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This note concerns the sufficient condition for regularity of solutions to the evolution 
Navier–Stokes equations known in the literature as Prodi–Serrin’s condition. 
H.-O. Bae and H.J. Choe proved in a 1997 paper that, in the whole space R3, 
it is merely sufficient that two components of the velocity satisfy the above 
condition. Below, we extend the result to the half-space case Rn

+ under slip boundary 
conditions. We show that it is sufficient that the velocity component parallel to the 
boundary enjoys the above condition. Flat boundary geometry is not essential, as 
shown in a forthcoming paper in cylindrical domains, prepared in collaboration with 
J. Bemelmans and J. Brand.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

This note concerns sufficient condition for regularity of weak solutions to the evolution Navier–Stokes 
equations related to the so called Prodi–Serrin’s condition, see (3). Weak solutions are characterized by

u ∈ L∞(0, T ; L2(Ω) ∩ L2(0, T ; H1(Ω) ) .

Weak solutions are assumed to be weakly continuous with values in L2(Ω).
In reference [1] the authors proved, in the whole space case, that it is sufficient that two components of 

the velocity satisfy the above condition (there are also similar results concerning two components of the 
vorticity, see [9]). Below we extend the result proved in reference [1] to the half-space case Rn

+ under slip 
boundary conditions. However, the choice of the components to be controlled is not arbitrary. We have to 
consider the components parallel to the boundary.
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The structure of the proof follows Bae and Choe paper, by adding a suitable control of some boundary 
integrals which, clearly, were not present in the whole space case.

We assume that readers are acquainted with the main literature on the subject. In particular, we will 
not repeat well know notation as, for instance, Sobolev spaces notation, and so on.

In the sequel we are interested in the evolution Navier–Stokes equations in the half-space Rn
+ = {x :

xn > 0 }, n ≥ 3,
⎧⎪⎪⎨
⎪⎪⎩

∂t u + (u · ∇)u− μ�u + ∇π = 0 ,

∇ · u = 0 in R
n
+ × (0, T ] ;

u(x, 0) = u0(x) in R
n
+ ,

(1)

under the classical Navier slip boundary conditions without friction. See [16] and [18]. On flat portions of 
the boundary this condition reads

{
un = 0,

∂n uj = 0, 1 ≤ j ≤ n− 1 .
(2)

In the half-space case we will use this formulation. Let us recall that, for n = 3, the above slip boundary 
condition may also be written in the form un = 0, plus ωj = 0, for j = 1, 2, where ω = ∇ × u is the 
vorticity field.

It is well know that weak solutions u satisfying the so called Prodi–Serrin’s condition

u ∈ Lq(0, T ; Lp(Rn
+) ) , 2

q
+ n

p
≤ 1 , p > n (3)

are strong, namely

u ∈ L∞(0, T ; H1(Rn
+) ∩ L2(0, T ; H2(Rn

+) ) . (4)

The proof is classical. Furthermore, strong solutions are smooth, if data and domain are also smooth.
It is well known that the above results hold in a very large class of domains Ω, under suitable boundary 

conditions. We assume this kind of results well known to the reader. In particular, the result is well known 
in the whole space Rn, which is our departure point. In fact, consider the Navier–Stokes equations (1) with 
R

n
+ replaced by Rn. Differentiating both sides of the first equation (1) with respect to xk, taking the scalar 

product with ∂k u, adding over k, and integrating by parts over Rn, one shows that

1
2

d

dt

∫
Rn

|∇u|2 dx + μ

∫
Rn

|∇2 u|2 dx = −
∫
Rn

∇ [(u · ∇)u ] · ∇u dx , (5)

where obvious integrations by parts have been done. Clearly, no boundary integrals appear. A last integration 
by parts shows that

∣∣ ∫
Rn

∇ [(u · ∇)u ] · ∇u dx
∣∣ ≤ c(n)

∫
Rn

|u | |∇u| |∇2 u| dx . (6)

So
1
2

d

dt

∫
Rn

|∇u|2 dx + μ

∫
Rn

|∇2 u|2 dx ≤ c(n)
∫
Rn

|u | |∇u| |∇2 u| dx (7)

follows.
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By appealing to the Prodi–Serrin’s assumption (3) applied to the term | u | present in the right hand 
side of (7), well known devices lead to the desired regularity result (4) in Rn (these same devices are shown 
in section 2, in connection with the similar estimate (19)). In the proof, the crucial property is that the 
term | u | in the right hand side of estimate (6) (hence also in (7)) enjoys the Prodi–Serrin’s condition. In 
reference [1], see also [2], H.-O. Bae and H.J. Choe succeed in replacing, in the right hand side of (6), the 
term |u| simply by |u|, where u is an arbitrary n − 1 dimensional component

u = (u1, ..., un−1, 0) (8)

of the velocity u. In other words, they succeed in improving the quite obvious estimate (6), by showing the 
much stronger estimate

∣∣ ∫
Rn

∇ [(u · ∇)u ] · ∇u dx| ≤ c(n)
∫
Rn

|u| |∇u| |∇2 u| dx . (9)

Hence the estimate (7) holds with | u| replaced by | u|. The classical | u|-proof applies as well after this sub-
stitution. In this way the authors proved that (4) holds if merely u (instead of u) satisfies the Prodi–Serrin’s 
condition. A quite unexpected result, at that time, may be not yet sufficiently exploited. Clearly, in the 
whole space case, u may be any n − 1 dimensional component of the velocity.

The proof of the estimate (9) is based on a clever analysis of the structure of the integral on the left hand 
side of this equation.

The first aim of these notes is to prove equation (9) in the half space Rn
+

∣∣ ∫
R

n
+

∇ [(u · ∇)u ] · ∇u dx| ≤ c(n)
∫
R

n
+

|u| |∇u| |∇2 u| dx , (10)

under slip boundary conditions. As a consequence, the estimate (7) holds with |u| replaced by |u| and Rn

replaced by Rn
+. It readily follows, as in the classical case, that solutions to the above boundary value 

problem are regular provided that u satisfies the Prodi–Serrin’s condition (3).

Theorem 1.1. Let u be a solution to the Navier–Stokes equations (1) in Rn
+ under the slip boundary conditions 

(2). Furthermore, let u be the parallel to the boundary component of the velocity u, given by (8). If

u ∈ Lq(0, T ; Lp(Rn
+) ) , 2

q
+ n

p
≤ 1 , p > n , (11)

then (4) holds.

Alternatively, the proof of the above result could be done by appealing to a reflection principle, see [7]. 
However this does not help extension to non-flat boundaries.

Concerning Prodi–Serrin’s condition under slip boundary conditions we recall here references [2] and 
[3]. We end this section by quoting the very recent paper [4] where the authors proved the local, interior, 
regularizing effect of the Prodi–Serrin’s condition only on two velocity components. It would be of interest 
to extend this result to arbitrary, smooth, coordinates (orthogonal for instance).

2. Extension to boundary value problems

In this section we prove equation (10). Our approach adds to that followed in reference [1] an accurate 
control of the boundary integrals, clearly not present in the whole space case. To obtain the explicit form 
of these integrals, we have to turn back to the volume integrals.
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For notational convenience we set

Γ = {x : xn = 0 } .

The first steep is to prove (5), now with Rn replaced by Rn
+, namely

1
2

d

dt

∫
R

n
+

|∇u|2 dx + μ

∫
R

n
+

|∇2 u|2 dx = −
∫
R

n
+

∇ [(u · ∇)u ] · ∇u dx . (12)

By following the Rn case, we differentiate both sides of the first equation (1) with respect to xk, take the 
scalar product with ∂k u, add over k, and integrate by parts over Rn

+. Now additional boundary integrals 
appear. We start from the �u term. One has

−
∫
R

n
+

∇(�u) · ∇u dx ≡ −
∫
R

n
+

∂k(∂2
i uj) ∂kuj dx =

∫
R

n
+

|∇2 u|2 dx− I

where

I ≡
∫
Γ

(∂i∂k uj ) (∂k uj ) νi dΓ = −
∫
Γ

(∂k∂n uj ) (∂k uj ) dΓ ,

since ν, the unit external normal to Γ, has components (0, ..., 0, −1). If j < n and k = n the terms ∂k uj

vanish, due to the boundary conditions (2). If j < n, but k < n, the terms ∂k∂n uj vanish, since ∂n uj = 0
on the boundary, and ∂k is a tangential derivative. Hence we merely have to consider the j = n terms, 
namely (∂n∂k un) ∂k un. If k < n, it follows ∂k un = 0. On the other hand, if k = n, by appealing to the 
divergence free condition, one has

∂n∂n un = −
∑
j< n

∂n (∂j uj ) = 0 , (13)

since ∂j(∂n uj) = 0 on Γ, for j < n. We have shown that

−μ

∫
R

n
+

∇(�u) · ∇u dx = μ

∫
R

n
+

|∇2 u|2 dx ,

the boundary integral related to the viscous term vanishes.
Next we consider the pressure term. One has, by an integration by parts,

∫
R

n
+

(∇(∇π) ) · ∇u dx ≡
∫
R

n
+

∂k(∂j π) ∂kuj dx = −
∫
R

n
+

(∇π) · ∇ (∇ · u ) dx + A,

where

A ≡
∫
Γ

(∂k π) (∂k uj) νj dΓ = −
∫
Γ

(∂k π) ∂k un dΓ = −
∫
Γ

(∂n π) (∂n un) dΓ ,

since ∂k un = 0 on the boundary for k < n. Furthermore, the volume integral on the right hand side 
vanishes, due to the divergence free condition.
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Let’s see that A = 0 by showing that ∂n π = 0 on Γ. By appealing to the nth equation (1) we show that 
∂n π = −∂t un− (u ·∇) un + μ �un. So, by appealing to boundary condition un = 0, one easily shows that

∂n π = μ�un on Γ .

Note that (u · ∇) un = 0 on Γ. By taking into account that the second order tangential derivatives of un

vanish on the boundary, we show that � un = 0, by appealing to (13). So ∂n π = 0 on Γ, as desired. We 
have shown that ∫

R
n
+

(∇(∇π) ) · ∇u dx = 0 . (14)

Equation (12) is proved.
Note that equation (14) holds under the non-slip boundary condition, with a simpler proof. In fact, in 

this case, A = 0 follows immediately from ∂n un = 0 on Γ, which is an immediate consequence of the 
divergence free property and the non-slip boundary assumption.

The next, and main, step is to consider the non-linear term. We start by showing that
∫
R

n
+

∇ [(u · ∇)u ] · ∇u dx =
∫
R

n
+

(∂k ui)(∂i uj)(∂k uj) dx . (15)

This follows from the identity

∇ [(u · ∇)u ] · ∇u = (∂k ui)(∂i uj)(∂k uj) + 1
2 ui ∂i

( ∑
j, k

( ∂kuj)2
)

(16)

since, by an integration by parts, we show that the integral of the second term on the right hand side 
of the (16) vanishes, as follows from the divergence free and the tangential to the boundary properties 
(unfortunately, in the cylindrical coordinates case, the counterpart of this main point is much more involved).

Next we prove the main estimate (10). Following [1], we consider separately the three cases i 	= n; i = n

and j 	= n; i = j = n.
If i 	= n, one has

∫
R

n
+

(∂k ui)(∂i uj)(∂k uj) dx =

−
∫
Rn

+

ui ∂k
(
(∂k uj)(∂i uj)

)
dx +

∫
Γ

ui (∂k uj)(∂i uj) νk dx
(17)

The boundary integral is equal to

−
∫
Γ

ui (∂n uj)(∂i uj) dx .

If j 	= n, one has ∂n uj = 0. If j = n, one has ∂i uj = 0, since ∂i is a tangential derivative and un = 0. 
Hence the boundary integral in equation (17) vanishes. On the other hand, since i 	= n, the volume integral 
on the right hand side of equation (17) is bounded by the right hand side of inequality (10). After all, if 
i 	= n, the left hand side of equation (17) is bounded by the right hand side of inequality (10).
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Next we assume that i = n and j 	= n. In this case, by an integration by parts, one gets
∫
R

n
+

(∂k ui)(∂i uj)(∂k uj) dx =

−
∫
R

n
+

(�u)(∂i uj)uj dx

−
∫
R

n
+

(∂k un)(∂i ∂k uj)uj dx ,

(18)

since the boundary integral, which appears after the above integration by parts, vanishes. In fact, the terms 
(∂i uj) vanish on the boundary, for i = n and j 	= n. From (18) it follows that the left hand side of this 
equation is bounded by the right hand side of inequality (10), as desired.

If i = j = n, we have to estimate the integral

B ≡
∫
R

n
+

(∂k un)2(∂n un) dx = −
∫
R

n
+

(∂k un)2(
∑
j �= n

∂j uj) dx .

By integration by parts one gets

B = 2
∫
R

n
+

(∂k un)(
∑
j �= n

∂j ∂k un)uj dx−
∫
Γ

(∂k un)2
∑
j �= n

uj νj dΓ .

Since the above boundary integral vanishes, the absolute value of B is bounded by the right hand side of 
inequality (10). The proof of (10) is accomplished. From now on the proof of Theorem 1.1 follows a very 
classical way. For the readers’ convenience we recall how to prove (5). From (12) and (10) it follows that

1
2

d

dt

∫
R

n
+

|∇u|2 dx + μ

∫
R

n
+

|∇2 u|2 dx ≤ c(n) ‖ |u| ∇u ‖2 ‖∇2 u ‖2 . (19)

On the other hand, by Hőlder’s inequality,

‖ |u| ∇u ‖2 ≤ ‖u ‖p ‖∇u ‖ 2 p
p− 2

.

Furthermore, by interpolation and Sobolev’s embedding theorem,

‖∇u ‖ 2 p
p− 2

≤ ‖∇u ‖1−n
p

2 ‖∇u ‖
n
p

2∗ ≤ c ‖∇u ‖1−n
p

2 ‖∇2 u ‖
n
p

2 ,

since (p − 2)/(2 p) = (1 − n/p)/ 2 + (n/p)/2∗. Here 2∗ = 2 n/(n − 2) is a well known Sobolev’s embed-
ding exponent (note that each single component of the tensor ∇ u satisfies an homogeneous, Dirichlet or 
Neumann, boundary condition on Γ). Consequently,

‖ |u | ∇u ‖2 ‖∇2 u ‖2 ≤ c ‖u ‖p ‖∇u ‖1−n
p

2 ‖∇2 u ‖1+ n
p

2 .

Hence, by Young’s inequality,

‖ |u | ∇u ‖2 ‖∇2 u ‖2 ≤ c ≤ c ‖u ‖qp ‖∇u ‖2
2 + (μ/2) ‖∇2 u ‖2

2 . (20)
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From (19) and (20) we get, for t ∈ (0, T ],

1
2

d

dt
‖∇u‖2

2 + μ

2
‖∇2 u‖2

2 ≤ c ‖u ‖qp ‖∇u ‖2
2 . (21)

This estimate immediately leads to (5) since, by the Prodi–Serrin’s assumption,

‖u ‖qp ∈ L1(0, T ) .

3. Some remarks on the limit case (q, p) = (∞, n)

The Prodi–Serrin’s condition for (q, p) = (∞, n), namely

u ∈ L∞(0, T ; Ln(Ω) ) , (22)

always deserves a separate treatment. Before referring a couple of known regularity results merely under 
the above assumption for n − 1 components

u ∈ L∞(0, T ; Ln(Ω) ) , (23)

which is the aim of this paper, it looks necessary to say some words about results under the full (22). For 
long time authors tried to prove that assumption (22) by itself was sufficient to guarantee regularity of 
solutions. Only very recently, in the famous article [12], the authors succeed in proving that, in the whole 
space case, the assumption (22) guarantees smoothness of solutions. Further, extension to the boundary has 
been obtained, see [17] for the half-space case, and [15] for curved smooth boundaries. This problem was, 
for a long time, one of the most challenging, and difficult, open problems in the mathematical theory of 
Navier–Stokes equations. This situation led to many unsuccessful attempts to solve it and, consequently, to 
an extremely wide literature on results under related, but stronger, assumptions. It is completely out of our 
aim here to go inside this literature. We just refer the classical references [19] where uniqueness of solutions 
was proved under assumption (22), and [13] and [20] where strong regularity was proved by assuming left 
time-continuity in Ln(Ω).

After the above digression, we turn back to references where (23) is assumed, namely [6] and [8]. In both 
cases Ω = R

n. In reference [6] it was shown that sufficiently small left-discontinuities on the norm ‖u(t) ‖n
do not obstruct the regularity of solutions (in other words, they can not exist). Basically, it was proved that 
there is a positive constant C(n) such that if (23) holds in (τ − ε0, τ), and

lim sup
t→ τ− 0

‖u(t)‖nn − ‖u(τ)‖nn ≤ C(n)μn , (24)

then the solution u is smooth in (τ − ε, τ + ε), for some ε > 0. Note that the left hand side is necessarily 
larger or equal to zero.

Essentially, the above statement is equivalently to saying that the solution is smooth in (0, T ] if

sup
τ∈(0, T ]

( (
lim sup
t→ τ− 0

‖u(t)‖nn
)
− ‖u(τ)‖nn

)
≤ C(n)μn . (25)
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Since

‖u(t)‖nn − ‖u(τ)‖nn ≤ n ‖u‖L∞( Ln(Ω) )
(
‖u(t)‖n − ‖u(τ)‖n

)
,

we may replace in the above inequalities (with obvious adaptations)

lim sup
t→ τ− 0

‖u(t)‖nn − ‖u(τ)‖nn

by

lim sup
t→ τ− 0

‖u(t)‖n − ‖u(τ)‖n .

Note that ‖u − v‖ may even vanish for arbitrarily large values of 
∣∣ ‖u‖ − ‖v‖ 

∣∣.
In reference [8] the author replaced the space Ln(Rn) by the weak-Ln space Ln

w(Rn) (also called a 
Marcinkiewicz space), endowed with the canonical quasi-norm

[ v ]n ≡ sup
τ> 0

| {x ∈ Ω : |v(x)| ≥ τ } | 1
n < ∞ ,

and essentially proved that there is a positive constant C such that a weak solution u is smooth in (0, T ] if 
it satisfies

‖u‖L∞(0, T ; Ln
w(Rn) ) ≤ C .

It would be of interest to extend to the Marcinkiewicz space also a sufficient condition of type (24).
Proofs in reference [6] follow [5], where (23) was replaced by the full condition (22), but solutions live 

in a bounded domain Ω, under non-slip boundary conditions (this result was also proved at that time in 
[14], by a completely different approach). We recall that in references [5] and [6] all results hold under a 
quite weak condition, called Assumption A, see below. The proofs under this assumption are elementary. 
Conditions (22) and (23) are a simple consequence of this more general condition. Assumption A also holds 
if u ∈ BV (0, T ; Ln). We believe that the simple ideas introduced in the context of Assumption A may be 
technically improved, to obtain stronger results.

We say that a vector field v(t, x), satisfies the hypothesis A at time τ with respect to a positive constant 
Λ if, for some positive constant ε0, there is a real non-negative function k(t), square integrable in (τ− ε0, τ ), 
such that ∫

A(t, k(t) )

| v(t, x) |n dx ≤ Λn (26)

for almost all t ∈ (τ − ε0, τ), where

A(t , k) =
{
x ∈ Ω : |v(t, x)| ≥ k

}
.

It looks superfluous to “inform” readers that many regularity results under assumptions similar to the 
full condition (22), but with Ln replaced by larger functional spaces, are nowadays well known. Clearly, 
these results are not contained in [12]. On the other hand it seems quite difficult to extend these results 
to boundary value problems, like the above non-slip boundary condition. In this direction, very significant 
results are proved in references [10] and [11].

To end this section we remark that it would be of great interest to extend to the “two components case”, 
even in the whole space, the main result proved in reference [12].
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4. Non-flat boundaries

It is of basic interest to understand how crucial is in the Theorem 1.1 the flat-boundary hypothesis. 
Does the result hold in the neighborhood of non-flat boundary points? In a previous ArXiv’s note we have 
proposed to start from the following particular case.

Problem 4.1. Let (r, θ, z) be the canonical cylindrical coordinates in the three dimensional space, and con-
sider the subset defined by imposing to r the constraint ρ0 < r < ρ1, where ρ0 and ρ1 are positive constants. 
Assume the slip boundary condition on the two lateral cylindrical surfaces, and space periodicity with re-
spect to the axial z-direction. To prove or disprove that Prodi–Serrin’s condition on the two “tangential” 
components uθ and uz implies smoothness.

In a forthcoming paper, together with Josef Bemelmans and Johannes Brand, we will give a positive 
reply to the above problem.
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