## ACCADEMIA NAZIONALE DEI LINCEI

Estratto dai Rendiconti della Classe di Scienze fisiche, matematiche e naturali Serie VIII, vol. LVIII, fasc. 4 - Aprile 1975

Matematica. — A remark on the differentiability for Green's operators of variational inequalities. Nota di Hugo Beirão da Veiga (\*), presentata (\*\*) dal Corrisp. G. Stampacchia.

RIASSUNTO. — È stato dimostrato in [1] che l'operatore P definito da (3) è differenziabile nell'origine, inteso come operatore da  $L^2(\Omega)$  in  $L^2(\Omega)$ . In questa Nota si osserva che continua a sussistere lo stesso risultato se P viene inteso come operatore da  $L^2(\Omega)$  in  $W^{1,2}(\Omega)$  ed inoltre come quest'ultimo possa essere ulteriormente generalizzato.

This Note is concerned with the recent paper [1] to which the reader is referred for terminology, notation and further details.

Let  $\Omega$  be an open bounded set in the *n*-dimensional Euclidean space  $\mathbb{R}^n$  and let  $\Gamma$  be the boundary of  $\Omega$ . We assume that  $\Omega$  and  $\Gamma$  are smooth.

We denote by  $\| \|_p$  and  $\| \|_{s,p}$  the usual norms in the space  $L^p(\Omega)$  and  $W^{s,p}(\Omega)$  respectively, and we put  $H = L^2(\Omega)$ ,  $\| \| = \| \|_2$ . We shall consider also the spaces  $L^p(\Gamma)$  and  $W^{s,p}(\Gamma)$  with the usual norms  $| |_p$  and  $| |_{s,p}$  respectively.

Let now  $\alpha: \mathbb{R} \to 2^{\mathbb{R}}$  and suppose that  $0 \in \alpha$  (0); we say that the graph  $\alpha$  is differentiable at the origin, with finite derivative  $\alpha'$ , if the following condition holds:

(I) for any  $\varepsilon > 0$  there exists  $\delta_{\varepsilon} > 0$  such that  $|z - \alpha' y| \le \varepsilon |y|$ , for all  $z \in \alpha(y)$ , for all  $y \in ] - \delta_{\varepsilon}$ ,  $\delta_{\varepsilon} [\cap D(\alpha)$ .

We say that  $\alpha$  is differentiable at the origin with  $\alpha'=+\infty$  if

(2) for any  $\varepsilon > 0$  there exists  $\delta_{\varepsilon} > 0$  such that  $|y| \leq \varepsilon |z|$ , for all  $z \in \alpha(y)$ , for all  $y \in ]-\delta_{\varepsilon}$ ,  $\delta_{\varepsilon}[\cap D(\alpha)$ .

In the sequel  $\beta$  and  $\gamma$  are two maximal monote graphs on  $\mathbf{R}$  verifying  $o \in \beta(o)$ ,  $o \in \gamma(o)$ . It is well known that for every  $u \in H$  there exists a unique function  $Pu \in W^{2,2}(\Omega)$  satisfying

(3) 
$$\begin{cases} -\Delta Pu + \gamma (Pu) + Pu \ni u, & \text{a.e. in } \Omega \\ -(\partial Pu/\partial n) \in \beta (Pu), & \text{a.e. on } \Gamma, \end{cases}$$

where  $\partial/\partial n$  is the outward normal derivative; moreover  $\|Pu\|_{2,2} \le c \|u\|$ . We denote by c constants depending only on  $\Omega$ , n,  $\beta$  and  $\gamma$ .

In [1] we have introduced a method that applies, in particular, to the study of the differentiability of the Green's operator P (1). More precisely

<sup>(\*)</sup> Instituto de Física e Matemática (Lisbon).

<sup>(\*\*)</sup> Nella seduta del 12 aprile 1975.

<sup>(</sup>I) In [I] we derive from this result a theorem on the bifurcation points for the operator P.

we have proved that:

Theorem I: (i) If  $\gamma$  is differentiable at the origin with  $\gamma'=+\infty$  then the operator P is Fréchet differentiable and DP (0) = 0.

(ii) If  $\beta$  and  $\gamma$  are differentiable at the origin with  $\gamma' < +\infty$  and  $\beta' = +\infty$  then the operator P is Fréchet differentiable at the origin and DP (0) = A is the Green's operator for the linear Dirichlet problem

(4) 
$$\begin{cases} -\Delta Au + Au + \gamma' Au = u & in \quad \Omega, \\ Au = 0 & on \quad \Gamma. \end{cases}$$

(iii) If  $\gamma'<+\infty$  and  $\beta'<+\infty$  then DP (0) = A is the Green's operator for the linear problem

(5) 
$$\begin{cases} -\Delta Au + Au + \gamma' Au = u & \text{in } \Omega, \\ -\partial Au/\partial n = \beta' Au & \text{on } \Gamma. \end{cases}$$

Obviously Theorem I is equivalent to prove that

(6) 
$$\lim_{\|u\| \to 0} \frac{\|Pu - Au\|}{\|u\|} = 0,$$

where A = o in case (i).

It was remarked to the author (oral communication) by J. Hernandez that one can prove that

(7) 
$$\lim_{\|u\| \to 0} \frac{\|Pu - Au\|_{1,2}}{\|u\|} = 0.$$

The aim of this note is to verify that (7) is a trivial consequence of the estimates obtained in [1]. For brevity when we write " $\leq c \varepsilon \parallel u \parallel$ " it is understood that the corresponding estimate is true for  $\parallel u \parallel$  sufficiently small.

Cases (ii) and (iii):

Put Ru = Pu - Au. In [1] we succeed in proving that (cf. [1], (1.21), (1.22) and (1.25))

(8) 
$$\|\Delta Ru - Ru - \gamma' Ru\|_q \le c\varepsilon \|u\|$$
 in cases (ii) and (iii),

with  $q < 2^{(2)}$ , and we also show

(9) 
$$|Ru|_2 \le c\varepsilon ||u||$$
 in case (ii),

(10) 
$$|\partial Ru/\partial n + \beta' Ru|_2 \le c\varepsilon ||u||$$
 in case (iii).

(2) To prove (6) we had chosen in [1]  $q = (2^*)'$  where  $2^* = 2 n/(n-2)$  is the Sobolev imbedding exponent of  $W^{1,2}(\Omega)$  and  $1/(2^*)' = 1 - (1/2^*)$ . To prove (7) we made the same choice of q. If  $n \le 2$  then q < 2 can be arbitrarly; but in this case the results can be strengthened.

From (8), (9), (10) and from well known estimates for solutions of linear equations we deduce immediatly, in our paper [1], relation (6). But from exactly the same estimates (8), (9), (10) one trivially derives relation (7). In fact multiplying  $-\Delta Ru + Ru + \gamma' Ru$  by Ru, integrating in  $\Omega$  and applying Green's formulae it follows that (we recall that  $\gamma' \geq 0$ )

(II) 
$$\|Ru\|_{1,2}^2 \leq \int_{\Gamma} (\partial Ru/\partial n) Ru d\Gamma + \int_{\Omega} (-\Delta Ru + Ru + \gamma' Ru) Ru dx.$$

In case (ii) from the corresponding estimates (8), (9) it follows then that

$$\|\mathbf{R}u\|_{1,2} \leq c\varepsilon \|u\|,$$

because  $||_{2^*} \leq c ||_{1,2}$ .

Analogously in case (iii) the corresponding estimates (8), (10) give (12) because we have in (11)

$$\int\limits_{\Gamma} \left( \partial \mathbf{R} u / \partial n \right) \, \mathbf{R} u \, \, \mathrm{d}\Gamma \leq \int\limits_{\Gamma} \left( \partial \mathbf{R} u / \partial n \, + \, \beta' \, \, \mathbf{R} u \right) \, \mathbf{R} u \, \, \mathrm{d}\Gamma \, .$$

Finally (i) follows from (6) (i.e. from  $\|Pu\| \le c\varepsilon \|u\|$ ) and from equation (3). We remark that (7) can be further generalized. Consider for example case (iii). Formula (8) holds for all q < 2 (as proved in [1]) and consequently (8) holds with  $\| \|_q$  replaced by  $\| \|_{s,2}$ , for all s < 0. From this estimate, from (10) and from known results for linear equations it follows that  $\|Ru\|_{3/2,2} \le c\varepsilon \|u\|$ ; consequently

$$\lim_{\|u\| \to 0} \frac{\|Pu - Au\|_{3/2,2}}{\|u\|} = 0.$$

This relation can be generalized.

## REFERENCES

[1] H. BEIRÃO DA VEIGA - Differentiability for Green's operators of variational inequalities and applications to the calculus of bifurcation points (to appear in thee «Journal of Functional Analysis».

