w = o ¥ (D0} Djv,)—pdivh=f in 2,
o 8 £2d
wen =—p > (Dm0, —obn=4g on I,

L

where v 18 divergence free and tangential to the boundary, i.e. dive = 0
in 2 and vn=0 on I. Since £ iz simply-connected, (4.1), is equi-
valent to

(4.2) W= — Vo ;
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hence (4.1) is equivalent to

— Am 1 %Q.Vn =p Z (D,.q;,.)(l),-fe),-);—g divh in £2,
{(4.3) oot o
n € 2 (D) v, + eb-n on I".

1yd

Lenma 4.1. Let ve G, o e OV44(D) with min > 0, and be
. 2

& CVML), Then fe OMQ), ge O4TI") and problem (4.1) has a wuwigue
solution w. Moreover we C4{2) and

\4
(4.4) |12 & (1, 2, “ —Qﬁ

) s+ s

where K s « non-decreasing function in the variable IVe/ola.

PrOOF. The existence and unigqueness follow from clagsical Fred-
holm alternative arguments (see for instance Miranda [17], Theo-
rems 22.1 and 22.001, p. 84); in fact the adjoint homogeneous prob-
lem of (4.3}, i.e.

Ar* - div (%g n*) =0 in 0,

ot +(%Q-'n)n* =0 on I',

on

has @ unique linearly independent solution (since the same holds for
the homogeneous equation (4.3)). By direct computation one veri-
fies that this solution is 1/p and hence the compatibility condition

fidm :fgdd
e o
Pt r

is satisfied (see Lemma 5.2).

Moreover the solution = belongs to (tH() and iz unigue unp to
2 constant. Furthermore (see Miranda [16], Theor. 5.1, or LadyZen-
skaja-Ural’ceva [12], chap. TT1, Theor. 3.1, p. 126)

lelesa < Z{Fl2+ 1gliear+ (7]}
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where K = K(4, £, |Vp/els) is a non-decreasing function in the vaui-
able |Vo/gl. - |

One easily ‘sees that the particular solution n of (4.3} such that
7e(,) = 0, where x, € 2 is fixed, satisfies

{lera<E{fla+ lglrairt s

where K i a8 before; hence (4.4) holds.
- The functional H[x]= n(x,) can be replaced by any other bounded
linear functional in the uniform topology. O

Lot 4.2. et v = I'[pl, ¢ = F*w]. Then problem (4.1) has «
. umique. solution w(t, ) for each t e [0, T}, Moreover w e 1 40,) and

sy [0]l,142 <84, T,

where T is non-decreasing in the variables A end T. We denote this

unique solution by w = Fo[v, g,

Proor. We have only to sce that w e 0°*Q,) and that (4.5)
holds. Since f e C%*(@y) c C*([0, T1; C¥(2)) and g € CotH ([0, T1x T ¢
c O([0, T1; C1H¥(IM) for each A'<< A (see Kato [9], Lemma 1.2}, it

.- follows easily from estimate (4.4) (with A replaced by ') that w e Cr-

(10, T; O+ ¥()) € C"(Q,). Finally (4.5) follows from (4.4), from

Ve ’ Voo
0

[

*6) )

<l + T4)
0,2

exp [elA],
1

a,ﬁd'-"fpb'm. (3.4) and (3.10). Estimate (4.6) follows from (3.10). |
: Nowwe want to study the vorticity equation "

% | oy — g4 Bote,
at—l—qué‘_ﬁ—}— o W

{hco== in £,

@7 @

i.e. equation (3.12) with
R
{4.8) y=f - Tt “w

From Lemma 3.4, (3.11), (3.7) and {4.5) one gets easily the following
result: '
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LEaima 4.3, Let v = i), ¢ = Ffo), w— Falv, 0] and let & — ps.
[vy 0y w] be defined by (3.13) and (4.8).
Then £ e C*Qp) and

16k el + T2(4, 77,
@.9) Ll <ol exp [eT4] + To(4, T)
(Lo <o dala exp [eT 4] - Te(4, T) + 154, 1) .

The function ¢ of Lerama 4.3 satisfies .(4..'7')2 tri'vially ; moreover £ ig
& solution of (4.7), in the following weak sense:

LevyMa 4.4. For each ¢ e OYD) one has

z "
76 P = (v V) +(ﬁ 1 B%e

(4.10) g "W, ¢) ’

where (,) iz the scalar product in L2602,

For the proof seec Kato [9], Lermama 2.4,
We now define a map I as follows. The main of I is the sphere
of 0%(Qy) defined by (3.1) with 4 such that

(4.11) W = 4 P
‘We put -
(= Flp} = Fiv, 0,1] ,
where successively » — Mg], o = F4v] and w — o, o).

It follows from estimates (4.9} that there exists 7,10, T;] such
that the set

(4.12) S={pe CP Q)| |plo, <4, [¢],0<e, A1 4

satisfies F[8] c 8, where F, the norms, and the seminerms correspond
to the interval {0, 7. :

8 is a convex set and by the Ascoli-Arzeldy theorem it follows that
S i compact in C(@y).

Moreover

LEMMA 4.5, The map F: 88 has a figed point,

.
.
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ProoF. By Schauder’s fixed point theorem we have only fo prove
that F is continuous from § in § in the 0@ )-topology. Assume that
@n—>@ in CQy), p.8. Then g,->g in C([0, T,]; C*(2)), since the
immersion (see- Kato {9], Lemma 1.2)

CY Q) = €=([0, T]; ()}

is compact for s> 0 small enough.

Consequently from Schander’s estimates

'(';4.13)-:5 ' o svin [0, T)]; O()) .

" By estimating |U%(s, i, #) — Ulo, t, )| by Gronwall’s lemma, one cb-

tains as in [2], Lemma 4.3

(4.14) [0 — Uloc Thjjvm — vl mexp [ Th[2)g 1]
and '
(4.18) -2, 0% — D, U< To([D0]g 1 | Ul | U — U* +
+ D U | Do Do) exp [ T1]Dv||]) -

Consequently

On —> 0 in C%Qy)},
Rotp, - Rotyg in €@y}

Ou the other hand from the formula p,(f, ) = Q.,(U"(O t, z)) it fol-
lows: that {on} is bounded in CY1*4Qr) and {D,p,} is bounded in
02*3((21,) hence
. : On—>0 in CE([O, .1 01+e([j)) ,
£17) Vo. Vo . ~
(17) Ver L Ye iy oe(o, 15 04))
On g

where £ > 0 is small enough,

Now it follows from (4.13), (4.17) and (4.4) (with A replaced by &)
that

W >0 in [0, T,]; C1+(£D) .

Hence £, —{ in 0%Qg). 1
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The fixed point ¢ = ¢ — Flp] so obtained, together with » = Fi[g],
o = F*Fig] and w = F[Fe], F*FYpl}, is a solution of auxiliary
system (A) in Qg , since from (3.5) rotv =@ = (.

Equation (A), is satisfied in the sense deseribed in Lemma 4.4.

5. — Existence of a solution of system (B) when £2 is simply-connected.

First of all we prove that Dwv ex:sts 111 the classical sense and
belongs to C%*Q,). Define :

(5.1) (69)tt, 2) =[6(a, y)w(i, nay,

where G{wx, y) is the Greenls function for the operator — A with zero
boundary condition. Reeall that G is the sclution of problem (3.2).

Lumwma 5,1. Pui

(5.2) olt, @) =—[V,6(,y) Co)t ) dy
£
Then
(5.3) D = Rot G(ﬁ 4 Hote, )—Rotw in Qn;

moreover o € CO114Qr), hence Dyve C*HQy ).

Proor. For {5.3) see Kato[9], Lemma 3.2, For the regularity
of @ see [9], Lemma 1.5, using in this lemma a result of Widman [20]
(see also Gilbarg-Trudinger [5], pp. 105-106) instead of a result of
Kellogg. ]

The following two known results will be ugeful for proving (5.6)
below.

LeMMA 5.2. If ve C{D), diveo =0 in Q and v-n = 0 on [, then

div [(v-V)v] = Z(Dw,)(D,—m) in 2,

1,7

{5.4) (2 V)v]-5 =— z {(Dn;)emn; on I,

o
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where the opew ato'r div is to be intended in the sense of distributions
in Q.

For the préof see for ingtance Temam {19], Lemma 1.1.
LEMMA 5 3 If veC? E (), then
(8.5) . B rot {(@-V)*v] = div (v 10t v) in 82
in thesense of distributions.
For the proof see Kato [9], Lemma 1.1.

Lﬁm:nm 5.4. The solution w of system (4.1} is given by

(5.6) W= g [%% A4 v{v-V)— ] W Qo, .
Proor. Set
o

we [%g b V)— b] & CO(Qr,)

From (A),, {(A), and (5.4), it follows that for each 1 €[¢, T]
(5.7) dive* — 0  in Q

in the sense of distributions.
.. On the other hand from (A), and (5.4), one has for each ¢t [0, T4}

(5..8).?.-..: wren = 0 on I'.
Fin'a,'lly:' from (4.10), (5.5) and (A), one obtains for each i€ [0, T

ROt C.w in R

rot[aat (va] g+

in the sense of distributions.
Hence by {A), one obtains for each te [0, 4]

(5.9) rot w* = 0 in £

in the sense of distributions.
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From (5.9) it follows that w* = Vq for ¢ e C***#(Qn) (see for in-
stanee Kato [9], Lemmsa 1.6, or Hopf {8]); by using now (5.7), (5.8)
it follows that w* = 0 in {, . Cl

From (4.2} it follows that
0 [6;; + (fv-V)'v—b]‘ =V in O,

i.e. (E), holds, with we C”>2“(QT1).
Furthermore

vot (o], o— @) = {fm—a =0 in o,
Aiv (9] —a) = 0 in 2,
(| g — @) 1 = © on I,

and consequently (E), holds.

REMARE 5.5. To complete the proof of Theorem A, we observe
that from Lemma 3.1 and Lemma 5.1 it follows that v & CV174(Qx).
Consequently, from (E), and (3.11);, D,0 € 0%(Qx), L.

g€ 011 Q)

REMARK 5.6. Tf estimate (3.7) of [12)], chap. ILI, p. 127, holds
With |ul, .0 and [Buly g replaced by (u];.0 and [Buly.s regpectively,
then in owr result it is sufficient to assume that Q is of class C2+2.
In this case w € €% *4(Qp) and the function w defined by (4.1) belongs
to O%4Qp). The estimates for w m 0%*{Qr,) are sufficient for our

method to be applied.
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