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On the Motion of a Non-Homogeneous Ideal
Incompressible Fluid' in an External Force Field.

Hugo BEIRAO DA VEIGA - ALBERTO VALLI (*)

1. Introduction and main results.

In this paper we consider the motion of a non-homogeneous ideal
incompressible fluid in a bounded connected open subset £ of R2

We denote in the sequel by w(f,z) the velocity field, by e(f, @)
the mass density and by z(f,#) the pressure. The Euler equations
of the motion are

0 =
g[%;ﬂﬂ-vm—b]——vsm in Qp=1[0, T1X3,
dive =0 in Qr,

0 .
(B) a—‘;‘JJrﬂ-VQ:O in Qr,
ven =10 on [0, T1xI",
T’I.',zu:t'l in !j,
Oli=0= 0o in 2,

where n = n(#) is the unit outward normal vector to the boundary I'
of Q, b= b(t, ®) is the external force field and a = a(z), go = 0ol®)

(*) Indirizzo degli A.: Universitd di ETrento, Dipartimento di Tisica e
Matematica - 38050 Povo (Trento), Italy.
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are the initial velocity field and the initial mags dengity respectively.

When the fluid ig homogeneous, i.e. the density g, (and conge-
quently p), is constant, equations (E) have been studied by several
authors. Ag regards the two-dimensional case, we recall the papers of
Wolibner [13], Leray [6], Holder [3], Schaeffer [1 0], Yudovich [14], [15],
Golovkin [2], Kato [6], Mc Grath [9] and Bardog [1]; for the case of
variable boundary see Valli [12]. For the n-dimensiona] cage we recall
the papers of Lichtenstein, Ebin and Marsden, Swann, Kato, Bour-
guignon and Brezis, Temam, Bardos and Frisch,

For non-homogeneoug fluids, Marsden [8] has proved the exigtence
of a local solution to problem (E), under the assumption that the
external force field b(t, ) is divergence free and tangential to the
boundary, i.e. divd — ¢ in @r and b-n = 0 on [0, TT1xTI. The proot

manifolds. See also the reference [16].

In this paper we prove the existence of a loca] solution of prob-
lem (E) without any restriction on the external force field b(t, z) but
Wwe need condition (A) on the initial mags density gy(z)(2).

Our techniques are baged on the method of characteristics and on
Schauder’s fixed point theorem, and in thig sense related to the
mnethods of Kato [5] and Mec Grath [9].

We prove the following resultg (2).

THEOREM A. Let Q be of class O, 0 < A<, and let a € ()
with diva =0 in Q and a-n — 0 on I', g, O*4(Q) with go() >0
for each ze @, and pe O (Qr) N O2%(Q,) with rot b e Co1+4(Q) N

N O,

Moreover we assume that (1)

1
— if 2 ds simply connected ,
I,

D
(4) “ —&
R otherwise .

K1+ K,K,)

(') Added in proofs. In the authors’ papers « On the Euler equations for
non-homogeneous fluids » (I), (IT) (to appear) condition (A) is dropped and
the three dimensional case is proved.

(*) The definition of X, is given in (3.4); those of K, and K, in (7.21),
(7.11) and (7.24).
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Then there ewist

T,e10, T], v € OV2(Qr) N CH4%Qr,)
0 € C¥*4(Qy,) € 0¥ 4(Qr,) N C44 (@) ,

such that (v, o, m) is a solution of (B) in Q.

THEOREM B. Assume that g, and Vo, belong to L™(£L2), min g, > 0
and that b belongs to L'(0, T'; L=(2)). Then problem (E) has at most |
a solution (v, p, @) in the class of vector functions v € L®(Qr) such that
Ov[ot, Ovfow, and Ov[0z, are in L0, T; L™(R2)). The pressure is unique
up to an arbitrary function of t which may be added to it. This resull
holds in dimension n=2. |

For other uniqueness theorems see also Serrin [11].

The paper consists of two parts. In Part I we prove Theorem A
for a simply connected domain £, and Theorem B. In Part II we
prove Theorem A in the general case, i.e. we assume that I' consists
of m <+ 1 simple closed curves Iy, Iy, ..., I'n, Where I i =100 M)
are inside of I', and outside of one another.

PART I

2. Notations.

Let Q be a bounded simply connected open subset of R

We denote by C*({), & non negative integer, 0 < A<1, the
space of k-times continuously differentiable funetions in 0 with 2-Holder
continuous derivatives of order k; by €°@y) the space of continuous
functions in Qg; by C€%Q,) the space of continuously differentiable
functions in Q.

We get
dp ) dleltig
D.o= D g— — —E _,
P=5p D=

and .
|
q !

ObQr)  ={pe C%Qs)|D*Djpe 0%Qr) if 0<j<k,

la| <h and j + || <max (%, 1)}, |
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04Qr)  ={peCQs)|p is A-Holder continuous in ¢,
uniformly with respect to m},

0*N@z)  ={peCu(@r)|p is A-Holder continuous in =,
uniformly with respect to #},

CHnQr)  ={p e O¥(Qr)| DDy € C(Q,)
if j+ |a| = max (, k) or if j =K},

Ov*4(Qr) = {pe 0*NQr)|D*Dip e CoNQy)
if j + || = max (k, k) or if |o| =R},

CrtditA(Qr) = CFHaMQp) N CF4+4(Qy) .

We denote by | - |, the supremum norm, both in & or in Qr, and
by [-]x the usual A-Hélder seminorm in 0. Furthermore we define

J‘P(t) ) — (P(Sr m)'

[@la,0 = su
e L,sz—:[UP’I‘] [t —s|? ’
(£ ]
weR
t —(t, g
[¢lo,s = sup J(P_( b} - 99(15 ll’
a:,'l.'é-f_) lwi?”
aFEy
Le[0,T]

L, &) — 8 m)
[(P]lin,uE sup M_]’
1,3€00,T1 [t—s|
t#s

ne

lp(t, ) — @t y)|

[@loip = sup 3

@,yeR J.Cl’;' =4 l
eFEY
tef0,T]
Finally, we set
(RE EZIHD“tPHm

o

| D*¢].. iz | D%@ || 5

=2

and analogously for the seminorms [+12 and [-Joz.

If w = (w1, w,) is a vector field defined in @, we write we C9(Q,)
it wy, uy€ C2(Q,), and we set [%]3,0 = ()20 + [s]a0; the same con-
vention is used for the other vector spaces and norms (in £ or in Q).
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We put
_(% _ %
Rotqu(ﬁ, fﬁ’;l)’
Dy Oy
rotu = 3$1— 2,

where @ is a scalar function and w = (uy, 4,) is a vector function.

3. Preliminaries.
Let @€ v+ (Qy) with D,pe C»%(Q); we assume that
lplogss = lglot [Dplo+ [Delo<4,
”‘D'(P” - = B )

H DI‘PNOJE ILDMI@-I* {Dﬂ}f’]o,zé ag,
[Diglio < D,

(3.1)

where A, B, , D are positive constants that we will specify in the
following (see (4.9)).
Let y be the solution of

{ — Ay(t, @) = @(t, #) in 2,

3
(8.2} e =0,

for each ¢t [0, T, i.e.
(3.2) plt, @) =[G, 9)plt, ¥) By
Q

where G(w, y) is the Green function for the operator — /A with zero

boundary condition.
Put |xlia= 3 |D*%le+ 2 [D*x];. It is well known that there
el <t I

- |7,|=fd
exist constants ¢= ¢(4, £2) such that

lxlls+a<elAxliea,
(3.3) lxlesa<eldxla,
[Dyla écﬂﬁx"m

for each ye C=(£2) vanishing on I

9
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Moreover there exists K, = K,(£2) such that

2el

(3.4) sup f]V,,.G(a:, y)deg% ", .
2

Tt is sufficient to choose K, = 4K diam 2, where K is such that

(3.4)' IV.G(z, y)| < Vo, yel, a+y,

|z —y|’

(see for instance Lichtenstein [7] , pag. 248).
We obtain

LEMMA 3.1. Let pe Cv4(Q,) with D,pe C4(Qr) and let v be de-
fined in (3.2). Pui

(3.5) » = Rotyp ;
then ve Cv24(Qy), Dwe 0*(Q,) and

loloz+a  <el@lora,
1D <3EDig|o,
(3.6) IIDa’ﬂ”a,HzécI!thplu,A,
[Dwlio  <3KE[Dipla,,
[Devlo,n <o Dl
Moreover divo =0 and rotv =@ in Qp, v-n=0 on [0, XTI,

PROOF. Since ¢ e C*"4(Qr) c 0°([0, T]; C++¥(2)) for each A'< A
(see for instance Kato [5], Lemma 1.2), it follows from Schauder’s
estimates that ve %[0, T']; C*+¥ (2)); hence v, Dy, D% € C°(Q,). More-
over estimate (3.6), follows directly from (3.3),, i.e. ve C24(Q,).
Differentiating (3.2)" with respect to #, we have

(3.7) Doyl 0) = [G(@, ) Dyt y) ay ;
2

since D,pe 0"*(Q,), arguing as above it follows that D,ve CorHA(())
and (3.6), holds.
Applying the operator Rot to (3.7) we have

Dt ) = [Rot, 6(a, 9) Dugplt, y) dy
2

and (3.4) yields (3.6), and (3.6),.
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Estimate (3.6), follows directly from (3.5) and (3.3);. Finally
remark that rot Rot = — 4 and that »-n is a tangential derivative
of v at the boundary. O

By using (3.1) one has

Ioo2+a <4,

IDiv]  <3K:B,
(3.8) [D)g1+2<eC,
[Divlao <3HyD,

[Dt")]o,z £l

Now we construct the stream lines of the vector field »(¢, #). We
denote by ¢, ¢, ¢, ..., constants depending at most on 1 and 0.

We put U(g, t, ) = y(o), o,t€[0, T], ze 2, where y(o) is the solu-
tion of the ordinary differential equation

I o
(3.9) ~—o(oyle)  in (0,77,
y(t) ==.

Such a solution is global since v-n==0 on [0, T]x{"; from ve C*((Q,)
one has Ue C%([0, T1XQx).
We denote by |DU|.,=sup |[DU(g, -, *)|., and analogously for

ael0,T]

each norm and geminorm involving U and its derivatives.
We have:

Lmyma 3.2. The wvector function Ulo,t, ®) satisfies the following
estimates:
1DU|., < 2exp[eT4],
[D2U|<eTAexp[cTA],
[D*Ulga<eTA(1 + TA) exp [eTA],
[Ulin,o <ed exp[eTA],
(DU <eT**A(1 4 T*A*) exp [eTA],
(D2 Ul o<eT2A(1 4 T*A*)(1 4 TA) exp[eTA].

(3.10)
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PROOF. Omne obtains these estimates by direct computation of the
resolutive formula

(3.11) U(o,t, ») :(n—!—fv(r, Uz, t, @) dr .

We give only the exiﬂicity proof of (3.10),. From (3.11) one gets

(3.12)  D;Uylo,t, @) = 0y + g (Dwo;)(7, Uz, 8, @) D, Uy(7,t, 2) dz
and
(3.13) DE UL o, t, %) =
ﬁf[ S (Dho)(r, Ul 1, 2)) DU, 1, 2) D, Un5, 4, ) +
A Z}: (Dyv3)(7, U(z, t, 2)) D3 U,(z, t, )] dz .

Hence one obtains

2 D5 Us(oyty ) — D3 Uyloy &y y) | < T — y[H{[D*0]o sl UL | DU | % +
iy leyd
+ 2| D%*0| o | DU o[DUlo,a+ | D? U| L D0]o sl UL 1n} +

+ [ Dol

Z |D% Uiz, ty @) — D Up(t, t, y) | d

’ )I
and from Gronwall’s lemma

EJD Uit .Gf;] DmU a, rJ)| T‘w'*J‘Z

Byd,k

{[D*]o [ UL | DU + 2| D20| .| DU| DU, , +
+ | D*T | [ Dv], o[ U)o} ex0 [T Do ] -

From (3.10), (3.10), and (3.8); one obtaing (3.10),.
On proving (3.10), and (3.10,), recall that

il
(3.14) M i EBU oyt o) ou(t, ) - O
ot 7 o,
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We now study the equation

do

—+vVp=10 in Qg

(3.15) ot v
Ql,,:o == Q[l in Q S

Leyyma 3.3. Let go€ O%4Q) and go(x) >0 for each z€ Q. Then
the solution of (3.15) is given by

(3.16) oty ») = @ U0, t, @) .

Moreover g € C*+4*4(Qy) and

D D
20 2|72 expleTA],
Q @ Qﬂ @
D2 D Dz
il gc(TA L -+ L )exp [eT'A],
® Q0 || Qo ||
D D (Do, ]
—ﬁ] gc(m ‘”" + =2 )exp [eTA],
(3.17) i 0 0,4 Oo || L Yo 12
e
9] gc{TA(l oy PO 4 a4 [P‘:’B] s
L @ Jo, Qo || Qo 1
Dz D2
+ TA H - + [—-‘QB] } exp [eTA4],
QO @ Q[l A
D
[—Q] <e {T‘“’-A(l + T*A%) Deo +- 44 [D—‘QB] }exp [6XA].
0 41,0 Qo o Qo |2

Proor. One easily obtaing (3.16) by using the method of charac-
terigtics. From (3.16) one has

-D,' D,\_]

28, @) = 3 P (1(0, t, 2)) D, T,(0, 8, @)
@ n O

Dlzklg DE}!.QO

(U(o,t, m)) D, U(0,¢, 2)D; U, (0, 8, @) +

(ty .’L‘) :Z

rh Do

D,
+ ,zé—go (T(0, 1, ) D7 Un(0, 1, @) .
3 0

By using (3.10), we obtain easily estimates (3.17). O
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4. The vorticity equation.

In this number we study the auxiliary equation

of .
(4.1) ey g,
{lico=a in O,

where «(#) =rot a(z), (1, ) = rot b(t, »), and y(t, ) is defined in Q. by

o Rotp[ow )
(1.2) =+ [Eﬁw V)vb],

where o and b are as in Theorem A.
One integrates (4.1) by the method of characteristics and one
obtaing

t
(4.3) L(ty ) = o U(0, ¢, ) —|—fy(?:, Uz, t, ) dr .

o

We denote by ¢, ¢, ¢,, ..., constants that depend at most on A, 2,
[Dgofealz; | D2g0/00 181 2,0-

Levya 4.1, Under the above conditions the following estimates hold:

l7lo <@(A241)exp[eTA] + leg

H,Bexp[cTA],

[y]o,s <81 4 TA)(A2+ B +1)exp[eTA4],
1Pyla<e{(1 4 TA)(4*+ B +1) + C} exp [¢TA],

(4.4)
[Dyloa<E{(1 + T2A%)(4A*+ B+ 1)+ (1 + TA) 0} exp [eTA],
[ylae <@{T™2AC 14 ANA*+ B+1)1 + TA)}-
Do,

cexp [elA] - “ KID exp [eTA].

Proor. It follows by direct computations, using (4.2), (3.8) and
(3.17). O
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Finally we have

LeMmA 4.2. The solution ((t, @) of (4.1) satisfies:

1Z 10142 <2[ot] 112 exp [eTA] + 8T {A| Det| ., +
+ (1 + T°4%)(A*+ B+ 1)+ (1 4 TA) 0} exp [¢TA],
[Del]lw<er 4| Dal|  exp [e¢TA] + &,(A2+ 1) exp [eTA] +
+ eTA[(1 + TA)(A*+ B+ 1) 4 Clexp[eTA] +

i
Qo

K, Bexp[eTA],

=3

&5 [D,tls<ed(|DE] o+ [DL]s) +
4 &y(1 4 TA)(A* + B + 1) exp [eTA]
[DtC]A,DQG‘:A[DC]A,o = OTI_AB”Dé‘" &
+ 8, A A2+ B+ 1)(1 + TA) exp [cTA] +
Do,

0

K,Dexp[clA],

=]

+ €,(T'-2AC + 1) exp [eTA] + ‘

where |DC| ., [DC],; and (D], , are bounded respectively by (4.6), (4.7)
and (4.8).

Proor. From (4.3), (3.10) and Lemma 4.1 it follows easily that

I8le <lole+cT(A*+ B+ 1) exp [¢T4],
(4.6)  |D¢|,<2|Da|.exp[eT4]+
+eT[(1 + TA)(A*+ B+ 1) + Clexp[eTA],

(4.7) [DE], < 2[Dec]aexp [eTA] +

+8T[A]Daf o+ (1 + T242)(A2+ B +1) + (1 + 7'4) O] exp [0T4]
hence (4.5), holds.

From (4.1), one has D, =—w»-V{ -+, and by direct computa-

tion one obtains (4.5),, (4.5), and (4.5),.
Finally, from (4.3) it follows that:

(4.8)  [Dlly0< e A Dalsexp [¢TA] +
+ 6T*A(1 + T*A%)| D, exp [oTA] +
+ ET(1 + TA) A2+ B + 1) + CJ(1 + T+ Ar+¥) exp [eTA4]. O
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We assume in the sequel that condition (A) of Theorem A holds, and
we choose the constants 4, B, ¢, D such that

4> 2|y,

B> DQD

K, B4 GI-A-”DOC”CD + ¢ (42 +1),

(4.9) { C>aA|Da.+ 26, 4| Dals+ (@ + &) (A2 + 1) +

0

| 1D + 030, A [ Darly - E(A2+ B 4 1) 44 -5, .

From (4.5), (4.6), (4.7) and (4.8) it follows that there exists T, €]0,1
such that

1€l0042 <4,

1Dl <B,

|De&los<C,

[D:iLlo <D,

(4.10)

where the norms are taken on the cylinder Q, =[0, T,] x 2. The set

(411) Iy E{(pe CI(QT)'”‘P”D,L;—A""-‘;A, ”Dt(p”méB ]

H-Dt‘i’j”n,l <0, [D-‘»‘P}z,u = D}

is a convex, bounded and closed subset of CY Q).
MOIBDVGI the map F: ¢+ defined by (3.2), (3.5), (3.9), (3.15)
and (4.3) satisfies

(4.12) F(8)cs,
and, from (4.8),

(4.13) [D{];,,<const, Voes.

By the Ascoli-Arzels theorem and (4.11), (4.13) it follows that F(S)
ig relatively compact in CY@r,).
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Finally, we shall see that F' is continuous in the () topology,
hence, by the Schauder fixed point theorem, one has
LEMMA 4.3. F: 8 — 8 has a fized point.

PRroor. It is sufficient to prove that F' is continuous from (@)
in C%Qy,), since F(S) is relatively compact in CY(Qy).
Let ¢, €8, ¢,—¢@ in CYQy). From (3.2) and (3.5), one has

e in C%Qx,),

(4.14) Do = Do in OD(QTI) .

Moreover, from (3.7) and (3.4')

(4.15) % »%Et’ in C%Qy,) .
On the other hand
|Uo, t, @) — Ulo, t, m)|<| f[ [o*(z, U7, t, 2)) —o(z, Uz, t, )| +
i
+ |o(z, Uz, t, 2))— (7, Ulz, 8, ))|] dz|<
o= 0l ol [ 07(5, 6 0)— T, ) 0]
i

and from Gronwall’s lemma

IU"(O-’ t, v)— Ulo, t, 2)

<T|v,—v|exp [Tl[’u]o,]ip:l ’
hence U — U uniformly in [0, 7] K@,

Analogously, one evaluates |D,U’(o, t,#)—D,U,(o,1, #)| by using
(3.12), and this gives

]|DU"—DUHmg:Tl([Dv"]GJHDHDU“”mH Ur— U o+ HDU"ODHD@J"—D'UHOO)-
-oxp [T, | Dv"*| ] -

‘Hence DU™ — DU uniformly in [0, 7,] Xy, Consequently

R
Diokg, . Boig
Qn Q

(4.16)

in C%Qr,)
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and
ya(ay UMoy 1, #)) = y(0, Ulo, 1, @)) uniformly in [0, T,] X @, .
From (4.3) the thesis follows. a

This fixed point { = ¢ = F[¢], together with the corresponding v
and g, is a solution of the system

9 Rot 0 :
5€+’u-VC=ﬁ+ < 9-'[§;+(v-vw—b] in Qr,,
& =rotv in Qr,,
divwe =0 in Qr ,
4.
i =0 on [0, T,]xT",
CI£=U = & 1]1 .-Q-’
eli=o = 0o in Q.

5. Existence of a solution of system (E) when Q is simply connected.

Since
rot [(v-V)v] = (dive) rotv + v-V(rot o)

one has from (4.17),, (4.17), and (4.17),

o rof [a;; -+ (v-V)v—b] = Rot g-[%z—]— (@-V)@J—b] ;

We recall the general identity
rot (pw) = g rotw— (Rot g) w,

where p is an arbitrary scalar and w an arbitrary vector, and applying
it we obtain

(5.1) rot {g [%1; + (- V)o— b]} =0 in Qr, .
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When £ is simply connected, it is well known that there exists a
scalar function z e 0"*(Qy,) such that (E), holds in QOr,.

Moreover @ e C*(Qp) N O"'“""‘(er): in fact m(f, ) is determined as
the integral of Vz-ds from a fixed point z, to x, along a path inde-
pendent of ¢. Since Ve C%(Q, ), it follows that ne C*Q,). The
other statement follows directly from (E);. Furthermore

rot (v];—o~a) =0 in 2,
div (v)y—g—a) =0 in 2,

(V)i—o—a)n =0 on I,

and consequently (E), holds.

Hence we have found a solution (v, 7, 0) to problem (E) in Q.
This solution verifies the regularity conditions stated in Theorem A,
as follows from Lemmas 3.1 and 3.3.

6. Uniqueness of the solution of system (E).

Let (v, 7, 0) and (7,7, §) be two solutions of (E) in [0, T]x Q,
under the conditions of Theorem B. We set U==9%—7v, 0 =df—am,
7= ¢0—p. On subtracting the two equations (E);, we obtain

o

(6.1) @'[ﬁ + (7 V)u -+ (u-V}@} =—Vo—9g [%; —+ (v-V)v— b] .
On the other hand from (E), one gets
_o0u 1d  _ Wy
(9 a’ "3"') = 9 (E(Qu: u) + 7 (('U'VQ)'H‘? ’“’) y

where (, ) denotes the scalar product in L2(82) or in [L%(£2)]2. Taking
the scalar product of (6.1) with % it follows

1d 0
(6.2) 5% (0w, u) = — (g(u-V)v, u) — (?7 {% + (o-V)o— b}‘: ’"') )
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since
(8- V)u, u) + §((F-Va)u, u) =0 ;

recall that divé=0 and 9-n =0.
Moreover, on subtracting the two equations (E);, we obtain

3
(6.3) —a?—}—'u-vnz—u-V@'

and taking the scalar product of (6.3) with # it follows

1d 5
(6.4) gz =— (w-Vg,n),

since (v-Vn,n) =0.
From (6.2) and (6.4) one obtains

1d

(6.5) 5o (6|u|* + ) dz :#fg[(n-V}?)]-udm—
2 2

_fn [% -+ (@-V)fu— b +V§i|"udm.
Q
Set

1t) = 4 [ (glul* +n?)da .

2
Obviously f(0) = 0; moreover from (3.16) and (3.11)
V6] w<2(Veo|wexp [|Dv] 0,721
and consequently from (6.5)
J'(#) < e(®) (1)
where ¢(t) € L1(0, T). By Gronwall’s lemma f(#) vanishes identically
in [0, T], i.e. #=o and g=p in Qr.

Finally, from (E), it follows that Vz = V# in @r, i.e. m =& up
to an arbitrary function of f,
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PART II

7. Existence of a solution of system (1) when () is not simply connected.

Let © be a bounded connected open subset of R We assume
that I' consists of m - 1 simple closed curves Io, Iy, ..., I'n, where
I, (j=1,...,m) are inside of I, and outside of one another.

We denote by o the vector field defined in (3.5) and by u®,
k=1,..,m, the vector fields introduced at the end of §1 in [4].
We have u®e ¢2(0), rot u® = 0, divu® =0 in 2 and u®-n =10
on I We put

awn

(11) B, @) =0, @) + 0.0 ue(@) = ot 2) + 't 2)
k=1

and consequently we have divy = 0 and rot 7 = @ in @y, v-n =000
[0, T]x I
We define §(t,#) to be the solution of

7.9) E—}—’U-V@zo in Qgp,

§|,L,n = [ in g.

Now we prove that there exist 6,(t) € C*™([0, T]) such that

(7.3) (@ [‘%’i + @-V)5— b], u(k)) =i vie(o, T1,
(7.4) (B)imo— @y u®) =0

for each k =1, ..., m. We are going to use the Schauder fixed point
theorem.

We consider the map B, o from €°([0, T]) in C**"(@r) defined
by (7.1), the map ¥ g from CortA(Qy) in C°(Qr) defined by (7.2)
and finally the map (7, ) > 0, defined by (7.3), (7.4), i.e.

i le m w
@87 Sna D 4 5 a(0.080) + 2 [reld) -+ m010:0) +

8,h=1

F®) ) Py =0 i [0, 71,
(7.4) 0:(0) = (a, u®),
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for each k=1, ..., m. We have defined

,th.-s(t) — (éu‘*”, w®) ,Ltm(t) = ((_3( TCRAVATTICE um) ,
ns(t) = (8(v- V)u', u®) , Nea(t) = (8(u- V)0, u®) ,
7.5
(5 () Z( aa:: “m) i(t) = (8- V), uw)

7(t) = — (@b, u'?) .

Since u® e C*(Q), v € C12H4(Qr) N CY4%(Q,) and § € C*°(Qr), all these
coefficients belong to C*([0, T17).

The notation & &, &, ..., will be used for constants depending at
most on 4, £, a, b, gy, M, u®.

Assume that estimates (3.1) hold and moreover

m . ;} o
(1.6) sup [ 3 0.02] = 18l B,
tel0, 71 Ltk=1
where 0 = (i, ..., 0,) and B is a constant that will be fixed in the
following.
One has

Ple <lofe+ Z 10u] o 0] < E(A + B)

D Dl IDole+ 3 Iila Dl <EA + B).

Define U(o,t, ) to be the solution of

au
do
Ut,t,2) =a;

(o, t, ) = B0, Ulo, t, ) ,

one hasg, as in (3.10);:
(18) [Tl — ” N — DT [5]o <2 (7] exp [T]D5]..]

It follows from (7.7) and (7.8) that

(7.9) (Do o< (4 + B) exp [6T(4 + B)].
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From (7.2) one has g(t, #) = g,(U(0, t, z)), hence

|1§||m<|\90||m,

7.10 — .
( ) [Q-]A,oé[Qu}nu[U]A,ué-T]_;'[Qo]lm[UJlin,o-
Define
(7.11) Ky==up %2 2y -

We have from (7.5)

| ttisll o <X3] 00l s [1ts)2 < BT [0 Juol Uit 0 »
| tren] <€ 00| = 5 [ttan)s <ET 0ol Uliin,o 5
el + el o< ool B

[veslz + [es)a<BA ( | 20l + T**[@o]tinl U}lin,n) y
It e <E1E,B|RJ |00 oo s

(s <E(D]eo]l o+ T 00U lin,o B) ,
7l e <EA%| o], s <BA2(| 00| o+ T *[00]iiol T hin,0) 5
el <€lgolloos [dr<@(l 0ol + T**[ 00l TTtin,0)
where |{2| =meas 2.

Let M(t) be the (m xm)-symmetric matrix {u,,(t)}. One sees easily
that |£|2min g,< M(t)E-E <<max go|&|* for each £eR™, and
2 0

(1.13)  0< (min gﬂ)’“ <det M(t)< (ma,x gn)"" vielo, T].
7] 0

The element f,,(#) of [3(#)]™" has the form

. (— 1)+ M, (2)
7.14 W) = ——— =17
(7.14) ) = g3y
where M,,(f) is the minor of the matrix M(t) corresponding to the
(k, s)-element of M(t).

Hence

l o™

1 " < =] ! 2(m—1) 2
(7 5) !Lu'fw ” @ (’n?’ 1) K?. (ml]l Qu)m ’
Q

1 i

= lm—2 P 1 e i R S

[fixs)a %li,h,r(llﬂ-uim (min Qu)m -1 Nﬂ'unm (min 90)2:71) [parlzs
2 7]
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and by using (7.12)

—_— m—2 2(m—1)
(7-16) [ﬂks]ﬂgETlia[Qﬂ]]iD[U]HD,U MlL M]

(m_in Qu)m (mj_u QD)Zm k
2 Q

Applying [M(t)]™* to (7.3)', one obtains

E‘gk t m mn
aan) T = S w0000+ 350 + 50100 +
+ Al + a0+ a® 0,1,
where
(7.18) lt) = — > fu (00

and analogously for the other coefficients.
Obviously the system (7.17), (7.4)" has an unique local solution
0,(1)y =1, .ccpxm.
Moreover, taking the secalar product of (7.17) with 0(f), one has
1, o lel®
5 PO < i oy
a
{0+ A1) P+ (42 + B+ 1)[60) [}

000)* <& a|% .

(7.19)

Hence, if we choose E > ¢ |a|, in (7.6), we see that there exists
T*e1]0, T'] such that

6(t)|<E  in [0, T*].
It we put
8, = {t) e C°(10, T47)| | 0] < 12}

and we denote by F, the map 00 defined by (7.1), (7.2), (7.17)
and (7.4)', we have F,(8;) c 8;.

Moreover from (7.17) and the Ascoli-Arzeld theorem, it follows
that F,(8,) is relatively compact in C°([0, T%]).

Finally, we see easily that F,: §; — 8, is continuous, consequently
F, hag a fixed point in 8.
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Hence equation (7.3), (7.4) has a local solution 0(t) e C**. We
want to prove that 0(f) is a global solution.
From (7.3) we have

Moreover
(3(3-V)o', ') =—3%((@-Va)v',v'),

and from (7.2)

1d ol oo i [
(ov )*(9 az’”) 2((@"’@)'0,1) -

2 dt
Hence
1 1
22 (@) + (a5 )+ (@), ) + @0V, o) — (@),
i.e.
1 d
ﬁ ]\E GJs(t t)o (t)

== %m(t)ﬁk(t) = ;nx-a(t)ﬂ,c(t)ﬂs(t) — ,Z”R( )6(t) — 217,,( )0:(t) -

Consequently

[M(@)6(t)-0(1)] <8l eoll o[ 40) P+ (A2 + B+ 1)[0(0) ] <

W
SR

> A A BL+1) jo————
<ol | - MO00)00) 4 \/;mj /36060

3(0)6(0)-0(0) <&l 0ol » ]

Set
203 “Qﬂﬂm (A2+B+1), 062525 H‘QD"C\B ,,
V/min g, min g,
a Q

10
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the solution y(t) of

{ V') = e Vy(l) + ayy(e)

Y0) =&oy)w [a]2 ,
satisfieg

%+ @ Vy(t) = o+ 2,5 (0)] exp [(oe/2)2]

Hence by comparison theorems

jO(t”gflz +AB =1 (exp [gf z] — 1) + Vm |a| . exp [gf z:J

min g,
. Vie[o, T] i
ie. 6(t) is a global solution in [0, 7] and
2

T20)  JooctEBAL (i —1) + & exp [FAT) <

<42+ B 4 1)T exp (64T + ¢ exp [GAT] .
Define
(7.21) Ey=m! l@ls

2m—1 +
(min g,)= L.
2

From (7.12), (7.15) and (7.18) one hag
Il o< 2, &, B
Cousequently, from (7.17) and (7.1b), (7.16)

(7.22) [}%N <&+ 4°4+1) + k1,8,

(7.23) [%Lgam(AurA“auerl) + I K, D -}

T N[ Tlip, + []), +- A6l + 42+ B 4 1) ,
Finally, define

(7.24) Eo=va[3 jumps]t,
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from (7.1) and (3.8) one has,

|0,2+A QE(A "" "Gum) H
do

dt

¥
)

_ dao
(D], <KD+ I, ,:di:' ;
A

|7

D). <KB | K‘*'

= st df
(7.25) |lDrvllo,1+A<c(C+ “?{i

o . g
[Dt'f)]o,l \<-.C(B == ” )7
dt| .,
which replace estimates (3.8).
Set
Rot 7 [9%
F=p+ ‘;Q-[Z—j + (@-V)@—b] in Qr ;

by replacing o, U, o, y with &, U, §, § in the proofs of Lemmas 3.2,
3.3, 4.1 and by using (7.25) one obtains:

LEMMA 7.1. Let {(t, %) be the solution of

k.
E V=7 in Qp
&l = in 0.

Then Lemma 4.2 is true if we substitute in (4.5), (4.6), (4.7) and (4.8)
¢ with &, A with A -+ 0] =, KB with K,B + K,|d0/dt| .., B with
B+ |dojdt|.., O with O+ |d0jdt|., K,D with K,D -+ K,[d0/di].
Constants ¢ and €, ¢; and &, must be replaced respectively by &, &,.
We will denote these new estimates by (4.5)', (4.6), (4.7)" and (4.8)'.

Hence the existence of a solution of system (4.17) will be a con-
sequence of the existence of a fixed point for the map F: ¢ L.
_ First of all, we prove that there exists T,e]0, Tl such that
F(8)c 8, provided that 4, B, 0, D are chogen in a suitable way
in (4.11).

By using (7.20), (7.22) and (7.23), we obtain from Lemma 7.1
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that in @, one has

”E”u 144 f(T; A: Br 0)1
(7.36) “D C”m “-f (f’ AJ Br O) bl

“DJC”n,z<fa(T: 4, B, Q),

[D, E])u gf«;(T v B; €, Dy,

where the functiong f; are continuous, non- -negative, and non-decreasing

with respect to each variable, Hence if we fix 4, B, ¢, D such that

h(0,4,B,0) <4,
(7.27) fB(Os A—: B: O) < B )
L(0,4,B,0) <@,
f4(0, A? B, U, -D)<.D,

there exists T, €10, T] for which

”5”0,144 <h(Ty,4,B,0) <4 y
(728) “Difum ng(TI!A} B: 0) “<-By
HDﬂf”o,A(\fa(—TuA, B, 0) <4,
[Dellao <fu(T1, 4, B, €, D)< D,
in Q.
It is easy to verify that (7.27) has a solution, provided that condj-
tion (A) is satisfied, For example, one can choose successively

4>2 ““”Pri ’

B>” 9“’ K1+ KE,K,)B+¢&(4 + &) | D],
]_)cn0

-+ &i(4 + es)? 4 1] =

C> B+ 92,(4 + &) Da|; +
F {4 + 0+ B+ &@ + A1) 4 K, K, B |- 1},
DQ()

2

+63{(A+65)2+B+59(”3+A'+1)+1{1{B+1]

fnbs( 4 A* 41,

9o

(7.29)

D>

” Kl(l + IfsEez)D S 5364(44 = EB)IH'[-DOC]A +

(A + &)+ +” “‘” K, &o(A24 G A +1).
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Lemma 4.3 is proved as before, provided that F: § > § is continuous
from CYQr,) in C%Qxr,).

Hence, we must prove that if ¢, —-¢ in CY@s), ¢,€ 8, then o,
and 7 satisfy (4.14) and (4.15). Since »" and v satisfy these last condi-
tions, it is sufficient to prove that

or —0 uniformly in [0, T,],

@ dan

e uniformly in [0, T4];

we begin by recalling that 7* and g, satisty

a—l -
Es +7"-Vg, =0 in Qg
(7.30) ot
@nli—0 = 0o in 2,

a_u
(1.31) (g [% + (@ V)7 — b], w“) =0 Vielo, 7],
(7.32) (0")ico— @, w®) =0,
for each k=1, ..., m.

Set now n=p,—g, ¥ =v"—20, u=0"—0, U="—V=u -+ u';
one obtaing from (7.3)

(7.33) (Q'n [%g + @ V)o— b], »mm) — (a; [%’ + (@ V)5 — b], wkl) =0.

On substrating (7.33) from (7.31) one hag

(é,, 5+ @it v, W) —— (?7 |5+ V-], um) ;

and multipling by 0, —0,

(7.34) (én [8;:’ + (@ V)u' + (u' .V)@], u’) =

= — (Eﬂ [%& + (@ V)u + (u-V)@_J]', eb’)— ("q [%T; + (@-V)7— b], u’) -
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From (7.30),
- ouw 1d,_ , y A
(Qﬂ?t'?”‘)—éﬁ(gnuyu)+§((U VQ,,)%,’M)

and moreover

L\’JH--‘

1
(@u(@"-V)u', u") =T f@',ﬁl‘ by dr —
,3

2

(@ Vgu)u', u') .

Hence (7.34) becomes

1d @
2 @'

:k(@.[%?—l—(ﬁ"-V)uJ;—(u-V}E],u’) ([%:—}—(BV)‘—E:] )

On other hand, from (7.30) and (7.2) one obtains

(7.35) w') + (@a(u'-V) B, u') =

0
n—l—v Vnp =—u'-Vg,—u-Vg,,

and taking the scalar product with #

) 1d o - _
(7.36) 2 di (my 1) = — (yu, V@n) — (nu, V@,) .
Set f(t) =& (0.%', ') + % (n,7n): from (7.35) and (7.36) one has
d v ow o
dtf(){‘c(g”u u') + A mfg,,ht, |dz 4
2

+ ¢|Dv*— Do|, On |’ | da - e v — v mf@,,]u’[dm -k

Q2 2

+o mnu'ldm+auwwnmﬁm«m,
2 2
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since |7"|,, and |Vg,|. are bounded, and 0 < mm o< (%, @) < || 0| -

Hence

{ () <ef(t) + e, VHQ) ,
f(0) =0

where ¢, — 0, and consequently by comparison theorems

(7.37) f)< (%")2(exp [”2’]—1)2 in [0, 7,] .
Estimate (7.37) gives

sup |lo™ —'| ey 5> 0,

(7 38) telo,7,1
' SHP H On— H Ol 0,
telo,T,]
i.e.
(7.39) sup [0"(t) —0(t)| = sup [o""— v paay—> 0 .
t€l0,T,1] tel0,T,1

Moreover from (7.5) one has
“{u‘:s_ Hrs “ o< C SUp ” éﬂ i é”L'(‘?) 2 0 ’
te[0,T,]

and analogously for the other coefficients.
Consequently from (7.14) it follows that

” Sh

luks ﬂks” @ T O bl

and the same is true for each coefficient in (7.17); hence we
that

n

ao"  do
dt dt|.

As in § 4, we have proved that

rot{@[%ﬁ«k(ﬁ-vw—b”:o in @, ,

conclude



144 Hugo Beirdo da Veiga - Alberto Valli

and moreover

(Blio—a, ut) =0,

for each k=1, ..., m.

As in Kato [5], Lemma 1.6 (see also Hopf [4]), it follows that
there exists a scalar function 7 e G‘“’l(QTl) such that (E), holds in .
The further regularity properties of & are proved as in § 4, since 7
hag the same regularity of w.

Finally, by using (7.4) one obtains that #|,., =« in 2, i.e. we
have found a solution (v, @, g) of system (E) in Q.

REFERENCES

[1] C. Barpos, Huzistence el unicité de la solution de Uéquation d’Euler en
dimension deum, J. Math. Anal. Appl., 40 (1972), pp. 769-790.

[2] K. K. GorovkiN, Vanishing wiscosity in Cauchy’s problem for hydro-
mechanics equations, Proc. Steklov Inst. Math., 92 (1966), pp. 33-53
(previously in Trudy Mat. Inst. Steklov, 92 (1966), pp. 31-49 [russian]).

[3] E. HovpEr, Uber die unbeschrinkle Fortsetzbarkeil einer stetigen ebenen
Bewegung in einer unbegrenzten inkompressiblen Fliissigheit, Math. Z., 37
(1933), pp. 727-738.

[4]1 E. Horw, Uber die Anfangswerlaufgabe fiir die hydrodynamischen Grund-
gleichungen, Math., Nachr., 4 (1950-51), pp. 213-231,

[6] T. Karo, On Olassical Solutions of the Two-Dimensional Non-Stationary
Buler Bquation, Arch. Rat. Mech. Anal., 25 (1967), pp. 188-200.

[6] J. Luray, Sur les mouvements des liquides illimiles, C.R.A.8. Paris, 194
(1932), 1892-1894.

[7] L. LicHTENSTEIN, Neuere entwicklung der Potentialtheorie. Konforme
Abbildung, Encyel. Math. Wiss., ITC3 (1918), pp. 177-377.

[8] J. E. MarspEN, Well-posedness of the equalions of a mon-homogencous
perfect fluid, Comm. Partial Diff. Eq., 1 (1976), pp. 215-230.

[9] F. J. Mc GratH, Nonstalionary Plane Flow of Viscous and Ideal Fluids,
Arch. Rat. Mech. Anal., 27 (1967), pp. 329-348.

[10] A. C. SCHAEFFER, Existence theorem for the flow of an ideal incompres-
sible fluid in two dimensions, Trans. Amer. Math. Soc., 42 (1937),
Pp. 497-513,



[11]

[12]

(13]

[14]

[15]

[16]

o

On the motion of a non-homogencous ideal efe. 145

J. SERRIN, On the uniqueness of compressible fluid motions, Arch. Rat.
Mech. Anal., 3 (1959), pp. 271-288.

A. Varni, Soluziont classiche dell’equazione di Hulero dei fluidi bidimen-
sionali in domini eon [rontiera variabile, Ricerche di Mat., 26 (1977),
pp. 301-333.

W. WoLIBNER, Un theoréme sur Uesistence du mouvement plan dun fluide
parfait, homogéne. incompressible, pendant un temps infiniment long, Math.
7., 37 (1933), pp. 698-726.

V. 1. Yupovic, Non-stationary flows of ideal incompressible flwids, Zhur.
Vych, Mat. i Mat. Fiz., 3 (1963), pp. 1032-1066 [russian].

V. I. Yunovicy, 4 two dimensional problem of wnsleady flow of an ideal
incompressible fluid aeross a given domain, Amer. Math. Soe. Translations,
57 (1966), pp. 277-304 (previously in Mat. Sb., 64 (1964), pp. 562-588
[russian]).

Added in proof: the analytic case in compact manifolds without boun-
dary was studied in

M. 8. Baoumxpr - C. Gouraouvic, Solutions analyliques de Uequation
&’ Buler d’'un fluide incompressible, Seminaire Goulaouic-Schwartz, 1976-77
(Paris).

Manoseritto pervenuto in redazione il 20 Iunglio 1978.



