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1. INTRODUCTION

Some notations and assumptions
LeT X BE areal or complex Banach space, X* its dual space, X  the linear space X endowed with
the weak topology & (X, X*)and #(X) the linear space of all bounded linear operators on X into
X endowed with the uniform operator topology, Norms in X and in (X} are denoted by the
same symbol | |. The symbol “—” denotes weak convergence.

When the following condition holds

there exists a Banach space Y such that ¥* = X, ' . (1.1)

we denote by X _, the linear space X endowed with the weak* topology F (X, Y). The symbol
“—*” denotes weak* convergence.

The results proved in this paper concern: (i) the case where X is reflexive; (ii) the more general
case where X is non-reflexive but (1.1) holds.

Let T > 0bea real number and k a non-negative integer. We denote by C[0, T; X) the space
of k times continuously differentiable functions on the closed interval [0, T] with values in X
and by BV{[0, T]; X) the space of the bounded variation functions. The total variation of f{¢)in
[0, T is denoted by V(f). We put ||| f]||, = sup|if(t)|| for te [0, TT], £*(t) = lim f{t + h) when
h— 0%, f(t) = lim f(¢t — h) when h - 07,

Finally Lip([0, T; X)is the space of the Lipschitz continuous functions on [0, T'] with values
on X. We put

oft) — ofty)|

il = sup %)

to,ref0, 7]

In the sequel S(z), 0 <t < +co,is a strongly continuous semigroup of operators on X with
infinitesimal generator — A (for definitions and properties see [1] and [2]).
When X is non-reflexive but (1.1} holds we assume that the operators 4 verifies the following
property:
ifx, —»x and Ax —~*yeX (1.2)

then x eD(A) and Ax = . -

If 4 is a differential operator the property (1.2) holds for the usual functional spaces since AX,
converges to Ax in the distribution sense.

The results obtained in this paper when X is reflexive are a particular case of the results obtained
when X is non-reflexive but (1.1) and (1.2) hold. In fact if X is reflexive it verifies (1.1) with
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Y = X* and furthermore the weak* topology Z (X, ¥) is nothing but the usual weak topology
F (X, X*); moreover the condition (1.2) holds since 4 has a closed graph in X x X . However
we give first the results and proofs for the reflexive case and afterwards the modifications for the
more general case (1.1), (1.2).

Results
This paper is concerned with the non-homogeneous Cauchy problem

w(t) + Ault) = (i) on [0, T,

(1.3}
u(0) = u,,
where u, € D(4) and f:[0, T] - X.
Definition 1.1, One says that u: [0, T] - X is a solution of the Cauchy problem (1.3) if
u(t) is absolutely continuous (a.c.) and almost everywhere differentiable on [0, T, (L.4)
u(t)ye D(4) for all te [0, T], (1.5)
w'(ty + Au(t) = f(t), ae in[0, T, (1.6)
u(0) = u,. (1.7
We recall the following result due to Phillips [3]:
If f& CY([0, T]; X) and u,, € D(A) then the function
u(t) = S(t)u, + uit), (1.8)
where
v(t) = J.I St — 3) f(s)ds, (1.9)
V)

is continuously differentiable, belongs to D(4) for all t €[0, T] and is a solution (the unique) of
problem {1.3). Moreover

- Av(t) = 5(t) f(0) — f(&)

(1.10)

+J St — 85)f'(s)ds

This result holds again if f is assumed to be only a.c. and a.e. differentiable in [0, T] (see Brezis
[4] and Pazy [5D.

Our aim is to prove the existence of a strong solution (in the sense of Definition 1.1) when
f & BV({0, T]; X); in the general Banach space case this is not possible without further assump-
tions since counterexamples (even with a Lipschitz continuous data) are well known. Since the
initial data u, belongs to D(A4} it is obv1ous that to solve the problem (1.3} it suffices to restrict our
attention to the problem

{v ‘() + Avr) = Sf{t), ae. on[0, T, L1)

w0) = 0,

We prove in this paper the following results:

TIf X is reflexive the last property is implied by the first one.
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THEOREM 1.1. Let X be reflexive and fe BV ([0, T]; X). Then for all ¢ € [0, T] the integral in the
right hand side of (1.9) exists in the Riemann sense and the function v{t) satisfies the following
properties:

(a) For every t e [0, T'] one has v(t) € D(4) and

—Au(t) = W*J.l[dS(S)] flt —3)

= S8(0) fO) — f(&) + W"j S(t — s)df(s). (1.12)

Q
Moreover Au(t)is weakly continuous on [0, T'] and right continuous on [0, T|.
{(b) The function v(t) is Lipschitz continuous on {0, T] and

[lvltlo,x < (ANl + V() sup | S@].
[0,T]
(¢) The function o(t) is a solution of the problem {1.11) in the sense of Definition 1.1,
(d) Equations '

d*u(t)
dr

+ Av(t) = f*{t) forall te [0, T[ (1.13)

and

d™ ot
w-—-—aliﬁ + Avlt) = f~(t) forallte]0,T] (1.14)
hold. In particular d " o(t)/d¢ is right continuous on [0, T[ and w-(d " v(t)/ds) is left weakly con
tinuous on 0, T.
Moreover if Av(t)is left continuous at a point ¢, the strong derivative d ~»(t)/d: exists (and hence
verifies (1.14)) at ¢,

The integrals in (1.12) are weak Riemann-Stieltjes integrals. Note that if f(z) is regular the
known formula (1.10) follows from (1.12).

Remark 1.1, 1f — 4 is the infinitesimal generator of a strongly continuous group of operators then
Au(t) is continuous on [0, T] and (1.14) holds strongly,

Remark 1.2, Assume that fe BV([0, T]; X) n C°([0, T']; X). Then the weak derivative w-(dv/dt)
exists for all t &[0, T, is a weakly continuous function on [0, T and

de

w-2 o+ Av(t) = f() forall te [0, T].

Remark 1.3. In the Appendix it is shown that if f'e L'(¢, T; X), Ye > 0, and u(t) is a “solution” of
(1.3) then u(t) must be given by (1.8), (1.9). -

Remark 1.4. Under the assumption that X is a real Hilbert space and A4 is monotone (but not
necessarily linear) it was proved by Brezis (see [ 6], chap. 111, proposition 3.3) that if u, € D(4) and
FeBV({0, T]; X) the equation (1.3) has a (unique) Lipschitz continuous solution u(t) such that
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u(tye D(A)for all t € {0, T]and (1.13) and (1.14) hold. In this context {X real Hilbert space and 4
monotone) if 4 is linear then the existence of the solution u(t) of the problem (1.11), guaranteed
i this case by the resuit of [ 6], implies that v(1) is given by formula (1.9). Formula {1.12)is new, even
in this case.

In the non-reflexive case the following statement holds:

THEOREM 1.2, If X is non-reflexive but (1.1) and (1.2) hold then the results stated in Theorem {1.1),
in proposition (1.1) and in the remarks (1.1) and (1.2) hold if we replace everywhere “weak” by
G{weak*”' .

Remark 1.5. In [7] Webb has proved some results which we summarize as follows:
Theorem 1.1 holds in a general Banach space if the semigroup S() verifies

SO X < D(4), Vit >0, (1.15)

and hence if S(t) is an analytic semigroup; moreover one can replace everywhere in Theorem 1.1
“weak” by “strong”. '

In connection with this last statement we remark that in our paper the left continuity of Au(t)
on J0, T] (and the existence of a strong left derivative d ~s(t)/dt in all of 10, T); see the last state-
ment in Theorem 1.1) remains open, '

However the right strong continuity of Au(t), which was not proved in a first version of our
papert, is now proved by simplifying a device used in the Lemma 3.2 of [7].

The author is indebted to H. Brezis who called his attention to the Webb’s paper [7] and has
made useful remarks.

2. PROOFS OF THE BASICRESULT

We recall that a function g: [a, b] — X is said to be of bounded variation if
r—1
sup Z ”g(ti+1) a g(ti) ” < Too,
i=0
where all possible finite partitions t, =a <, < ... < t, = b are allowed for. The suprema,
known as the total variation of g on [a, b] is denoted by V(g; La, b]). We put V(g;[0, T]) = V(g).
1f g is of bounded variation on [a, b] we write g ¢ BV([q, b]; X).
Thefollowing results are well known (see for instance [6], Appendix 2): if ¢ is of bounded varia-
tion in [a, b] the discontinuity points to g are (at miost) a denumerable set N (g). Furthermore the
limits

lim g(t) = g™ (), tela b (2.1)
and o
im gty = g (1),  telab] 2.2)

exist. The function ¢g*() is right continuous on [a, b and its total variation verifies V(g*;
fa, L) < V(g; [a, b]). Corresponding results hold for g~ (t) on Ja, b]. ,
We denote a finite partition a = ¢, < t, < ... < t, = b together with the points € [t,t, ]
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0 €i<n—1,bynand we set

|7rI = max ’tH-l - til'

0%i€n—1
The set of all such partitions, together with the partial ordering “n < ' if || > |#'|" is a
directed set. Let now T: [a, b] = #(X), g:[a. b] — X and consider the Riemann-Stieltjes sums

n—1
S(Tg) = 2 Tyt y) — 9] 2.3)

If the weak fimit w- lim S (T, g) exists in X this limit is (by definition) the weak Riemann-~
|=|=0
Stieltjes integral

w-r T dg(t).

i

In a similar way one defines the weak Riemann-Stieltjes integral

b
W'J (AT ()] g(t)
as the weak limit of the sums
n-1
Sn-(g! T) = Z [T(ti+1) - T(t;)} g(Ti) (24)
i=0
as |z| — 0. The existence of one of the integrals implies the existence of the other and
b b
W-j [dT(0)] g(r) = T(2) g(2)
b
—W-J- T() dg(®). {2.5)

Ifthe condition {1.1) holds one has similar definitions for the weak* Riemann-Stieltjes integrals.
Letnowg:[a, b} = X where0 < a < b < +ooand X isa generical real or complex Banach
space and let S(¢) be a strongly continuous semigroup on X. Put

LN

RiSi= % | Swe)de 6)

i=0 Ji;

One has the following result:

Lemma 2.1. Assume that g() is bounded and continuous a.e. in [a, b]. Then

lim R (S;¢g) = r Sit)g(rydr (2.7)

in|—0 a

where the last integral exists in the Riemann sense.

Proof. Denote by E the set of points where g is discontinuous. Since S(t) g(¢) is continuous in
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points ¢ ¢ E and is bounded on the bounded interval [a, b] it follows that the integral in the equa-
tion (2.7) exists in the Riemann sense. Put now

F (1) = S{x) g(z,), ifrelt,t,, [ (2.8)
One sees easily that
lim F (z) = S(z) g(r}) ae. in [a,b) (2.9)
[w|—=0 :

Moreover |F (t}| is bounded on [a, b] uniformly with respect to z. Consequently by the
Lebesgue dominated convergence theorem

lim r F (r)dr = r S(r) g(r) dr. (2.10)

jm|—0Ja a

We are now able to prove the following result:

TueoreM 2.1. Let X be a (real or complex) reflexive Banach space and S(t) a strongly continuous
semigroup in X with generator — 4. Let ge BV ([a, b]; X),0 € @ < b < +ac. Then

jb 5(z) g(tv) dt e D{A) . (2.11)

a

and

b , B
— Af Sty gr)dr = W—J\ [dS(7)] glz)

a

= S(t) 9(2)

b b
~ W- f S(c) dg(c). (2.12)

a

If X is non-reflexive but the conditions (1.1) and (1.2) are verified the statements of the theorem
hold again with “weak” replaced by “weak™*”.

Proof. Let R (s, g) be defined by (2.6). Since
tiv1
—4 JA S(T) g(T;’) dr = S(tH- 1) g(tf) - S(ti)g(T;)

it follows that R (s: g) & D(4) and

b n—1
—AR(S;9) = SWg®)| — ¥ St P[eC,) — alz)] (2.13)
. ] i=0
where v_, = aand 1, = b. In particular
| - AR(S,9)| < | S®)9(B) — S(a) g(@)| + sup I5@-Vig; [a b]) (2.14)
l2, 8]

and consequently | - AR (S: )| is bounded uniformly with respect to % Since X is reflexive it
follows that the set of ail the elements - AR (S g) is conditionally compact in X . On the other
hand the graph of the operator 4 is closed in X x X » Since it is a linear closed subspace of
X x X It follows from these results and from Lemma 2.1 that (2.11) holds and

B n—1
4 f S gy dv = w- lim Y [S(,, . — SE)] gl)

a Iz]=0 i=0
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B n—1 '
= S(l) g(t) — w- lim Z S(ti+1)[g(fi+1) - g(T;‘)]-

a |m|+0 i=0

Thus Theorem 2.1 is proved in the reflexive case. If X is not reflexive but (1.1}and (1.2) hold, the
proof is analogous; the Banach~Alaoglu theorem guarantees the conditionally compactness of
—AR_(S;¢)in X ., and the condition (1.2) guarantees that the operator 4 (i.e. the graph of A}is
sequentially closed in X x X , (sequentially closedness of 4 is sufficient since the convergence
ofanet u_ touisimplied by the convergence to u of all the sequences u,_for which lim |r,| = 0).

n—+-+ow
3. PROOF OF THEOREM 1.1 AND 1.2

In this section we prove the results stated in the introduction. The statements corresponding to
the non-reflexive case shall be proved together with the corresponding statements for the reflexive

one.
Proof of statement (a). By putting © = t — s and g{t) = f(t — ), s [0, ], (1.9) becomes

u(t) = J r S(t) gir) dr. (3.1

o]

By using Theorem 2.1 it follows that o(t} e D(4), Vte[0, T], and that (1.12) holds. From (1.12)
one gets easily the boundedness of Av(t) on [0, T] and

[ 4¢lle < [/l + O] + V() sup | S@]. (3.2)
[a. 7]

Since v(t) is continuous, A is closed and X is reflexive it follows that Au(t) is weakly continuous
on [0, T} If X is non-reflexive but (1.1) and (1.2) hold we use the Banach-Alaoglu theorem and
(1.2) to prove the weak* continuity of Au(r).

Now we prove that Au(t) is right continuous on [0, T[. Let t,¢ + he [0, T[, h > 0; one has

Av(t +h) — Av(t) = A jm St +h — s) fis)ds + (Sth) — I) Av(t)

and by Theorem 2.1 one gets
t+h
Auvt +h) — Av(l) = w-f St +h — sydf(s)
t

= SISO ~ fOF + ISBH T ~ f& +R)] +(Sth) — 1) Avfz). (3.3)
The two last terms in (3.3) converges to zero when A | 0. On the other handf
w-fﬂS(r +h—s)df(s) = SWLfT) ~ f6)] + W-J St +h — sydf(s)
t T, t+ K]

and the last integral converges to zero when h | 0 since it is bounded in norm by

V(f;tt +R]) sup |S@)|

1[0, k) .
as follows from the lower semicontinuity of the norm in the weak (or in the weak*) convergence.

n=1
+ The Riemann-Stieltjes integral in a left open interval Ja, b] is defined a5 the limit of the sums (2.3) with ) replaced by
n—1 =0

E ; a corresponding definition hold for the total variation of f in a, b].
(=1
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Proof of statement (b): Let t,t + he [0, T] with & > 0. Then

t+h 1

St +h —35) fs)ds —j 8t — 1) f(v)de

0

vt +h)— o{t) = f

0

and by putting in the first integral s — h = 7 one gets

ot +h)—v(t)=f0 St — 1) f(x +h)de +J‘ St -~ [ Sz +h ()] dr.
—h

0

Therefore

bt + k) — ()] < sup [56) ||(|ffH| h +J lr +h) — 1)) dt) (3.4)

On the other hand
[f@@ +h) = @) < V(/i[nt + 1) = V(£ [0,1 + k) — V(S [0.7])
Putting V(s) = V(f; [0, s]) one has

j | flx +h)y — f(r)[| dt Sf(V{r +h) — V(z))dt
0 0

t+h t tt+h
=j Vir)dr — j Viz)dt SJ Vit)dz

o]

since V(1) is non-negative. Hence

fllf(r +h) = f@) ] dv < BV(S). (3.5)

Statement (b} follows now from (3.4} and (3.5).
Proof of (1.13): Let te [0, T[ and A > 0. One has

I

(ot + k) — v()/h = f((S(h) — DRSSt — 9) f(s)ds + (1/h) f Hhs(r +h ) f‘(g) ds;

Q

consequently

: t+h
(v(t + k) — v(®))/h = (S(h) — /) o(s) + (l/h)J. St +h =8 f(5) — ()] ds

k- (1/h) rhS(z th—s) fH(O)ds

Since v(t) € D(A) one sees easily that
im (v + k) — o(t))/h = — Av(t) + £(0).
F-Qt
Proof of statement (c): Since v(t) is Lipschitz continuous and X is reflexive o "(t) exists a.e. in
[0, T]. The statement (c} follows now from (1.13) since f(t) = f* {t}excluding at most a denumer-
able set of values of t. In the non-reflexive case the Lipschitz continuity of (¢) and the existence of
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a bounded and measurable (hence integrable) d *o(¢)/dt implies that
"d* o)
t) = dt.
v(z) L s

Hence v'(t) exists and is a.e. equal to d*v(z)/dt in the interval [0, T'].
Proof of (1.14): Let te |0, T]. One has

o(t) = J’ v(s)ds = — * Av(s) ds +Jl 7(s)ds
)

o vO
where the integrals here are in the Bochner sense. Thus, if & > 0,

't

(v(t — k) — v(t))/—h = — (1/R) Av(syds + (1/h) J‘ f7(s)ds. (3.0)
ik

Vi—h

Since Au(s) is weakly continuous (w*-continuous in the non-reflexive case with (1.1), (1.2)) and
S 7 (s) is left continuous the result follows easily from (3.6).

Proof of the other assertions: The last statement of Proposition 1.1 follows from (3.6). The
Remark 1.1 is obvious and the remark 1.2 follows directly from the other results.

4, APPENDIX
In this section X is an arbitrary real or complex Banach space and A* is the adjoint of 4. We
denote by X¥ the closure of D(A*) in X* and we put
Dy(A*) = {x* e D(A*): A*x* & X}

Itis well known that the restriction of A* to D(A*)is the infinitesimal generator of the strongly
continuous semi-group S*(f), . Moreover the w*-closure of D (4*) is X*.
The space of the Bochnerintegrable functions on ]a, b[ with valuesin X isdenoted by I*a, b; X).

PROPOSITION 4.1, Let SeLYe, T: X) for all ¢ > 0 and assume that the function u:]0, 7] —» X
satisfies the following conditions:

u(tye D(A) ae.in ]0, T], 4.1)
u(t) is absolutely continuous and a.e. differentiable on [, T] for all & > 0. 4.2)
w(t) + Au(ty = f(t) ae. in |0, T[. . (4.3)

Then
(@) If fe M0, T;X)andif

w- lim u(t) = u,e X
1—»0*

one has for every t e [0, T']

u(t) = S{thu, + f S(t — 8) fis)ds. 4.4)
, 0
(b) If Yim u(r) = u, € X one has for every te [0, T]
u(t) = S(Hu, + lim f St — 3) f(s)ds.. {4.5)
=01 ve
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(c) f w-Hm u(t) = uy, € X and if X is reflexive one has for every re [0, T']
10+

u(t) = S{tyu, + w- lim Jt 5(t — 5) f(s)ds. (4.6)

g0

Proof Let x*e D (A*) and 0 < & <t < T. The function
8 — {8t ~ s)uls), x*>, sele T, 4.7
is a.c. In fact by the change of variables t — s = 1 (4.7) gives rise to the function
T - {8(0) v{t), x*>
where v(t) is an a.c. function in [0,t — ¢]. If 0 < @ < f < t — ¢ one has
[<SUB) (B, 5%y — (S() o), x| < ([ v() — v(e)]| + | S¥(B)x* — §¥(0) x*])

and consequently the derived result follows. Thus

t

{ulty — S(t — g)ule), x*> = J‘ %(S(t -~ 5)us), x*> ds, Vx* e D (A4¥).

3

On the other hand let E < [0, T'] be the set of zero measure where the equation (4.3) does not
hold. If s€ J0,¢[, s ¢ E, one has

(/RSE — s = Byuls + By = St = Wyuls]] = (HSE —5 — B) — S — ] uls)
+ 8@t — s — B)[(uls +h) — uls)/h — u'(s) +u'(s)]

and passing to the limit when h — 0 one obtains

(56— uts) = S~ 9 1)

a.e.in 0, t[. Hence for every x* e D (4*) and £ € ]0, ¢ one has

{u(t), x* = ule), $*(f — &) x*> +<Jl S(t — s) f(s)ds, x*>. (4.8)

Equation (4.8) holds for every x* e X* since D {A4*) is w¥*-dense in X*. Consequently

u(t) = St — &) ule) + J t S(t ~ s) f(s) ds. (4.9)

To prove the part (a) of the Proposition 4.1 we pass to the limit in (4.8) when &£ —» 07 (with
x* € D (4*)) and we use the density of D (A*)in X* in the 7 (X*, X) topology. This yields (4.4).

Statement (b) follows from (4.9). Finally if u(t) — u, and X is reflexive we obtain (4.6) by passing
to the limit in (4.8) when ¢ — 0% (with x*e X*),
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