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We study Fréchet differentiability at the origin, in the Hilbert space L% £2), for
the Green’s operator P and we apply these results to the calculus of bifurcation
points.

INTRODUCTION

A classical method for the study of questions concerning the eigenvalues of
linear differential operators is to reduce this problem to the analogous one for
the inverse operator. The problem becomes easier because this operator is in
general compact. We can apply this method when the (nonlinear) operator T is
maximal monotone, by considering the operator P = (I 4 T)71; this was used
in [10] for studies concerning nonlinear spectral analysis and also in [6]. Using
this method, the problem of finding the eigenvalues for (2.1) reduces easily to
the same problem for the Green’s operator P defined in (1.3).

Then it becomes natural to try to use for P the known abstract theorems for
compact nonlinear operators. Obviously this will be interesting when the
hypotheses that underlie these theorems are not trivially verified by P. This will
be the case when one tries to apply the celebrated theorem of Krasnosel’skii
(see [8]) because we must then investigate under what conditions the operator P
is Frechet differentiable at the origin. This is the main purpose of our paper (see
Theorem I). A theorem on the bifurcation points is also derived as a consequence
of Theorem I (see Theorem IT).

We remark that the method introduced in this paper to prove Theorem I
is applicable to problems more general than (1.3); in particular it is independent
from monotonicity properties and from the Hilbert structure of H.

The results stated in this paper, and corresponding proofs, were presented
in [1].
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I

Let 2 be an open bounded set in the #-dimensional Euclidean space R” and
let I" be the boundary of £2. We assume £ to be sufficiently smooth.

We shall assume that the spaces L?(2), 1 < p < 400, and the Sobolev
spaces W*7(Q), k positive integer, are familiar to the reader; we denote by || ||,
and || |lg,, the usual norms in these spaces and we put H = L) and || | =
[l llz- As usual Wg*(Q) is the closure of 2(R2) in W'4(Q), and W-1%Q) is the
dual space of Wy'3(£).

We shall consider also the spaces L?(I") and the Sobolev spaces W-1/2.2("),
k positive integer; we denote the usual norms in these spaces by | |, and
| lx—@/2),2» respectively. Finally W=1/7-%(I") is the dual space of W/».#'(I"),
P =pl(p—1).

The following definitions are well known: If @: H — H is a multivalued
operator (a graph) we put D(0) = {uec H: O(u) = @}. We say that O is
monotone if (v' — v, #' —u) > 0 for all %, %' € H and all v € O(x), v’ € O(«').
We say that © is maximal monotone (and we write m.m.) if @ is maximal in the
class of monotone multivalued operators.

Let now «: R — 2R and suppose that 0 € «(0); we say that « is differentiable at
the origin with finite derivative o’ if the following condition holds:

(1.1) For any € > 0 there exists 8§, > 0 such that
|z —ay|<elyl, Vzeoy),
forallye D(e) ] — 8., 8.

Obviously if « is monotone then o’ > 0.
We say that « is differentiable at the origin with o' = + o0 if

(1.2) For any € > 0 there exists 8, > 0 such that

ly| <elz]|, Vz e of y),
for all y € D(a) N ]—38,, 8.].

In the sequel B and y are two m.m graphs on R verifying 0 € (0), 0 € »(0).
T'he following result is due to Brézis (cf. [4, Corollary 13]):
For every u € H there exists a unique function Pu € W22(Q) satisfying

—APu + y(Pu) + Pu>su, a.e. in £,

(1.3)
—OPu|on € B(Pu), a.e.on I

vhere 8/0n is the outward normal derivative; moreover || Pu| < || |l. In addi-
ion we can see that

| Prllye < clfull. (1.4)
Ne denote by ¢ constants depending only on £, 7, 8, and .
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In this section we prove the following theorem:

Tueorem I. (1) If vy is differentiable at the origin with y' = —-c0 then the
operator P: H — H defined in (1.3) is Fréchet differentiable and VP(0) = 0.

(1) If B and y are differentiable at the origin with B’ = + o0 and y' < +oc
then the operator P is Fréchet differentiable at the origin and VP(0) = A4 is the
Green’s operator for the linear Dirichlet problem

—AdAu + Au + y'Au = u in 2,

(1.5
Au =0 on I

(i) If B’ < -+ oo and vy < +oo then VP(0) = A is the Green’s operatoi
for the linear problem
—AAu + Au+ y'Au = u in £,

(1.6
—0Aufon = B'Au on I

We suppose without loss of generality that # > 3. If n <C 3 the proofs ar
trivial since W22%(Q) ¢— L=(2). In order to prove Theorem,I we state some
lemmas:

(1.7) LEmMMA.  Assume that o satisfies (1.1) with o/ = 0, v, we L2(I") wit]
p > q = 1,%(x) € D(a) ae. on I, and w(x) € o(v(x)) a.e. on I'; then

lwlg < e |vlg+ [pl(p — QI8 "(lolh+ 1w ]),  Ver>0. (1.8
In particular if v, w e WYAI") then

| - L _8(2—1>)/2 /2 . /2 v 0 1.9

fwl, < elvly+ b (I2 l/se + T ly7s.), € . (I

with p == 2(n — 1)|(n — 2).
Proof. Put 6, == & and

L5 ={xel] o) > 8;

using (1.1) with &' = 0 we get

wlp=[

|| dI" + fr | |7 dl’
v 8,v

(1.10
<€"1v13+f | w|*dr
Fﬁ.u
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Furthermore,

[ |w|"dl = |w |9dl + | w|dl"
Ts,y Ts ol lw(z) <] v() ) Is, N {e:lw@) > ()1}
(1.11)

<f lo%dl + [ |w|edl.
Fﬁ.u Fﬁ,w

On the other hand, denoting by u(c) the measure of the set I, ,, it is well
tnown that

u(0)<(lv|p)p, VYo > 0.

g
Furthermore,

o0dl = q [ o) o do + u(d),
8

J

and as a consequence a straightforward computation yields

8,v

[ 1erar<a(e— 9 103+ 5 101 =2/ — D1 [0

5,0
’ (1.12)
From (1.10), (1.11), and (1.12) we find that (1.8) holds.
Finally (1.9) follows from (1.8) with ¢ = 2 and from Sobolev’s embedding
theorem W1/23(I") ¢— L¥(T").
Similarly we obtain the following result:

(1.13) Lemma. Assume that o = 40, veL?('), p > q =1, weL(T),
and v(x) € D(x), w(x) € o(v(x)) a.e. on I'. Then, for any ¢ > 0, we have

lolg < e lwlg+[p/(p— Pl 205 (1.14)
If in particular v € W2X(I") then
ol Selwly+ B |2 5, (1.15)

with p defined as in Lemma (1.7).

Proof. The proof of (1.14) is analogous to the proof of (1.8); now we use
the estimate

frwladr:fr_ra [7)|0d]“—{—fra |o|0dl

<[ lwl"dl +[pl(p — 187 013

that follows from (1.2) and (1.12). The proof of (1.15) is immediate.
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We see immediately from the proofs of (1.8) and (1.14) that I" can be replace
by £2. Hence, in particular, we can state the following lemmas:

(1.16) Lemma. Let q < 2 and assume that o = 0. If v, weLl¥(Q), v(x)
D(a) and w(x) € «(v(x)) a.e. on L2 then we have, for any € > 0,

Tl < € llvllg + [2/(2 — )] 87| o [F - || ). (1.17

(1.18) Lemma. Assume that o = +co. If v eL?(Q), p > 2, wel¥)
v(x) € D(«) and w(x) € o(v(x)) a.e. on 2 then we have, for any ¢ > 0,

lol* < lwlf+ [p/(p — 218"l v 3. (1.19

For the remainder of the proof of Theorem I the reader is referred to [2]
where a simplified version of the proof of [1] is indicated.

11
We are interested in the study of solutions # = 0 for the problem

—Au + y(u) + Au 30, a.e. in ,

(2.1
—ou/on € B(u), a.e.on I,

For A > 0 the only solution to problem (2.1) is the null solution; hence we maj
assume, without loss of generality, that A < 0.

If A, u is a solution of (2.1) with u 5 0 we say that A is an eigenvalue. We say
that A, is a bifurcation point for (2.1) if for any € > 0 there exists a solution )
uwithO) < u|| <eand | —X)| <e.

In this section, as a consequence of Theorem I, we prove the existence and we
characterize completely the bifurcation points for (2.1), when B and y verify
the hypothesis of Theorem I. More precisely we prove the following result:

Tueorem IL. (i) If y is differentiable at the origin and y' = 4 o ther
problem (2.1) has no bifurcation points.
(i) If B and y are differentiable at the origin with B’ = + oo, Yy < +oo,
the bifurcation points of (2.1) are exactly the eigenvalues for the Dirichlet problem
—Adu+(y +Nu=20 in 2,

2.2
u=20 onl, =)

i.e., they are given by \y = )\, — ', where ), are the eigenvalues for the Dirichlet
problem —Au 4+ A =0in 2, u =0onI.
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(i) IfB’ < 4o and y' < + oo then the bifurcation points for (2.1) are the
ugenvalues for the linear problem

—du—+ (' +0u=0 in £,

(2.3)
oulon + B'u =0 on I,

.e., they are given by Ay = A, — y', where A are the eigenvalues for the Linear
woblem —Au + Au = 0in 2, oujou + B'u =0onI.

By using the method referred to in the Introduction we see easily that the
ifurcation points A of (2.1) are transformed in the bifurcation points u of

v=uPv (2.4
vy means of the change of variables (used also in [6])
p=1—=2 v = pu. (2.5)

Moreover u = 1 — A gives a correspondence between the eigenvalues A of
2.2) [resp. (2.3)] and the characteristic values u of

QY = F,Au, (2-6)

there A is the linear operator defined in (1.5) [resp. (1.6)].

Therefore to prove Theorem II in case (i) [resp. (iii)] it is sufficient to prove
nat the bifurcation points u for Eq. (2.4) are the characteristic values u for the
near equation (2.6). But this statement holds since by Krasnosel’skii’s theorem
see [8, Sect. VI, Theorem 2.2, Sect. IV, Lemma 2.1]) the bifurcation points
r Eq. (2.4) are the characteristic values for the linearized equation v = pVP(0)v,
nd by Theorem I(ii) [resp. (iii)] we have VP(0) = A.

In case (i) we have, by Theorem I, VP(0) = 0 and the null operator has no
haracteristic values.

We remark that the supplementary hypotheses required to apply
rasnosel’skii’s theorem are verified as consequences of some results due
ssentially to Brézis and Moreau.
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