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Abstract
We study the partial regularity of suitable weak solutions to incompressible
non-Newtonian fluids in the shear-thinning case p < 2. For the shear-thickening
case p > 2 this problem was previously considered in 2002 by Guo and Zhu (J.
Differ. Equ. 178 281–97). By partially appealing to some of their ideas, we show
that in the p < 2 case the singular points are concentrated on a closed set whose
one dimensional Hausdorff measure is zero.
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1. Introduction

In this paper, we are concerned with the following modified Navier–Stokes equations which
describes the dynamics of incompressible mono-polar non-Newtonian fluids:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut −∇ · τV + u · ∇u +∇π = 0, in Ω× (0, T),

div u = 0, in Ω× (0, T),

u(x, t) = 0, on ∂Ω× (0, T),

u(x, 0) = a(x), in Ω,

(1.1)

where
τV =

(
μ0 + μ1|e(u)|p−2

)
e(u), (1.2)

and

e(u) = (ei j(u)), ei j(u) =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (1.3)
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Here, Ω is a domain in R
3, u = u(x, t) = (u1 , u2 , u3)� is the velocity and π is the pressure. τV

denotes the viscous part of the stress tensor which depends only on the rate strain tensor e(u).
Furthermore, μ0, μ1 are positive constants.

When μ1 = 0 or p = 2 the system reduces to the famous Navier–Stokes equations.
Navier–Stokes equations has been studied by many mathematicians. Leray [17] (unbounded
domain) and Hopf [6] (bounded domain) showed the existence of weak solutions. But the
global regularity and uniqueness are unknown until now. In a series of papers, Scheffer [24–27]
studied the partial regularity of solutions of the Navier–Stokes equations which satisfy a local
version of the energy inequality. Later on, Caffarelli et al [4] improved Scheffer’s results. They
proved that the set of possible interior singular points of a suitable weak solution is of one-
dimensional parabolic Hausdorff measure zero if the force satisfies f ∈ L

5
2+δ for some δ > 0.

A simplified proof was proposed by Lin in [19]. Concerning the restriction of the force f ,
Ladyzhenskaya and Seregin [16] proved the CKN partial regularity result under the condition
that the force satisfies a Morrey type condition

sup
Qr(x,t)⊂Ω×(0,T)

1
r1+δ

∫∫
Qr(x,t)

f 2 < ∞

with δ > 0. Kukavica [9] proved that the CKN partial regularity result holds under the
assumption f ∈ L

5
3+δ where δ > 0. Furthermore, see [10–12].

This paper focuses on the incompressible non-Newtonian fluids. It is worth noting that the
literature on this subject is extremely wide. It would be out of place, even not possible, to try
here such an engagement. The first mathematical investigations go back to Ladyzhenskaya’s
lecture at the International Mathematical Congress in 1966, where she proposed to study the
system (1.1) with p = 4. Later on, these first results were extended, and presented in fur-
ther contributions of Ladyzhenskaya, see [13–15]. Combining monotone operator theory and
compactness arguments, she proved the existence of weak solutions to system (1.1) for the
periodic boundary condition if p � 11

5 and their uniqueness if p � 5
2 , see also [20]. For more

results about this subject one can refer to the monograph Málek et al [21]. When one imposes
the Dirichlet boundary condition Málek et al [22] established the existence of weak solu-
tions for p � 2. Later on, Wolf [30] extended this result to p > 8

5 . Concerning the regularity
of weak solutions, the global strong solutions were obtained by Málek et al [21] with the
periodic boundary condition when p � 11

5 . Later on, Málek et al [22] proved the global exis-
tence of strong solutions under the Dirichlet boundary condition for p � 9

4 . Under this last
boundary condition, in reference [2] regularity results up to the boundary were established,
for p � 2 + 2

5 , by following ideas introduced in reference [1], for slip and non-slip boundary
conditions.

It is natural to consider the partial regularity of the non-Newtonian system (1.1) by appealing
to the Caffarelli–Kohn–Nirenberg results. An attempt in this direction is done in reference [5]
where it is claimed that the set of singular points of the suitable weak solutions to the non-
Newtonian system for p > 2 is of 5 − 2p dimensional Hausdorff measure zero ([5, theorem 1.1,
item (i)]). See a related note in section 3.

2. Partial regularity for p < 2

From now on, without loss of generality, we assume that μ0 = μ1 = 1. Standard, or clear,
notation will be not defined.

In this section, we consider the shear-thinning fluids, i.e., p < 2. We will prove that the
singular points are concentrated on a closed set whose one dimensional Hausdorff measure is
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zero. Our main idea is to treat the term div(|e(u)|p−2e(u)) as a ‘special force’. Note that we
cannot regard this last term directly as a typical external force since it lacks the necessary
integrability. So we adopt the argument developed by Kukavica in reference [9], where partial
regularity is proved under a quite weak assumption on the forces, namely f is divergence-free
and f ∈ Lq(D), q > 5

3 .
We first give the definition of a suitable weak solution. Let D = Ω× (0, T). The pair (u, π)

is called a suitable weak solution to the system (1.1) on D if the following conditions are met:

(a) u ∈ L∞
t L2

x(D) ∩ L2
t

(
W1,2

x ∩ W1,p
x

)
(D) and π ∈ L

3
2 (D) .

(b) The non-Newtonian system (1.1) is satisfied in D in the weak sense, i.e. for every ψ ∈
C1

0(D),∫
D
∂tu · ψ − (u ⊗ u) : ∇ψ +

(
μ0 + μ1|e(u)|p−2

)
e(u) : e(ψ)dx dt =

∫
Ω

π div ψ dx.

(c) The local energy inequality holds for any t ∈ (0, T), i.e.∫
Ω

|u|2φ|t dx + 2
∫ t

0

∫
Ω

(
|∇u|2 + |e(u)|p

)
φ dx ds

�
∫ t

0

∫
Ω

|u|2(φs +Δφ) dx ds +
∫ t

0

∫
Ω

(|u|2 + 2π)u · ∇φ dx ds

− 2
∫ t

0

∫
Ω

|e(u)|p−2e(u) : (u ⊗∇φ) dx ds (2.1)

for all φ ∈ C∞
0 (D) such that φ � 0 in D.

Remark 2.1. Let’s recall that the local energy inequality for the classical (Newtonian)
Navier–Stokes equation with a force term f is as follows:∫

Ω

|u|2φ|t dx + 2
∫ t

0

∫
Ω

|∇u|2φ dx ds

�
∫ t

0

∫
Ω

|u|2(φs +Δφ) dx ds +
∫ t

0

∫
Ω

(|u|2 + 2π)u · ∇φ dx ds

+ 2
∫ t

0

∫
Ω

( f · u)φ dx ds. (2.2)

Note that in equation (2.1) the term div(|e(u)|p−2e(u)) gives rise to two integral terms. The first
one (last term on the left-hand side of equation (2.1)) is a positive, helpful (even crucial) term.
On the contrary, the second one (last term on the right-hand side of (2.1)) should play, roughly,
a role similar to that played in (2.2) by the force term f . However, by regarding |e(u)|p−2e(u)
as a force f, and by considering the last integrals on the right-hand sides of (2.1) and (2.2),
we show that the other terms in the two integrals are still different. One is u ⊗∇φ, another
is uφ. Moreover, in our case, −Δπ = div(u · ∇u) − div div(|e(u)|p−2e(u)). So the pressure’s
expression has an additional part −(−Δ)−1 div div(|e(u)|p−2e(u)). Hence we need a more deli-
cate procedure with respect to the classical one. This is the reason why we call the originating
term div(|e(u)|p−2e(u)) a ‘special force’.

In the sequel, we denote by Br(x0) the standard euclidean ball with the centre x0 and the
radius r, and by Qr(x0, t0) = B̄r(x0) × [t0 − r2 , t0] the parabolic cylinder labelled by the top
centre point (x0, t0) ∈ D. For simplicity, we write Qr = Qr(0, 0) and Br = Br(0).
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We say that a point (x0, t0) ∈ D is semi-regular if u ∈ L5(D0) in an open neighbourhood
D0 ⊂ D of (x0, t0). According to Serrin-type criterion, see [29], the solution is strong in D1 for
D̄1 ⊂ D (note that Serrin-type criterion is valid for the system (1.1), since μ0 = 1 > 0). Here,
by strong solution, we mean u ∈ L2

t W2,2
x (D1) ∩ L∞

t

(
W1,2

x ∩ W1,p
x

)
(D1) ∩ Lp

t W1,3p
x (D1) and ut ∈

L2
t L2

x(D1). We call a point (x0, t0) ∈ D singular if it is not semi-regular.

Remark 2.2. Unlike the Navier–Stokes equations, we don’t know if the strong solution of
system (1.1) has C1,α regularity. This is the reason why, by following [21] p 214, we appeal to
the terminology semi-regular instead of regular.

An interesting result to guarantee the local Hölder continuity of the velocity gradient for
strong solutions to system (1.1) has been presented by Seregin in [28].

Next we give some notation: for (x0, t0) ∈ D, and all r > 0 such that Qr(x0, t0) ⊂ D, set

A(x0,t0)(r) = sup
(t0−r2,t0)

r−1
∫

Br(x0)
|u|2 dx,

B(x0,t0)(r) = r−1
∫∫

Qr(x0,t0)
|∇u|2 dx dt,

G(x0,t0)(r) = r−2
∫∫

Qr(x0,t0)
|u|3 dx dt,

D(x0,t0)(r) = r−2
∫∫

Qr(x0,t0)
|π| 3

2 dx dt.

Theorem 2.1. Let Ω = R
3, 1 < p < 2, and assume that u0 ∈ W1,2(R3) with div u0 = 0.

Then there exists a suitable weak solution (u, π) of the modified Navier–Stokes system (1.1)
on D.

The result also holds for bounded, smooth, domains Ω under the additional assumption

π ∈ L
3
2 (D). (2.3)

The proof of theorem 2.1 is similar to [4, 19] (see also [5]), we omit its details, and give the
following remarks.

Remark 2.3. When Ω has the boundaries, even for p > 2, the authors do not know how to
prove (2.3) since in this case we merely know that π is a distribution. This is the reason why
in theorem 2.1, we have restricted ourselves to the whole space.

Remark 2.4. The proof of theorem 2.1 refers to [4, 19]. Actually, following the arguments in
[4, appendix] and [19, theorem 2.2], the suitable weak solutions of the modified Navier–Stokes
system (1.1) can be constructed a priori estimates to the weak solutions obtained in references
[23]. Furthermore, we remark that if μ0 = 0, one has to restrict p > 9

5 since the corresponding
estimates hold only when p > 9

5 in this case, see the references [23, theorem 4.84]. However,
for our case μ0 > 0, one has an independent estimate in L2

t W1,2
x (D) for any p > 1, and one

can get that
∫ T

0 ‖∇u‖
2

7−2p

W1,p dt < ∞ for any T > 0 as [23, theorem 4.86]. It follows from the
arguments in [4, 19] that these priori estimates are sufficient to construct the suitable weak
solutions, and therefore our theorem 2.1 is true for p > 1.

Our main result is as follows.

Theorem 2.2. Let 1 < p < 2. There exists a sufficiently small universal constant ε0 > 0
with the following property. If (u, π) is a suitable weak solution of the system (1.1) near
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(x0, t0) ∈ D, and if

lim sup
r→0+

B
1
2
(x0,t0)(r) < ε0, (2.4)

then (x0, t0) is a semi-regular point. In particular, the one dimensional parabolic Hausdorff
measure of the set of singular points equals 0.

Now, we focus on the proof of theorem 2.2. The second part of the theorem follows from the
first, see [4], pp 776–777. Hence it is sufficient to prove the first part. As in [9] let 0 < r < ρ

2 ,
and set κ = r

ρ
, and

θ(x,t)(r) = A
1
2
(x,t)(r) + B

1
2
(x,t)(r) + κ−4D

2
3
(x,t)(r).

Then we have the following lemma.

Lemma 2.3. Assume (0, 0) ∈ D. Set θ(r) = θ(x,t)(r). Then we have

θ(r) � Cκ
2
3 θ(ρ) + Cκ−5B

1
2 (ρ)θ(ρ) + Cκ−1ρ2−pθ

p
2 (ρ) + Cρ4−2pκ− 8

3 θ p−1(ρ), (2.5)

and

θ(r) � Cκ
2
3 θ(ρ) + Cκ−5θ2(ρ) + Cκ−1ρ2−pθ

p
2 (ρ) + Cρ4−2pκ− 8

3 θp−1(ρ), (2.6)

for 0 < r � 3ρ
5 such that Qρ ⊂ D, where C > 0 is a universal constant.

Proof. Noting that B
1
2 (ρ) � θ(ρ), it follows that (2.5) implies (2.6). So it is sufficient to prove

(2.5). As in [9], we set

ψ(x, t) = r2G(x, r2 − t) , for (x, t) ∈ R
3 × (−∞, 0),

where G(x, t) = (4πt)−
3
2 exp(−|x|2

4t ) is the Gaussian kernel. For convenience, we list some
estimates on the function ψ (see [9] for details on the proofs)

ψ(x, t) � 1
Cr

, (x, t) ∈ Qr,

ψ(x, t) � C
r

, (x, t) ∈ Qρ,

|∇ψ(x, t)| � C
r2

, (x, t) ∈ Qρ,

ψ(x, t) � Cr2

ρ3
, (x, t) ∈ Qρ \ Qρ/2,

|∇ψ(x, t)| � Cr2

ρ4
, (x, t) ∈ Qρ \ Qρ/2.

(2.7)

In addition, let η : R3 × R→ [0, 1] be a smooth cut-off function such that η = 1 on Qρ/2 and
η = 0 on Qc

ρ with

|∂b
t ∂

α0
x η| � C(|α0|, b)

ρ|α0|+2b
, (x, t) ∈ R

3 × R , b ∈ N0 , α0 ∈ N
3
0.
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Substituting φ(x, t) = ψ(x, t)η(x, t) in the energy inequality (2.1), we get for any s ∈ [−r2, 0],∫
Br

|u|2ψ|s + 2
∫∫

Qr

(
|∇u|2 + |e(u)|p

)
ψ

�
∫∫

Qρ

|u|2 (φt +Δφ) +
∫∫

Qρ

|u|2u · ∇φ

+ 2
∫∫

Qρ

πu · ∇φ− 2
∫∫

Qρ

|e(u)|p−2e(u) : (u ⊗∇φ)

:= I1 + I2 + I3 + I4. (2.8)

Estimates of I1, I2 and I3 are as follows, see (2.14)–(2.16) in [9],

I1 � Cκ2A(ρ),

I2 � Cκ−2A
1
2 (ρ)B

1
2 (ρ)G

1
3 (ρ),

I3 � Cκ−2D
2
3 (ρ)G

1
3 (ρ).

(2.9)

For I4, by Hölder’s inequality,

I4 � C
r2
ρ

5(7−3p)
6 ‖∇u‖p−1

L2(Qρ)
‖u‖L3(Qρ) � C

r2
ρ6−2pB

p−1
2 (ρ)G

1
3 (ρ)

= Cκ−2ρ4−2pB
p−1

2 (ρ)G
1
3 (ρ), (2.10)

where we have used |∇φ| � |η‖∇ψ|+ |∇η|ψ � 1
r2 on Qρ.

From (2.7), we have

sup
s∈(−r2 ,0)

∫
Br

|u|2ψ|s � C−1A(r) (2.11)

and

2
∫∫

Qr

|∇u|2ψ � C−1B(r). (2.12)

By equations (2.8), (2.11), and (2.12) one shows that A(r) + B(r) � C(I1 + I2 + I3 + I4).
By appealing to the estimates (2.9) and (2.10), one has

A(r) + B(r) � Cκ2A(ρ) + Cκ−2A
1
2 (ρ)B

1
2 (ρ)G

1
3 (ρ)

+ Cκ−2D
2
3 (ρ)G

1
3 (ρ) + Cκ−2ρ4−2pB

p−1
2 (ρ)G

1
3 (ρ),

which implies that

A
1
2 (r) + B

1
2 (r) � CκA

1
2 (ρ) + Cκ−1A

1
4 (ρ)B

1
4 (ρ)G

1
6 (ρ)

+ Cκ−1D
1
3 (ρ)G

1
6 (ρ) + Cκ−1ρ2−pB

p−1
4 (ρ)G

1
6 (ρ).

It is easy to show that

Cκ−1D
1
3 (ρ)G

1
6 (ρ) � Cκ−3D

2
3 (ρ) + CκG

1
3 (ρ),
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and from Gagliardo–Nirenberg inequality,

G
1
3 (ρ) � CA

1
4 (ρ)B

1
4 (ρ) + CA

1
2 (ρ).

Hence, we have

A
1
2 (r) + B

1
2 (r) � CκA

1
2 (ρ) + Cκ−1A

3
8 (ρ)B

3
8 (ρ) + Cκ−1A

1
2 (ρ)B

1
4 (ρ)

+ Cκ−3D
2
3 (ρ) + CκA

1
4 (ρ)B

1
4 (ρ) + Cκ−1ρ2−pB

p−1
4 (ρ)

×
(

A
1
8 (ρ)B

1
8 (ρ) + A

1
4 (ρ)

)
. (2.13)

Next, we focus on the pressure estimates. Using the equation Δπ = ∂i jUi j +

∂i j

(
|e(u)|p−2ei j(u)

)
, where Ui j = −ui

(
u j − |Bρ|−1

∫
Bρ

u j

)
, we get

Δ(η̃π) = ∂i j(η̃Ui j) + (∂i jη̃)Ui j − ∂ j(Ui j∂iη̃) − ∂i(Ui j∂ jη̃)

− πΔη̃ + 2∂ j((∂ jη̃)π) + ∂i j

(
η̃|e(u)|p−2ei j(u)

)
+ (∂i jη̃)|e(u)|p−2ei j(u) − ∂i((∂ jη̃)|e(u)|p−2ei j(u))

− ∂ j((∂iη̃)|e(u)|p−2ei j(u)),

where the function η̃ ∈ C∞
0 (R3) verifies the assumptions η̃ = 1 in a neighbourhood of B̄3ρ/5 ,

η̃ = 0 in a neighbourhood of Bc
4ρ/5 , and

|∂α0 η̃(x)| � C(|α0|)
ρ|α0|

, x ∈ R
3, α0 ∈ N

3
0.

Further, we denote by N the kernel of Δ−1. One has

η̃π = −RiR j(η̃Ui j) + N ∗ ((∂i jη̃)Ui j) − ∂ jN ∗ (Ui j∂iη̃) − ∂iN ∗ (Ui j∂ jη̃)

− N ∗ (πΔη̃) + 2∂ jN ∗ ((∂ jη̃)π) + RiR j(η̃|e(u)|p−2ei j(u))

+ N ∗ ((∂i jη̃)|e(u)|p−2ei j(u)) − ∂ jN ∗ (|e(u)|p−2ei j(u)∂iη̃)

− ∂iN ∗ (|e(u)|p−2ei j(u)∂ jη̃)

= π1 + π2 + π3 + π4 + π5 + π6 + π7 + π8 + π9 + π10, (2.14)

where Ri is the ith Riesz transform. Estimates of π1–π6 are as follows, see [9],

(
1

r
4
3
‖π1‖

L
3
2 (Qr )

) 1
2

� Cκ− 1
2 A

1
4 (ρ)B

1
4 (ρ),

(
1

r
4
3
‖π2‖

L
3
2 (Qr )

) 1
2

� Cκ− 1
2 A

1
4 (ρ)B

1
4 (ρ),

(
1

r
4
3
‖π3‖

L
3
2 (Qr )

) 1
2

� Cκ− 1
2 A

1
4 (ρ)B

1
4 (ρ),

(
1

r
4
3
‖π4‖

L
3
2 (Qr )

) 1
2

� Cκ− 1
2 A

1
4 (ρ)B

1
4 (ρ),
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(
1

r
4
3
‖π5‖

L
3
2 (Qr )

) 1
2

� Cκ
1
3 D

1
3 (ρ),

(
1

r
4
3
‖π6‖

L
3
2 (Qr )

) 1
2

� Cκ
1
3 D

1
3 (ρ). (2.15)

For π7, by the Calderón–Zygmund theorem, one has

‖π7‖
3
2

L
3
2 (Br)

�
∫

Bρ

|∇u|
3(p−1)

2 dx � ρ
3(7−3p)

4

(∫
Bρ

|∇u|2 dx

) 3(p−1)
4

,

which yields

‖π7‖
L

3
2 (Qr)

� ρ
5(7−3p)

6

(∫∫
Qρ

|∇u|2 dx

) p−1
2

� ρ
16−6p

3 B
p−1

2 (ρ),

so we have (
1

r
4
3
‖π7‖

L
3
2 (Qr )

) 1
2

� ρ2−p
(ρ

r

) 2
3
B

p−1
4 (ρ). (2.16)

For π8, since |N(x)| � C
|x| , one has

|π8(x)| � C

∣∣∣∣∣
∫

Bρ

1
|x − y|

∣∣(|e(u)|p−2ei j(u)∂i jη̃
)

(y)
∣∣dy

∣∣∣∣∣ ,

for each x ∈ Br. By noting that ∂i jη̃ = 0 on B̄3ρ/5 and on Bc
4ρ/5 , and that |x − y| � 4ρ

5 − r � 3ρ
10

if x ∈ Br and y ∈ Bc
4ρ/5, it follows that

‖π8‖L∞(Br) � C
ρ
‖|e(u)|p−2ei j(u)∂i jη̃‖L1(Bρ) � C

ρ3
‖|e(u)|p−1‖L1(Bρ)

� ρ
3−3p

2 ‖∇u‖p−1
L2(Bρ)

for all t ∈ (−r2, 0). Hence

‖π8‖
L

3
2 (Br)

� r2‖π8‖L∞(Br) � Cρ
7−3p

2 ‖∇u‖p−1
L2(Bρ)

.

Thus it follows that(
1

r
4
3
‖π8‖

L
3
2 (Qr )

) 1
2

� Cρ2−p
(ρ

r

) 2
3
B

p−1
4 (ρ). (2.17)

Similarly, we have

(
1

r
4
3
‖π9‖

L
3
2 (Qr)

) 1
2

� Cρ2−p
(ρ

r

) 2
3
B

p−1
4 (ρ),

(
1

r
4
3
‖π10‖

L
3
2 (Qr)

) 1
2

� Cρ2−p
(ρ

r

) 2
3
B

p−1
4 (ρ).

(2.18)
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From (2.14), and by appealing to (2.15)–(2.18), one gets

D
1
3 (r) � Cκ− 1

2 A
1
4 (ρ)B

1
4 (ρ) + Cκ

1
3 D

1
3 (ρ) + Cρ2−pκ

2
3 B

p−1
4 (ρ), (2.19)

for 0 < r � 3ρ
5 .

Now (2.19) and (2.13) imply that

θ(r) � CκA
1
2 (ρ) + Cκ−1A

3
8 (ρ)B

3
8 (ρ) + Cκ−1A

1
2 (ρ)B

1
4 (ρ) + CκA

1
4 (ρ)B

1
4 (ρ)

+ Cκ−1ρ2−pA
1
8 (ρ)B

p−1
4 + 1

8 (ρ) + Cκ−1ρ2−pA
1
4 (ρ)B

p−1
4 (ρ)

+ Cκ−5A
1
2 (ρ)B

1
2 (ρ) + Cκ− 10

3 D
2
3 (ρ) + Cρ4−2pκ− 8

3 B
p−1

2 (ρ)

� Cκθ(ρ) + Cκ−1B
1
4 (ρ)θ(ρ) + Cκ−1B

1
4 (ρ)θ(ρ) + Cκθ(ρ)

+ Cκ−1ρ2−pθ
p
2 (ρ) + Cκ−5B

1
2 (ρ)θ(ρ) + Cκ

2
3 θ(ρ) + Cρ4−2pκ− 8

3 θp−1(ρ), (2.20)

which gives (2.5). �
By the same argument of lemma 2 in [9], we can prove the following lemma. Since the

proof is essentially same, we omit its proof.

Lemma 2.4. Let 0 < r < R and t1 < t2 be such that B̄R × [t1 , t2] ⊂ D. Then we have

lim
δ→0+

sup
t∈[t1, t2+δ]

∫
Br

|u(x, t)|2 dx � sup
t∈[t1, t2]

∫
BR

|u(x, t)|2 dx. (2.21)

Next, we prove the following lemma.
Lemma 2.5. There exists a sufficiently small universal constant ε0 > 0 with the following
property. If

lim sup
r→0+

B
1
2
(x0,t0)(r) < ε0,

then for every δ ∈ (0 , 2
3 ) there exist r2, r3 > 0 and M̄ > 0 such that

max

{
A

1
2
(x,t)(r) , B

1
2
(x,t)(r) , G

2
3
(x,t)(r)

}
� M̄rδ

for (x, t) ∈ B(x0,r0)(r2) = {(x, t) : |x − x0|2 + |t − t0|2 < r2
2} and r ∈ (0, r3).

Proof. Recall that κ = r
ρ

. Without loss of generality, we assume (x0, t0) = (0, 0). Let θ̃(r) =
θ(0,0)(r)

rδ
, then by lemma 2.3, we have

θ̃(r) � Cκ
2
3−δθ̃(ρ) + Cκ−5−δB

1
2 (ρ)θ̃(ρ) + Cκ−1−δρ(2−δ)(1− p

2 )θ̃
p
2 (ρ)

+ Cρ(2−δ)(2−p)κ− 8
3−δθ̃p−1(ρ), (2.22)

which implies that

θ̃(r) � Cκ
2
3−δθ̃(ρ) + Cκ−5−δB

1
2 (ρ)θ̃(ρ) +

1
6
θ̃(ρ)

+ Cρ2−δ
(
κ− 1

2−p ( 8
3+δ) + κ− 2(1+δ)

2−p

)
. (2.23)
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Similarly, from (2.6), we have

θ̃(r) � C0κ
2
3−δθ̃(ρ) + Cκ−5−δρδθ̃2(ρ) +

1
6
θ̃(ρ)

+ Cρ2−δ
(
κ− 1

2−p ( 8
3+δ) + κ− 2(1+δ)

2−p

)
. (2.24)

Having obtained the estimates (2.23) and (2.24), by lemma 2.4, by the smallness assumption
(2.4), and by following the inductive argument in the proof of lemma 3 in [9], we can prove
the lemma. For the sake of completeness, we give some details.

Let κ = min{ 1
2 , (6C0)δ−

2
3 }. Then we have C0κ

2
3−δ � 1

6 and r � ρ
2 . Next, by choosing ε0 �

κ5+δ

6C , one has Cε0
κ5+δ � 1

6 . From assumption (2.4), there exists a sufficient small r4 > 0, satisfying
Qr4 ⊂ D, and such that

B
1
2 (r) � ε0 , 0 < r < r4,

and max{2Cr2−δ
4 κ− 1

2−p ( 8
3+δ) , 2Cr2−δ

4 κ− 2(1+δ)
2−p , Crδ4κ

−(5+δ)} � 1
8 . Now set

ρ = Rn =:κnr4 , r = Rn+1 =: κn+1r4.

Note that κ = r
ρ

. Define θ̃n =: θ̃(Rn), n = 0, 1, 2, ... . Note that θ̃0 = θ̃(r4). Then by (2.23) it
follows:

θ̃n+1 = θ̃(Rn+1) � C0 κ
2
3−δθ̃n + Cκ−5−δB

1
2 (Rn)θ̃n +

1
6
θ̃n

+ C(κnr4)2−δκ− 2
2−p ( 8

3+δ) + C(κnr4)2−δκ− 2(1+δ)
2−p

≡ A1 + A2 + A3 + A4 + A5. (2.25)

Furthermore,

A1 � 1
6
θ̃n,

A2 � ε0κ
−5−δθ̃n � 1

6
θ̃n,

A3 � 1
6
θ̃n,

A4 � Cκ(2−δ)n · κ− 2
2−p ( 8

3+δ)r(2−δ)
4 � 1

16
κ(2−δ)n � 1

16
,

A5 � 1
16

κ(2−δ)n � 1
16

.

In estimating A4 we took into account that κ(2−δ)n � 1, since δ < 2
3 .

The above estimates show that

θ̃n+1 �
(

1
6
+

1
6
+

1
6

)
θ̃n +

2
16

� 1
2
θ̃n +

1
8

, n = 0, 1, 2, ... ,

which gives

θ̃n � 1
2n

θ̃0 +
1
8

1 − (1/2)n

1/2
� 1

2n
θ̃0 +

1
4

, n = 1, 2, ... .
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Hence, there exists n0 ∈ N such that θ̃n0 � 1
3 , i.e. θ̃(0,0)(κn0r4) � 1

3 .
We have obtained θ̃(0,0)(κn0r4) � 1

3 , i.e.,

(κn0r4)−δθ(0,0)(κn0r4) = (κn0r4)−δ [A
1
2
(0,0)(κ

n0r4) + B
1
2
(0,0)(κ

n0r4)

+ κ−4D
2
3
(0,0)(κ

n0r4)] � 1
3
.

Next, we will prove that, there exists r2 > 0 and r3 ∈ (0, r4) such that

θ̃(x,t)(κn0r3) � 1
2

, for any (x, t) ∈ B(0,0)(r2) = {(x, t) : |x − 0|2 + |t − 0|2 < r2
2},

i.e., for any (x, t) ∈ B(0,0)(r2), we have

(κn0r3)−δθ(x,t) = (κn0r3)−δ [A
1
2
(x,t)(κ

n0r3) + B
1
2
(x,t)(κ

n0r3)

+ κ−4D
2
3
(x,t)(κ

n0r3)] � 1
2
.

Next, for convenience, we set r̃4 = κn0r4 and r̃3 = κn0r3. First, for any r̃3 ∈ (0 , r̃4), choose r2

such that 0 < r2 < r̃2
4 − r̃2

3. Then for any (x, t) ∈ B(0,0)(r2), we have t − r̃2
3 � 0 − r̃2

4, hence

A(x,t)(r̃3) = sup
s∈[t−r2

3 , t]

1
r̃3

∫
Br̃3

(x)
|u(y, s)|2 dy � 1

r̃3
sup

s∈[−r̃2
4 , t]

∫
Br̃3

(x)
|u(y, s)|2 dy.

From lemma 2.4, if Br3 (x) ⊂ Br4 (0) = Br4 , then

lim
t→0+

sup
s∈[−r̃2

4 , t]

∫
Br̃3

(x)
|u(y, s)|2 dy � sup

s∈[−r̃2
4 , 0]

∫
Br̃4

|u(y, s)|2 dy,

which implies that for any ε > 0, there exits δε > 0, such that for any |t − 0| � δε, we have

sup
s∈[−r̃2

4 , t]

∫
Br̃3

(x)
|u(y, s)|2 dy � sup

s∈[−r̃2
4 , 0]

∫
Br̃4

|u(y, s)|2 dy + ε.

Now choose r2 such that |t − 0| � r2 � δε and r2 < r̃4 − r̃3 such that Br̃3 (x) ⊂ Br̃4 (0) = Br̃4 .
Then

A(x,t)(r̃3) � 1
r̃3

sup
s∈[−r̃2

4 , 0]

∫
Br̃4

|u(y, s)|2 dy +
1
r̃3
ε

=
r̃4

r̃3
sup

s∈[−r̃2
4 , 0]

1
r̃4

∫
Br̃4

|u(y, s)|2 dy +
1
r̃3
ε =

r̃4

r̃3
A(0,0)(r̃4) +

1
r̃3
ε.

Hence, we have

r̃−δ
3 A

1
2
(x,t)(r̃3) �

(
r̃4

r̃3

) 1
2−δ

r̃−δ
4 A

1
2
(0,0)(r̃4) +

1

r̃
1
2+δ

3

ε
1
2 . (2.26)
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On the other hand, for B(x,t)(r̃3) and D(x,t)(r̃3), we argue as follows. By the continuity of
the integral, for any ε > 0 there exist δε such that, if Qr̃3 (x, t) ⊂ Qr̃4 (0, 0) and |Qr̃4 (0, 0) \
Qr̃3 (x, t)| � δε, then

B(x,t)(r̃3) = r̃−1
3

∫∫
Qr̃3

(x,t)
|∇u|2 dy dt � r̃−1

3

(∫∫
Qr̃4

(0,0)
|∇u|2 dy dt + ε

)
,

and

D(x,t)(r̃3) = r̃−2
3

∫∫
Qr̃3

(x,t)
|π| 3

2 dy dt � r̃−2
3

(∫∫
Qr̃4

(0,0)
|π| 3

2 dy dt + ε

)
.

If we choose 0 < r̃2 < |̃r4 − r̃3|, and 3(r̃5
4 − r̃5

3) � δε, then Qr̃3 (x, t) ⊂ Qr̃4 (0, 0) and |Qr̃4 (0, 0) \
Qr̃3 (x, t)| � δε. Hence

r̃−δ
3 B

1
2
(x,t)(r̃3) �

(
r̃4

r̃3

) 1
2−δ

r̃−δ
4 B

1
2
(0,0)(r̃4) +

1

r̃
1
2+δ

3

ε
1
2 , (2.27)

and

r̃−δ
3 κ−4D

2
3
(x,t)(r̃3) �

(
r̃4

r̃3

) 2
3−δ

r̃−δ
4 κ−4D

2
3
(0,0)(r4) +

1

r̃1+δ
3

κ−4ε
1
2 . (2.28)

From the above analysis, choose r2 and r̃3 ∈ (0, r̃4) such that

r2 � min{r̃2
4 − r̃2

3, r̃4 − r̃3, δε}, 3(r̃5
4 − r̃5

3) � δε.

Then, collecting (2.26)–(2.28), we have

θ̃(x,t)(κ
n0r3) � max

{(
r̃4

r̃3

) 1
2−δ

,

(
r̃4

r̃3

) 2
3−δ

}
θ̃(0,0)(κ

n0r4) +
2

r̃
1
2+δ

3

ε
1
2 +

1

r̃1+δ
3

κ−4ε
1
2 .

Now, let ε and δε be sufficiently small, such that

max

{(
r̃4

r̃3

) 1
2−δ

,

(
r̃4

r̃3

) 2
3−δ

}
� 10

9
,

2

r̃
1
2+δ

3

ε
1
2 +

1

r̃1+δ
3

κ−4ε
1
2 � 1

10
.

Then for any (x, t) ∈ B(0,0)(r2) = {(x, t) : |x − 0|2 + |t − 0|2 < r2
2}, we have

θ̃(x,t)(κ
n0r3) � 10

9
θ̃(0,0)(κ

n0r4) +
1

10
� 10

27
+

1
10

<
1
2
.

From (2.24), by setting r = κn+1r3 and ρ = κnr3,

θ̃(x,t)(κn+1r3) � C0κ
2
3−δθ̃(x,t)(κnr3) + Cκ−5−δ(κnr3)δθ̃2

(x,t)(κ
nr3)

+
1
6
θ̃(x,t)(κnr3) + C(κnr3)2−δκ− 1

2−p ( 8
3+δ)

+ C(κnr3)2−δκ− 2(1+δ)
2−p

≡ Ã1 + Ã2 + Ã3 + Ã4 + Ã5.
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Similar to (2.25), we have

Ã1 � 1
6
θ̃(x,t)(κnr3),

Ã2 � 1
8
κnδθ̃(x,t)(κ

nr3) � 1
8

1
2nδ

θ̃(x,t)(κ
nr3) � 1

8
θ̃(x,t)(κ

nr3),

Ã3 � 1
6
θ̃(x,t)(κ

nr3),

Ã4 � Cκ(2−δ)n · κ− 2
2−p ( 8

3+δ)r(2−δ)
4 � 1

16
κ(2−δ)n � 1

16
,

Ã5 � 1
16

κ(2−δ)n � 1
16

.

Hence,

θ̃(x,t)(κ
n+1r3) � 1

2
θ̃(x,t)(κ

nr3) +
1
8
θ̃2

(x,t)(κ
nr3) +

1
8

, n = n0 , n0 + 1 , ... .

Since

θ̃(x,t)(κ
n0r3) � 1

2
, (x, t) ∈ B(0,0)(r2),

we have

θ̃(x,t)(κ
n0+1r3) � 7

16
<

1
2
. (2.29)

By induction, we have

θ̃(x,t)(κn+1r3) � 1
2

, n = n0 , n0 + 1 , ... ,

for (x, t) ∈ B(0,0)(r2). Note that (see [9], (2.23))

θ̃(x,t)(ρ1) � C

((
ρ2

ρ1

) 1
2+δ

+

(
ρ2

ρ1

) 4
3+δ

)
θ̃(x,t)(ρ2), 0 < ρ1 < ρ2.

Hence

θ̃(x,t)(r) � C , r ∈ (0 , r3)

for (x, t) ∈ B(0,0)(r2). Thus, we have proved the lemma. �

Lemma 2.6 (proposition 6 of [18]). Let V ⊂ R
3 × R be a bounded domain. Assume

that

(a) sup(x,t)∈V supρ>0 ρ
−λ
∫∫

V∩Bρ(x,t)|g(y, s)|q dy ds < ∞ and
(b) g ∈ Lm(V)

for some m � q > 1, and 0 � λ < 5. For α > 0, define

h(x, t) =
∫∫

V

g(y, s)
(|x − y|+

√
t − s)5−α

dy ds.

Then for all m̃ ∈ (m ,∞) such that

1
m̃

>
1
m

(
1 − qα

5 − λ

)
,
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we have h ∈ Lm̃(V).

Proof of theorem 2.2. From lemma 2.5 it follows that there exist r2, r3 > 0, and M̄ > 0 ,
such that

max

{
A

1
2
(x,t)(r) , B

1
2
(x,t)(r) , D

2
3
(x,t)(r)

}
� M̄rδ , (2.30)

for (x, t) ∈ B(x0,t0)(r2) and r ∈ (0, r3). Without loss of generality, we assume that r2 = r3. Note
that

G
1
3
(x,t)(r) � CA

1
4
(x,t)(r)B

1
4
(x,t)(r) � CM̄rδ (2.31)

for (x, t) ∈ B(x0,t0)(r2). Now let be

vk(x, t) =
∫ t

−∞

∫
∂ jG(x − y, t − s)η(y, s)u j(y, s)uk(y, s)dy ds

+

∫ t

−∞

∫
∂kG(x − y, t − s)η(y, s)π(y, s)dy ds

+

∫ t

−∞

∫
∂ jG(x − y, t − s)η(y, s)|e(u)|p−2e jk(u)dy ds,

where η ∈ C∞
0 (R3) is a function identically to 1 on a neighbourhood of B̄(x0,t0)(3r2/4) and

identically to 0 on a neighbourhood of Bc
(x0,t0)(9r2/10). Clearly, u − v ∈ C∞ (

B̄x0,t0 (3r2/4)
)
.

Note that |∇G(x, t)| � C(|x|+
√

t)−4 for all (x, t) ∈ R
3 × (0,∞). By (2.31), we have

sup
(x,t)∈V

sup
r>0

1
r2+3δ

∫∫
Br(x,t)∩V

|u|3 < ∞,

where V = B(x0,t0)(r2). By lemma 2.6, note that u ∈ L
10
3 (D), by letting q = 3

2 , α = 1, m = 5
3 ,

λ = 2 + 3δ with δ > 1
4 , we get v(1) ∈ L5(V). Similarly, we have v(2) ∈ L5(V). Concerning v(3),

by appealing to (2.30), we show that

sup
(x,t)∈V

sup
r>0

1
r1+2δ

∫∫
Br(x,t)∩V

|∇u|2 < ∞.

By lemma 2.6, note that ∇u ∈ Lp−1(D), by letting q = 2
p−1 , α = 1, m = 2

p−1 , and λ = 1 + 2δ,

we get v(3) ∈ Lm̃(V), where

1
m̃

>
1
m

(
1 −

2
p−1

4 − 2δ

)
.

By choosing δ > 2 − 5
5p−7 , we get v(3) ∈ L5(V). Hence u ∈ L5(V). �

3. Final remarks

We start by noting that, as long as the proofs depend heavily on CKN’s argument and the term
div(|e(u)|p−2e(u)) is regarded as an external force, the strict positiveness of the parameter μ0

looks essential (concerning the singular case μ0 = 0 we refer the reader to [3], where the local
in time existence of strong solutions for 7

5 < p � 2 was established).
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In [19] the author appeals to the following property: for suitably small ε0 there exists a
constant C0 such that A(r) + D(r) � ε0 implies |u(x, t)| � C0

r .
Unfortunately, this property seems not applicable to non-Newtonian fluids since one has

not the scaling invariance property. The lack of this property could be a high obstacle to prove
sharp results in non-Newtonian cases.

In our proof of lemma 2.5 the positivity of the power of ρ in (2.22) is crucial. This leads
to assumption p < 2. We are not able to overcome this condition. This point seems in some
contrast with calculations in reference [5], p 293 up to equation (4.14).

In any case, when p � 11
5 , the Hausdorff dimension of the set of singular points of the

suitable weak solutions should be zero since in this case global strong solutions exists. We
expect that one can verify this fact from the point of view of partial regularity.

Another interesting problem is the regularity of strong solutions. As still noted in remark
2.2, we do not know if the strong solutions of system (1.1) are necessarily smooth. The
results on this subject are not too many. It is worth noting that, in dimension two, it was
showed in reference [8] that strong solution are C1,α regular. But extension to three dimen-
sions has not been made so far. Recently, an interesting result was obtained by Kang et al [7].
They considered existence of regular solutions for non-Newtonian fluids in dimension three,
and proved local existence of unique regular solutions, and global existence for small initial
data.
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