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ON THE W2,-REGULARITY
FOR SOLUTIONS OF MIXED PROBLEMS )

By Hugo BEIRAO DA VEIGA

SUMMARY. - In this paper we study regularity results for local or global solutions of mixed elliptic
problems. In particular it is shown that, if the data are sufficiently smooth, ali W'+ solution (s > 4/3)
belong to W22, for all p<4/3,

0. INTRODUCTION, — In this paper we prove some regularity results for solutions of
mixed second-order elliptic problems (see th. A and B). These results are described
in this section.

In the next section notations and useful known results are given. In section 2 the local
regularity is proved, [¢f. (2.16)]; this is the main result of the paper. Finally, for the
sake of completeness we prove in section 3 (with the usual method) the global regularity.

Let €2 be an open and bounded set in the n-dimensional Euclidean space R” and let I be the
boundary of ). We give two disjoint subsets I'" and '™ of I' with the same boundary
on T, say, v. Moreover ' = I'* T~ wy. We suppose that for any point x,e I
there exists an open neighbourhood U of x; and a homeomorphism T of U (closure of U)
onto C such that T and T are twice continuously differentiable (we write T, T™! e C?)
and

TQAU)=0Q, TInlU)=A.

If xoey we assume that T(I™ nU) = A, and consequently T(I'" n U) = A7,
TynU)y=S8. Ifx,¢y we take U such that Uny = (§. For the definitions of
C, Q, A, A and 8 see (1.1).

Let a;; (x), b;(x), co(x) and o (x)(i,j = 1,...,n) be real coefficients and assume
that

ﬁau (x)eC‘(g_z), b;, coeC’ (ﬁ) ogeC™ 1(-I"i*'),

0.1 _ . :
la ()&, 2 n|E]>,  VEeR"  (u>0) (')

(*) Supported by the *“ Fundagao Calouste Gulbenkian ** (Portugal).
(") We use throughout the paper the usual convention about the sum of repeated indices.
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280 HUGO BEIRAQ DA VEIGA

mareover let u {x) be a solution of the mixed problem
ueWh'(Q), wu=¢ onl (O,
©.2) \ J {a;D;uDv+b,D,u v+cquiv}dx

-[fud,x-i—j (Y —ou)vdrl, YoeCl(Q), v=>0 on I,

where fe L' (Q), e L' (T'7) and ¢y e L' (I'*), i. e. u is a solution of the mixed problem

( —Dy(ay; D)+ b, Diutcou=f in Q,
u=¢ onl",

(0.3) ,
l Dau+ou=y¢ onTI'*, Du=a;nDu,

where » is the unitary exterior normal to T

We have the following theorem :

THEOREM A. — Letf u be a solution of (0.2) and assume that
fel?(Q), oeW WYy yeWTWrTty with 1<p<2.

Put b =2(p—Djp and g = 2p/2—p). If ueCO* @) WHI(Q) then ue W7 (Q)
and

(0.4) |z pa = ] latll@]lz-cm pr-
- mrs + 4 o,n a1 # |10 0)-

If we assume that ¢ € L (I'") then theorem A is true for the value p = 2; obviously
we must add the term H i f o, v~ to the second member of (0.4). This was proved in [3].

We remark that the condition w e C°'* ~ W'+1 becomes “ u is a Lipschitz function in Q ™.
p

We prove theorem A, jn the local version, by approximating the solution « with a sequence
of functions u, each of which is the sum of one solution of a Dirichlet problem and one
solution of a Neumann problem. Then we apply to these partial solutions some results
of Agmon, Douglis and Nirenberg contained in [1] in order to verify that the L¥-norms
of the second derivatives of these partial solutions are uniformly bounded.

We recall that the C°* (Q) regularity for W2 solutions of mixed problems, even with
discontinuous coefficients, was proved by Stampacchia in [11]; a variant of this
method applies also to mixed-problems for a class of second-order non-linear elliptic
operators, as proved in [2].

Other important results on the regularity of mixed second-order elliptic problems are
given by Shamir in [10] to which we refer. We can combine these results with theorem A
to obtain regularity results for second derivatives of solutions of mixed problems, In par-
ticular, from lemma 5.1 and corollary 5.4 of [10] and theorem A we get the following

(?) i.e. @ is the trace of w on I'".
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ON THE W?’.REGULARITY FOR SOLUTIONS OF MIXED PROBLEMS 281

TuEOREM B. — Assume that T and v are C° manifolds and a; e C? (€Q), b, e C*(Q),
coeCH(Q), e CH{UT). Let ue WHs(Q), s > 4/3, be a solution of (0.2) with

feL (), pe W' UMy A W2 Wk ey, YeW Ity w ey

Jor all v < +co and all p < 4/3. Then ue W2 (Q) for all p < 4/3.

We don’t expect a better result due to a counter example of Shamir in [10]; Shamir
constructs an harmonic solution of the mixed Dirichlet-Neumann problem in the half
plane, with identically zero data, which doesn’t belong (locally} to W2 #/3,

Remarks. - Theorem A (and consequently theorem B) is valid for local solutions as
proved in the sequel.

~ The method used in this paper applies also if we replace the conormal derivative
by another directional derivative which covers our elliptic operator on the boundary.

1. SOME DEFINITIONS AND KNOWN RESULTS, — Let 3" = (y;, ..., ¥,_a2) ¥ = (J) ¥, = 1)
y ={», y,) and put
' C ={yeR":|y;|<l,j=1 ..., n}
Q ={yeC:0<y,},
A ={yeC:yp,=0},
(1.1 T Q =QuA,
S :{yEA D Vpe1 =01,
| Ay ={yeA :p,_, <38},
Af ={yeA:y,_>38}, de[-1, 1].

If v(x) is a real function (or distribution) defined in Q we denote by D, » and ij v
the derivatives, in the sense of distributions, dv/dx; and &° p/dx, Ox; respectively. If || |
is @ norm in some function or distribution space we set

" L
IDoll= 5 iDioll  ana [[p20]|= £ 3]l

If v is defined on Q we denote by v |, the restriction of » to A and so on.
The following definitions will be useful in the sequel :

C* (6) is the space of all real functions k times continuously differentiable in 6 and
C(Q= ) CHQ).
kx1

Ck’}"(a), (0 <A =1), is the space of all ve C* ((5) such that the derivatives of order &
satisfy the Hélder condition

<< + 0,

[flos= sup

x,yeQ |x_y|)t
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282 HUGOQ BEIRAQ DA VEIGA

We put
I llon =€ Joast ] Hles where {1/ [] =sup [ 763

We denote by L7 (Q), | £ p < + o0, the space of all real functions (equivalence classes

of functions) such that
1/p
”vllpz<j [u(x)|pdx) Tt
Q

and by W**(Q) the space of all ve L7 (Q) such that D,», D,;veL7(Q). W>?(Q)
is normalized with the usual norm || v ||, , = || 2||,+ ]| D v ]|,+]| P* ¢{|,. Analogously

we define W* ? (Q) for any positive integer k; it is known that C* (Q) is dense in W57 (Q).

We give the same definitions if the domain Q is replaced by Q. If the domain is A
we give analogous definitions (with the obvious changes).

If the domain of definition is not made explicit it is understood that this domain is Q.
Let us define
Wi ={veW"?:v=0 on A },
Whr = foeWy* supp v < (AQ},
Ci={veC' :1v=00n A;},
C' = {peC' :supp-vcé}, éslzcslméi,

where supp v is the closure of the support of v and ¢ = 0 on A, means that the trace of v
on AJ s zero (yov = 0 on A;; of the sequel),

Finally if 0 < s <1 and 1 < p < +w we dencte by W57 (A) the space of all
ve LP (A) such that (¢ft [5]) :

r
(1.2) ”U“mﬁfj lI;(Jf |<"v(1z))*| dydz < + o

and we normalize v by the power I/p of the first member of (1.2}, Tf 1 <5 < 2, WP (A)
is the space of all ve W' ¥ (A) such that D,ve W™ 1P (A), 1 £i £ n—1, pormalized
in the natural way.

With the aid of local charts we can define W** spaces on smooth manifolds, in particular
on I'.

We shall need some known results about traces and extensions of functions in the
framework of W*? gpaces. The literature on this subject is very extensive; see for ins-
tance [S], [6], [7]: in the sequel we refer the reader to [9].

We recall the following resuits :

L. There exists a bounded linear map yo : W' P (Q) —» WL P2 (AY sych that yo u = u |,
if ue C'(Q). This map is unigue. Cf. [5] theorem 1.L.

ToME 53 — 1974 — nNo 3




ON THE W?-REGULARITY FOR SOLUTIONS OF MIXED PROBLEMS 283

IL. There exists a bounded linear map

(os 1 - s ) 1 WHP(Q) o W2 WP Ay [W! (P Ay
such that

(Yott, ¥' 2t oy 7" ) = Gt | (D)o - (Dy)]a) i ueC2(Q).

This map is unique.
These results have some kind of inverse :

L. There exists a bounded linear map R, : W' UPP(AY 5 WP (Q) such that
Yo Ru = u. Cf. [3] theorem 1.1

IV. There exists a bounded linear map R : W20/0h2 (A WL—(Un-r (A) 5 W22 (()
such that vy R (u, v} = 1 and v" R (u, v) = v,

We shall need also the following extension theorem :

V. There exists a bounded linear map E : W'~ Ph2 (ASy  WI=(UBLp (A gy
that (E U) IAJ = B,
For the proofs see also [9] (§ 2, th. 5.4, 5.5, 5.6, 5.8 et consequence 5.3).

Finally we recall that

VI. There exists a bounded linear map vy : Wh (Q)— L' (A) such that vy u = u R
if ue C(Q). This map is unique.

For the proof see [5] theorem 1.IL

For the sake of simplicity we write # and D ;1 instead of yo u and ¢/ u.

2. LOCAL REGULARITY. — Let a,; (), i, j=1, ..., n, satisfy the following conditions

! a; (1) eC(Q),

2.0 , "
{ay(MEE 2 v[E]R,  VEeR"  (v>0),

let f(»)eL'(Q), ¥ () eL'(A]) and let u(y) be a solution of

( ueWph?,

2.2) . _ N
' a; DiuDedy =1 fody+ Yody, VeeCp
L JQ Q Ag

Furthermore let @ : R™ — R* (resp. ® : R— R™) be a nondecreasing C* function
such that ® (+) =0 on [0, 1], ®(r) = 1 on [2, + o] (resp. @ (*r) = 0 on ]—o0, —1/2],
O()=1on[—-1/4 +tw[) Put p=(p> +»)""*" and define on Q, for any s 0, 1[,
the functions ¢, () = ®(p/e) and 8 (»)=© (& y,_je). Finally put o () =0, () 0 ().
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284 HUGO BEIRAQ DA VEIGA

It is easy to see that for 1 £/, j < n we have

|Digi | sce™  if egp=2s,

(2.3) Doy | =0 otherwise;

| [Diof[gce™  if e<p<2e

|Di2j N |=0 otherwise.

(2.4) LemMA. — Let uf = 1 ¢F, where u is a solution of (2.2). Then

(2.4 J' a,.jDi-ueiD,-vdy:J‘ ffudy_pj l|13:vd)'), Vveélm“
Q | Q A

where
2.4%) s fx =f(pf—a,-ju Dizj(pf—uaij(DjuD,-(pf-f-D,.uDJ-(pf)—Dja,-jDi(pf i,

l \{jzi :Iy(paiuau—I,an—l(paiu

ard \TI & L' (A) is any extension of \f to all of A (we will make a more specific choice later).

The proof is an easy computation.

(2.5 LemMa. — If fel?, 1 <p<2, and ueC» n W' with g = 2p/2—p),
h=2(p—1)p then f, e L? and

(2.5) 15l = 11 {lo+ | Dullo+[uo, 0.

with ¢ independent of &.

Proof. — Since u (), 0,0) = 0 we have, for any ye Q, | u(p)| < [u],,, p'; therefore
using (2.3) and Ap+2—2p = 0 we obtain

(2.6) J |u|?| D of Pdy < c[ulf &2
Q
X J‘dy’ J‘j plpdyn-i dy.u g ¢ [”]gjlglp-i-?.—lp = [u]g,l'
[t

Analogously using Holder’s inequality and 2 (1—p/q)—p = 0 we have

1—(piq)
2.7 .[ ID;ul?| Dok |Pdy S cf| Du e x (jdy’fj' dy,,mldy,,) o <c|[Dullf
Q pE2s
By using (2.6) and (2.7) we prove (2.5).

2.8) LeMMAa, — If e W W r (AYY gnd e CO* n W1 then Wt e Wi U/mhr (A
1] H
and

(2.8 2 e -cumnpoa = Qo D |l [N a2
with ¢ independent of . The function \Ir, of (2.4"), will be chosen in the course of the proof.

Proof. — Put 3 n = dist (supp u, dQ —A) where 8Q is the boundary of Q. Then (2.2)
implies that dist (supp ¥, JA) = 3 n where 9A is the boundary of A in R" L,
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ON THE W?'?-REGULARITY FOR SOLUTIONS OF MIXED PROBLEMS 285

On the other hand there exists a bounded linear map lil——”]; defined on
e WP ARy« dist (supp U, dA) = 31}

with values in { e WI™(P (A)  dist (supp ¥, 8A) 2 21 } such that [, = W
{use V. § 0 and use multiplication by a suitable function),

Consider now the map 1bm»1|1’“ = R\Nlr defined in I, paragraph 0, restricted to

{\ll e WL We-r(A) : dist (supp \|J dA) 2 21} We suppose without loss of generality
that the functions yr* vanish on a neighbourhood of {y eQ:y, =1 } Now if we prove
that

(2.9) o |l , < ef[*]].,
it follows that
(2.10) ”‘J“Pr i=cumn o Z €|l W= csm pads

with ¢ independent of &. To prove (2.9) we have only to verify that
(2.11) VDo ||, < e[ DV,

the rest being trivial. Let B be the Sobolev’s imbedding exponent relative to n = 2 1. e,
B =2p/(2—p) and put 0, = { yeQ : )y’ = constant }.
Then for almost all 3 we have (%)

1/p Up
(2}2) (J\ |l£l*|ﬁdyn—ldyu\) é c[f (|D"_1\EI*|p+ID"\II* |p)dyn—1dyﬂ:|

On the other hand using (2.3), Hélder’s inequality, 2 (1--p/B)—p = 0 and (2.12) we
get (2.11) :

[ v IDios pay

CE_pJ(JJ |\i’+ |pdyn—1 dyn) dy
n=2e
pib 1-(p/B)
CE""H(H I‘Jf*lﬂdyn—ldyn) (.U dyn-—ld_]"u> }dy’
ps2e p=2e
rip
CJ‘(J\ |ll’* |ﬂ dyu—l dyrl) dy,

¢ j Dy W7+ | D, ¥ 7 dy.
Q

A

A

I

1A

Finaly the term a D, , ¢F u is treated as in (2.6), (2.7).

n—1,n

(3 If v « W32 (Q) then for almost all »* we have v [, < W7 (o, (take the B. Levi’s definition of W!:#;
cf. Deny-Lions [4] or [9] § 2, th. 2.3). We can aiso prove (2.11) for smooth functions and then use
density.
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286 HUGO BEIRAO DA VEIGA

(2.13) THEOREM. — Lef ue C** n W1 pe a solution of (2.2) and suppose that feL?
and e WP ARy Then uF e WP and

i Mo s = el £l + 11D [l+[u]o,0,

(2.1% )
) Hiwd Nz, o = | £ o+ 1D w g+ Lo, a9 =100, 00 a2

Proof. — From (2.4) it follows that u” € Wh? (%) and
2.14) J‘ a,-le-u;Djvdy=J‘ fovdy, Vveé}
Q . Q

which implies {¢f. [1]) that || w ||2,, < || £ ||, and so (2.13") is proved for u.

Analogously u} e Wi and
J a; Dyu) Dyvdy :J f;“vdwaj Vrody, YeeC'
Q Q A

since u;, f,;7 and Y} vanish if p,_; < —gf2.

Since ' eC' we have

L)
+ -1 +
”\be Oy ||1—(1,’p),p, A é 5 || q’a ”1—(1;‘11),1}, A
Therefore, by 1V § 0, there exists v, ¢ W22 such that v, =0 on A, D, v, =y, a1 on A,

121z, » = || We || 1=ct7m9, 2 & and  dist (supp v, 8Q —A) = 0.

Writing w, = u} +v, it follows from (2.15) that

J a,-jD,-wEDjvdy=J [f.f —Dj{a; Div ) ody, Voel?,
Q Q
where

| " =Dylay Dio [, = e A" Lo+ Tl o, 2)-

Using known results of {1], (2.5) and (2.8) we prove the second relation (2.13")
for w, and this finishes the proof.

(2.16) THEOREM. — If the conditions of theorem (2.13) hold then u e W*'? and
lulle = el f Lo+ Pully+[edoa+ e casm, nag)-

Proof. — The result follows immediately from (2.13), the reflexivity of W?:? and
u} +u” —»uinthe L norm. Remarkthat0 < ¢ (0] 4+6) £20onQandg, (8 +87)— 1
pointwise on Q—{y 1y, ; =0}

(") Recall that the fower index § means that the functions vanish on As.
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ON THE W2 P-REGULARITY FOR SOLUTIONS OF MIXED PROBLEMS 287

3. GLOBAL REGULARITY, — Proof of theorem A in case ¢ = 0. — Let us assume that
the conditions of theorem A hold and also that ¢ = 0. We shall prove that

(3.1 et Lz, o0 Z €] F |lp o 11V s =iy, o+ [0 o+ Dy, )

Let U’ be an open neighbourhood of x; ey with closure contained in U and let

BeC® (G) satisfy supp f <= U and B(x) =1 on U'. Puting w = v i, we see easily that

(3.2) J a,-jDiijvdx=J. gvdx
Qnll anUu

+j W odl, V-ueCl(ﬁ), vp=0 on I,
r+avy

where
g = fB'_Dj(aijDi B)u
3.2 —a;(D;BDu+DBD;u)—b;BDu—coBu,
- ' =Y B—oc'u,
o =ocB-D,B.
Put

y=Tx, A = absolute value det[w],

a(yb o yrr)

Bi—det[a(xl’ ces Xm0 Xip1r ¢ 00 x"):l’ B? — E B?n
a(yla "':yn—l) i=1

Moreover if v is a function defined in Q ~ U we write v = po T 1L

Letve éé and put o = vo T. With the change of coordinates x — y we get from (3.2)

(3.3) J 7 Duis 24 D5 DA dy
Q Bxi 6XJ

mJ gﬁAdy—l—J &’EBdﬁ, Vﬁeéé.
Q Ay

Observe that the manifold T’ n U is defined by the parametric representation x; = x; (),
yeA, and so we have dT' =B dy on ' n U,

Putting o, = A a,; (2,/0x,) (6y,/0x;) the relation (3.2) becomes

(3.4) JulekEDlﬁdszAguderj By 5dy, YieCh
Q Q Ad

]

Remark that A g C! (6}, BeC! (K), A, B = positive constant,

oGl = Adymm; Z ApnfP z el
where
> s
;= @‘ Ers g, = o s ¢ = positive constant.
ax; )y
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288 HUGO BEIRAC DA VEIGA

Using (3.4) we can apply theorem (2.16) to w and get

3.5 |lwll,= c(“f||P,QnU+||\|!I’l‘(lfp),P,r+nU+["t]0,?\,,ﬂr\U-{-”Du”q,ﬂﬁU)
since
lAzils = el / |loanut ]l am+[Du]laq0)
s c({f [l v+ [#los anut || Dull a0,
(remember that u =0 on I'~ n U) and

|| By 1o pad = Q¥ mrs au Lo s, e nu || Dl anu)-

Finally from (3.5) and ||u||; 000 = || w2 p000 S ]| w]]s,, it follows that
|| 4|2, 5.0nu does not exceed the second member of (3.5).

If xo ¢y we use the results of [1] instead of th. (2.16) to prove that there exist
neighbourhoods U and U’ of x, such that

e[|z p.0v = €IS o anot 1 - cam, e v+ |1, 00w
where we don’t consider the term ||| if xo ¢ . This completes the proof.

Proof of theorem A. — To prove theorem A we use the following know result

(3.6) LemMmA. — There exists a linear map L continuous from W1~ ebr (1)
into W*:? (Q), continous from W'~ U4 (T Yinto W9 (Q) and continous from C** (T')

into C**(Q). Moreover the trace of L ¢ on '™ coincides with o.

For the sake of completeness we give the proof of lemma (3.6) in the appendix.

Put wy = u—o@* with ¢*¥ = L. The function u, vanishes on I'", belongs to
W (Q) n C**(Q) and solves the integral equation

L{a,-jD,-uoDjv+b,-Diuov+co ugv }dx
=j‘ {f”l“Dj(aijDi(P*)_biDi(P*“Co(P*}de
o
+J [(F—00*—D, 0™ —cuy|vdl, VoeC'YQ), v=0 onl";
r+

Applying the inequality (3.1) to u, we get easily (0.4), as desired,

APPENDIX

Proof of lemma (3.6). — Let [ U, }{_, be a finite covering of T~ Uy where the U,

i=

are open sets satisfying the conditions of section 0. Let { &, }1" € C” (R"), be a parti-

i=1> =i
n

tion of unity subordinate to {U;}, i.e. Y &, =1o0onT"" Uy and B,
i=1

Hl

supp &; < U,.

ToME Hh3 — 1874 — wNo 3
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ON THE W¥P-REGULARITY ¥OR SOLUTIONS OF MIXED PROBLEMS 289
Assume that for every ie{|, m| there exists a map /; (defined only on the functions ¢
such that supp ¢ <« B,) satisfying the conditions of lemma (3.6). Then the map
Log= Z l; (o))
i=1
obviously satisfies the required conditions.

We shall now prove the existence of /. We write for simplicity U, &, B, / instead of
U;, &;, By, I, and we assume that Uny # (.

Let T : U— C be the map defined in section 0 and assume that there exists a map A
(defined only on functions with support contained in T (B)) satisfying the conditions of

lemma (3.6) with Aj and Q instead of I~ ans Q respectively; choose a function { e C™ (ﬁ)
such that supp { <« Uand { =1 on B. Then the map / defined by

(10)(x) = L(x}[A (T H](Tx)

satisfies the required conditions.
To complete the proof we construct the map A with standard methods :

If ¢ is a function defined on A; we put
th(y):L_l R(z)¢(y,z+y)dz,  VyeP,
z|<1

where P= {p:0 <y, <4 y, < —p,y <1—p, |3 <1-2y,i=1..,0n-2}
and R(z)eC* (R"™"), supp R = {z:|z| =1}, J R(z)dz =1. P is a pyramid
Rrn-1

with height /2 truncated by the hyperplane y, = 1/4. The trace of ¢, on A, is ¢ and
the map ¢ — ¢, is linear and continuous from W2~ (2.2 (A7) into W7 (Q), from
WTa (ASY dnto WDT(AF) (¢f. [S] or [9] lemma 5.6, § 2) and from C%*(A])
into CO* (P,

By using a suitable regular homeomorphism of P onto P’ =Qn {y :y,.4 <0}
we can suppose without loss of generality that ¢, is defined on P’. To conclude the proof
we remark that the map ¢, — ¢, defined by

‘Pz()”a Yu—1s yrr)
( ¢ (1) if yeP’,
= - ’ ’ . i 1
' 3@1()’, Vi1 yn)—zq)l(ya sz)n—ls yn) if ]’EQf\{y : 0<yu—1 <2}

is a bounded linear map in the norms W27, W2 (¢f. for instance [9] § 2, theorem 3.9)
and C°-*,
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