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1
Classical solutions to the two-dimensional

Euler equations and elliptic boundary value
problems, an overview

Hugo Beirão da Veiga
Dipartimento di Matematica,

Università di Pisa,
Via F. Buonarroti 1/c, Pisa. Italy.

bveiga@dma.unipi.it

Abstract

Consider the classical initial, boundary-value problem for the 2D Euler
equations, which describes the motion of an ideal, incompressible, fluid
in a impermeable vessel. In the early eighties we introduced and studied
a Banach space, denoted C∗(Ω) , which enjoys the following property: if
the curl of the initial velocity belongs to C∗(Ω) , and the curl of the ex-
ternal forces is integrable in time with values in the above space C∗(Ω) ,

then all derivatives appearing in the differential equations and in the
boundary conditions are continuous in space-time, up to the boundary
(we call these solutions classical solutions). At that time this conclu-
sion was know if C∗(Ω) is replaced by a Hölder space C0, λ(Ω) . In the
proof of the above result we appealed to a C2(Ω) regularity result for
solutions to the Poisson equation, vanishing on the boundary and with
external forces in C∗(Ω) . Actually, at that time, we have proved this
regularity result for solutions to more general second-order linear ellip-
tic boundary-value problems. However the proof remained unpublished.
Recently, we have published an adaptation of the proof to solutions of
the Stokes system. We recall these results in section 1.1 below. On
the other hand, attempts to prove the above regularity results for data
in functional spaces properly containing C∗(Ω) , have also been done.
Bellow we prove some partial results in this direction. This possibly
unfinished picture leads to interesting open problems.
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2 H. Beirão da Veiga

1.1 The Euler and Stokes equations with data in C∗(Ω) .

In these notes we want to give an overview on some results, both old
and new. Some are old, but remained unpublished for a long time. The
starting point will be Beirão da Veiga (1981, 1982, 1984).

We start by introducing some notation. Ω is an open, bounded, con-
nected set in Rn , n ≥ 2 , locally situated on one side of its boundary Γ .

We assume that Γ is of class C2, λ(Ω) , for some positive λ . By C(Ω)

we denote the Banach space of all real, continuous functions in Ω with
the norm

‖ f ‖ ≡ sup
x∈Ω

| f(x) | .

In the sequel we use the notation

‖∇u ‖ =

n∑
i= 1

‖ ∂i u ‖ , ‖∇2 u ‖ =

n∑
i, j= 1

‖ ∂i j u ‖ ,

and appeal to the canonical spaces C1(Ω) and C2(Ω) , with the norms

‖u ‖1 ≡ ‖u ‖+ ‖∇u ‖ , ‖u ‖2 ≡ ‖u ‖+ ‖∇2 u ‖

respectively. Further, for each λ ∈ (0, 1 ] , we define the semi-norm

[ f ]0, λ ≡ sup
x, y∈Ω ; x 6= y

|f(x)− f(y) |
|x− y |λ

, (1.1)

and the Hölder space C0, λ(Ω) ≡ { f ∈ C(Ω) : [ f ]0, λ < ∞} , with the
norm

‖ f ‖0, λ = ‖ f ‖+ [ f ]0, λ .

In particular, C0, 1(Ω) is the space of Lipschitz continuous functions in
Ω . By C∞(Ω) we denote the set of all restrictions to Ω of infinitely
differentiable functions in Rn. We will use boldface notation to denote
vectors, vector spaces, and so on. We denote the components of a generic
vector u by ui , and similarly for tensors. Norms in functional spaces
whose elements are vector fields are defined in the usual way, by appeal-
ing to the corresponding norms of the components.

In considering the two-dimensional Euler equations we will introduce
the following well-known simplification. For a scalar function u(x)

(identified here with the third component of a vector field, normal to the
plane of motion) we define the vector field Rotu = (∂2 u, −∂1 u) . For a
vector field v = (v1, v2) we define the scalar field rotv = ∂1 v2−∂2 v1

(the normal component of the curl). One has −∆ = rot Rot . Note
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that Rotu is the rotation of the gradient ∇u by π/2 in the counter-
clockwise direction.

Next we describe the motivation and origin of this research. We follow
Beirão da Veiga (1981, 1982, 1984) which were essentially written dur-
ing a visiting professorship to the Mathematics Research Center and the
Mathematics Department in Wisconsin-Madison, in the semester Octo-
ber 1981-March 1982. In the above references we consider the initial
boundary value problem for the two dimensional Euler equations

∂t v + (v · ∇)v = v −∇π in Q ≡ R× Ω,

div v = 0 in Q,

v0 · n = 0 on R× Γ,

v(0) = v0 in Ω.

(1.2)

At that time our main interest was to determine minimal conditions on
the data which imply that the global, unique, solutions to the above
problem are classical. This means here that all derivatives appearing
in the equations are continuous, up to the boundary, in the space-time
cylinder. The main result on this problem was stated and proved in the
preprint by Beirão da Veiga (1982), see the theorem 1.9 below. Exactly
the same work was published in Beirão da Veiga (1984), to which we
will refer in the sequel. To explain, in the simplest way, the main lines
followed in our study, assume for now that no external forces are present,
and that Ω is simply connected. In Beirão da Veiga (1984) we started
by considering the Banach space

E(Ω) ≡ {v ∈ C( Ω) : div v = 0 in Ω ; rotv ∈ C( Ω) ; v · n = 0 on Γ } ,
(1.3)

endowed with the norm (in the simply connected case)

|||v |||= ‖ rotv ‖ , (1.4)

and show the global boundedness, strong-continuous dependence on the
data, and other basic properties with respect to data in the above space
E(Ω) (see the theorems 1.1, 1.2, and 1.3, in the above reference). These
preliminary results were obtained by improving techniques already used
by other authors; see for instance Kato (1967), and Schaeffer (1937).
However these results do not imply that solutions are classical under
the given assumption on the initial data, since

rotv0 ∈ C( Ω)

leads to rotv(t, ·) ∈ C( Ω) , but this last property does not imply
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∇v(t, ·) ∈ C( Ω) . This gap is strictly related to a corresponding gap
for solutions to elliptic equations, namely, the solution v to the system
(see equation (1.3) in Beirão da Veiga, 1982)

rotv = f in Ω ,

div v = 0 in Ω ,

v · n = 0 on Γ ,

(1.5)

does not necessarily belong to C1( Ω) , whenever f ∈ C( Ω) . On the
other hand, at that time, it was already well known that if f belongs
to a Hölder space C0, λ( Ω) , then v ∈ C1, λ( Ω) . This result, together
with a clever use of Lagrangian coordinates, makes it possible to prove
that solutions to the system (1.2) are classical under the hypothesis

rotv0 ∈ C0, λ( Ω) .

This was a well known result at that time, see Bardos (1972), Judovich
(1963), Kato (1967), and Schaeffer (1937).

Having the above picture in mind, it seemed natural to start our ap-
proach to the Euler equations by studying the system (1.5). We wanted
to single out a Banach spaces C∗(Ω) , strictly contained in the Hölder
spaces C0, λ( Ω) , such that solutions v to the first order system (1.5)
are classical under the assumption f ∈ C∗( Ω) . On the other hand, a
classical argument shows that the solution v to the system (1.5) can be
obtained by setting v = −Rotu , where u solves the problem{

−∆u = f in Ω ,

u = 0 on Γ .
(1.6)

It follows that solutions v to system (1.5) belong to C1( Ω) if the
solutions u to the system (1.6) belong to C2( Ω) . This situation led us
to look for a Banach space C∗(Ω) , for which the following result holds.

Theorem 1.1.1. Let f ∈ C∗(Ω) and let u be the solution to problem
(1.6). Then u ∈ C2(Ω) , moreover, ‖u ‖2 ≤ c0 ‖ f ‖∗ .

The above theorem was stated in Beirão da Veiga (1984) as Theorem
4.5. For convenience, the space C∗( Ω) will be defined at the end of this
section.

Having obtained the above result, we succeeded in proving that the
solutions to the Euler equations (1.2) are classical under the assumption

rotv0 ∈ C∗( Ω) .
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This is the main result in Beirão da Veiga (1984). More precisely, we
proved the following statement.

Theorem 1.1.2. Let rotu0 ∈ C∗(Ω) and rotv ∈ L1(R+; C∗(Ω) ) .

Then, the global solution v to problem (1.2) is continuous in time with
values in C1(Ω), that is

v ∈ C(R+ ; C1(Ω) ). (1.7)

Furthermore, the estimate

‖v(t) ‖C1(Ω) ≤ c e c1 Bt t { ‖ rotv0 ‖C∗(Ω)+ ‖ rotv ‖L1(0, t;C∗(Ω) ) } (1.8)

holds for all t ∈ R+ , where

Bt = ‖rotv0 ‖+ ‖ rotv ‖L1(0, t;C(Ω) ) . (1.9)

Moreover, ∂t v and ∇π are continuous in Q if both terms v0 and
∇F , in the canonical Helmholtz decomposition v = v0+∇F separately
satisfy this same continuity property. Then all derivatives that appear in
equations (1.2) are continuous in Q, that is, we have a classical solution.

The conclusion of the theorem is false in general for data v0 ∈ C1(Ω) ,

or v ∈ L1(R+; C1(Ω) ) .

If Ω is not simply connected the results still apply, as remarked in
Beirão da Veiga (1984), by appealing to well known devices. See, for
instance, the appendix 1 in the above reference.

Concerning the 2D Euler equations, we also refer the reader to Koch
(2002). In this interesting work the author considers not only the 2D
Euler equations but also many other central problems. However, the
claims and proofs that followed to treat the particular two-dimensional
problem considered in reference Beirão da Veiga (1984) are not very
dissimilar to those previously showed by us in this last reference. Related
results can also be found in reference Vishik (1998).

In Beirão da Veiga (1984) it was remarked that Theorem 1.1.1 could
also be extended to solutions to more general linear elliptic boundary
value problems. In fact, in Beirão da Veiga (1981) we proved the follow-
ing regularity result.

Theorem 1.1.3. For every f ∈ C∗(Ω) the solution u to the problem{
Lu = f in Ω ,

Bu = 0 on Γ ,
(1.10)
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belongs to C2(Ω) .Moreover, there is a constant c0 such that the estimate

‖u ‖2 ≤ c0 ‖ f ‖∗ , ∀ f ∈ C∗(Ω) . (1.11)

holds.

In the above theorem L is a second order partial differential elliptic
operator with smooth coefficients, and B is a linear differential operator,
of order less or equal to one, acting on the boundary Γ . In Beirão da
Veiga (1981) we assumed that L , B , and Ω are such that, for each
f ∈ C(Ω), problem (1.10) has a unique solution u ∈ C1(Ω) , given by

u(x) =

∫
Ω

g(x, y) f(y) dy , (1.12)

where g is the Green function associated with he above boundary value
problem. Our hypotheses on L , B , and Ω are given by the following
two requirements:

– For each f ∈ C(Ω) the solution u of problem (1.10) is unique,
belongs to C1(Ω) , and is is given by (1.12). Furthermore, if f ∈ C∞(Ω)

then u ∈ C2(Ω) .

– The above Green’s function g(x, y) satisfies the estimates∣∣∣ ∂ g
∂ xi

∣∣∣ ≤ k

|x− y |n− 1
,
∣∣∣ ∂2 g

∂ xi ∂ xj

∣∣∣ ≤ k

|x− y |n
, (1.13)

where i, j = 1, ..., n .

The above estimates for Green’s functions have been well known for a
large class of problems for a long time. Classical works are due, for in-
stance, Levi (1908, 1909), Hadamard (1914), Lichtenstein (1918), Eidus
(1958), Levy (1920), and many other authors. We refer in particular
to (Miranda, 1955, Chap. III, sections 21, 22, and 23), and references
therein (in particular, to Giraud’s references). For much more general
results on Green functions see Solonnikov (1970, 1971).

It is worth noting that the proof of Theorem 1.1.3 may be extended to
a larger class of problems, like non-homogeneous boundary-value prob-
lems, elliptic systems, and in particular the Stokes system, higher or-
der problems, etc. The main point is that solutions u are given by
expressions like (1.12), where the Green’s functions g satisfy suitable
estimates, which extend that shown in equation (1.13). Recently, we
have adapted the unpublished proof of theorem 1.1.3 to show a similar
regularity result for solutions to the Stokes system (1.10). Actually, in
Beirão da Veiga (2014) we prove the following result.
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Theorem 1.1.4. For every f ∈ C∗(Ω) the solution (u, p) of the Stokes
system 

−∆u + ∇ p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,

(1.14)

belongs to C2(Ω) × C1(Ω) . Moreover, there exists a constant c0, de-
pending only on Ω , such that the estimate

‖u ‖2 + ‖∇ p ‖ ≤ c0 ‖f ‖∗ , ∀f ∈ C∗(Ω) , (1.15)

holds.

In the final part of the section we define the Banach space C∗(Ω) .

If f ∈ C(Ω) set, for each r > 0 ,

ωf (r) ≡ sup
x, y∈Ω ; 0< |x− y|≤ r

| f(x)− f(y) | , (1.16)

and define the semi-norm

[ f ]∗ = [ f ]∗, δ ≡
∫ δ

0

ωf (r)
dr

r
. (1.17)

If 0 < δ < R , one has

[ f ]∗, δ ≤ [ f ]∗, R ≤ [ f ]∗, δ + 2
(

log
R

δ

)
‖ f ‖ . (1.18)

It follows that norms (obtained by the addition of ‖ f ‖ , see (1.20) be-
low), are equivalent.

In the literature, the condition∫ δ

0

ωf (r)
dr

r
< +∞

is called Dini’s continuity condition, see Gilbarg & Trudinger (1977),
equation (4.47). In Gilbarg & Trudinger (1977), problem 4.2, it is re-
marked that if f satisfies Dini’s condition in Rn , then its Newtonian
potential is a C2 solution of Poisson’s equation ∆u = f in Rn.

Definition 1.1.5.

C∗(Ω) ≡ { f ∈ C( Ω) : [ f ]∗ < ∞} . (1.19)
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As claimed in Beirão da Veiga (1984), C∗(Ω) endowed with the norm

‖ f ‖∗ ≡ [ f ]∗ + ‖ f ‖ , (1.20)

is a Banach space, compactly embedded in C(Ω) . Furthermore, C∞(Ω)

is dense in C∗(Ω) . We have appealed to these properties in reference
Beirão da Veiga (1984), however the complete proofs were written only
in an unpublished manuscript Beirão da Veiga (1981). For the complete
proofs see the recent publication Beirão da Veiga (2014).

In Beirão da Veiga (1981) we introduced a functional space B∗(Ω) ,
which strictly contains C∗(Ω) , for which we have proven that the sec-
ond order derivatives of the solutions to the system (1.10) are bounded
in Ω for all f ∈ B∗(Ω) . However, we did not succeed in proving, or
disproving, the full result, namely, the continuity up to the boundary of
the second order derivatives. This led us to leave unpublished the state-
ments concerning the space B∗(Ω) . In the next sections we show some
of these results and proofs, and related open problems. Some results are
proved below for data in a larger space D∗(Ω) ⊃ B∗(Ω) .

As remarked in Beirão da Veiga (2014), another significant candidate
could be obtained by replacing in the definition of C∗(Ω) given in (1.17)
by the quantity ωf (x; r) by

ω̃f (x; r) = sup
x∈Ω

∣∣∣ f(x)− |Ω(x; r) |−1

∫
Ω(x; r)

f(y) dy
∣∣∣ . (1.21)

1.2 The functional spaces B∗(Ω) and D∗(Ω) .

In this section we define the spaces B∗(Ω) and D∗(Ω) . We start with
B∗(Ω) . Set

ωf (x; r) = sup
y∈Ω(x; r)

| f(x)− f(y) | , (1.22)

and define, for each x ∈ Ω , the “point-wise” semi-norms

px(f) ≡
∫ δ

0

ωf (x; r)
dr

r
, (1.23)

and also the “global” semi-norm

〈 f 〉∗ = sup
x∈Ω

∫ δ

0

ωf (x; r)
dr

r
= sup

x∈Ω

px(f) . (1.24)
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Note that

[ f ]∗ =

∫ δ

0

sup
x∈Ω

ωf (x; r)
dr

r
. (1.25)

Definition 1.2.1.

B∗(Ω) ≡ { f ∈ C( Ω) : 〈 f 〉∗ < +∞} . (1.26)

The space B∗(Ω) endowed with

‖ f ‖∗ ≡ ‖ f ‖+ 〈 f 〉∗ , (1.27)

is a normed linear space. Clearly 〈 f 〉∗ ≤ [ f ]∗ . Further, in Beirão da
Veiga (1981), we proved that the embedding B∗(Ω) ⊂ C∗(Ω) is strict,
by constructing an oscillating function which belongs to B∗(Ω) but not
to C∗(Ω); for the counterexample we take Ω = [0, 1] . We show this
construction in section 1.7 below.

Next we define D∗(Ω) . Set

S(x; r) = { y ∈ Ω : |x− y| = r },

and define

µf (x; r) = sup
y∈S(x; r)

| f(x)− f(y) | , (1.28)

for each fixed x ∈ Ω and r > 0 . Further, fix a real positive δ , and
define the semi-norms

qx(f) ≡
∫ δ

0

µf (x; r)
dr

r
, (1.29)

for each x ∈ Ω . As in (1.18), the particular positive value δ is not
significant here. Note that the continuity of f at single point x follows
necessarily from the finiteness of the integral in equation (1.29). To avoid
unnecessary complications, we assume in the sequel that f ∈ C(Ω) .

Next define the semi-norm

( f )∗ = sup
x∈Ω

∫ δ

0

ωf (x; r)
dr

r
= sup

x∈Ω

qx(f) . (1.30)

It is worth noting that all the semi-norms introduced above enjoy prop-
erty (1.18).
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Definition 1.2.2.

D∗(Ω) ≡ { f ∈ C( Ω) : ( f )∗ < +∞} . (1.31)

The linear space D∗(Ω) endowed with

||| f |||∗≡ ‖ f ‖+ ( f )∗ , (1.32)

is a normed linear space. Obviously, B∗(Ω) ⊂ D∗(Ω) . Finally, note
that (1.18) holds for the above two functional spaces, with the obvious
modifications.

1.3 Results and open problems.

Theorem 1.3.1. Let f ∈ D∗(Ω) , and let u be the solution to problem
(1.10). Then the first order derivatives of the solution u are Lipschitz
continuous in Ω . Furthermore, the estimate

‖∇2 u ‖L∞(Ω) ≤ c0 ||| f |||∗ (1.33)

holds.

The proof of this result is an extension of the unpublished proof given
in Beirão da Veiga (1981) for data f ∈ B∗(Ω) . The proof will be shown
in section 1.4.

It remains an open problem whether the Theorems 1.1.3 and 1.1.4
hold with C∗(Ω) replaced by B∗(Ω) or by D∗(Ω) . Let us discuss this
point. Below we prove the following conditional result.

Theorem 1.3.2. Let u be the solution of problem (1.10) with a given
data f ∈ D∗(Ω) . Assume that there is a sequence of data fm ∈ D∗(Ω) ,

convergent to f in D∗(Ω) , such that the solutions um of problem (1.10)
with data fm belong to C2(Ω) . Then u ∈ C2(Ω), and moreover

‖∇2 u ‖ ≤ c0 ||| f |||∗ . (1.34)

Theorem 1.3.2 will be proven in section 1.5. It is worth noting that,
since B∗(Ω) ⊂ D∗(Ω) , the above two theorems hold with D∗(Ω) re-
placed by B∗(Ω) , and ||| f |||∗ replaced by ‖ f ‖∗ .
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Corollary 1.3.3. If C∞(Ω) is dense in B∗(Ω) , then solutions u with
data f ∈ B∗(Ω) , belong to C2(Ω) , moreover

‖u ‖2 ≤ c0 ‖ f ‖∗ , ∀ f ∈ B∗(Ω) . (1.35)

The result holds with B∗(Ω) replaced by D∗(Ω) , and ‖ f ‖∗ replaced by
||| f |||∗ .

In the above corollary we may replace C∞(Ω) by C0, λ(Ω) (or even
by C∗(Ω) , as a consequence of theorem 1.1.3). However we put here
C∞(Ω) functions since there is a well known “two steps” argument used
to prove density of C∞(Ω) in larger functional spaces. The first step
consists of constructing a linear continuous map f → f̃ , from B∗(Ω)

to B∗(Ωδ) , where

Ωδ ≡ {x : dist(x, Ω ) < δ } , (1.36)

for some δ > 0 , such that the restriction of f̃ to Ω coincides with
f . In the second step, we appeal to the usual mollification technique to
prove the desired density result in compact subsets of Ωδ , so in Ω . The
extension step is necessary, since approximation by mollification may
hold only in compact subsets.

Concerning the first step, we prove the following “extension” result.
For the proof, see the section 1.6 below.

Proposition 1.3.4. There exists δ > 0 , depending only on Ω , such
that the following statement holds. There is a linear continuous map
f → f̃ , from B∗(Ω) to B∗(Ωδ), such that the restriction of f̃ to Ω

coincides with f.

Theorem 1.3.1, together with the ideas introduced by Beirão da Veiga
(1984), provides new regularity results for solutions to the 2D Euler
equations. This point will be considered in a forthcoming paper. For
the time being, we merely state the following result.

Theorem 1.3.5. Let rotv0 ∈ B∗(Ω) , and assume that the external
forces v vanish. Then, the global solution v to problem (1.2) satisfies

∇u ∈ L∞(QT ) , (1.37)

for all T > 0 .

The conclusion of the theorem is false in general for data v0 ∈ C1(Ω) .

It is worth noting that we have no reason to conjecture density of
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C∞(Ω) in B∗(Ω) . In fact, our advise to readers interested in the subject
is to try to prove the full theorem 1.3.1 in the framework of the norm
obtained by means of (1.21). In this context, it would be of interest to
show that C∗(Ω) in strictly contained in the above new space.

1.4 Proof of Theorem 1.3.1.

We start by estimating the differential quotients of the first order deriva-
tives of the solutions u .

Proposition 1.4.1. Let f ∈ C(Ω) , and let u be the solution to problem
(1.10). Assume that for every given x0 ∈ Ω , there exists a real δ0 > 0

such that

qx0(f) ≡
∫ δ0

0

µf (x0; r)
dr

r
< ∞ . (1.38)

Then ∣∣∣ ∂i u(x)− ∂i u(x0)

x− x0

∣∣∣ ≤ c ( qx0
(f) + ‖ f ‖ ) , (1.39)

for all x ∈ δ0
2 , and i = 1, ..., n .

Proof. Let us introduce the auxiliary function v(x) defined by
Lv = 1 in Ω ,

Bv = 0 on Γ .

(1.40)

In particular v ∈ C1, 1(Ω) , by assumption (i). Define

k1 ≡ ‖ v ‖1, 1 . (1.41)

Clearly k1 depends only on L , B , and Ω , since v is completely deter-
mined by these data. Actually, k1 depends only on some parameters
related to the above elements (like the ellipticity constant of L, for in-
stance).

Define, in Ω , the functions v0(x) ≡ f(x0) v(x) , and w(x) ≡ u(x)−
v0(x) . Clearly, for each index i = 1, ..., n, we have

∂i w(x) =

∫
Ω

∂i g(x, y) [ f(y)− f(x0) ] dy , ∀x ∈ Ω .

Consequently,

| ∂i w(x)− ∂i w(x0) | ≤
∫

Ω

| ∂i g(x, y)− ∂i g(x0, y) | | f(y)− f(x0) |dy ,
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for all x ∈ Ω .
Define

Ωc(x0; r) = Ω− Ω(x0; r) ,

and set ρ = |x− x0|. We have

| ∂i w(x)− ∂i w(x0) |

≤
∫

Ω(x0; 2 ρ)

| ∂i g(x, y)− ∂i g(x0, y) | | f(y)− f(x0) |dy

+

∫
Ω(x0; δ0 )−Ω(x0; 2 ρ)

| ∂i g(x, y)− ∂i g(x0, y) | | f(y)− f(x0) |dy

+

∫
Ωc(x0; δ0)

| ∂i g(x, y)− ∂i g(x0, y) | | f(y)− f(x0) |dy

≡ I1 + I2 + I3, (1.42)

where δ0 > 2 ρ .

Further, by appealing to the first estimate (1.13), we show that

I1 ≤ 2 ‖f‖
{ ∫

Ω(x0; 2 ρ)

| ∂i g(x0, y) |dy +

∫
Ω(x0; 2 ρ)

| ∂i g(x, y) |dy
}

≤ c ‖f‖
{ ∫

Ω(x0; 2 ρ)

dy

|x0 − y|n− 1
+

∫
I(x; 3 ρ)

dy

|x− y|n− 1

}
.

(1.43)

Hence

I1 ≤ c ρ ‖ f ‖ .

On the other hand, by appealing to the mean-value theorem and the
second estimate in (1.13), we find that

| ∂i g(x, y)− ∂i g(x0, y) | ≤ c ρ |x′ − y|−n ≤ c ρ 2n |x0 − y|−n,

for each y ∈ Ωc(x0; 2 ρ) , where the point x′ belongs to the straight
segment joining x0 to x. Consequently,

I2 ≤ c ρ

∫
Ω(x0; δ0 )−Ω(x0; 2 ρ)

| f(y)− f(x0) | dy

|x0 − y|n

≤ c ρ

∫ δ0

2 ρ

dr

rn

∫
S(x0; r)

µf (x0; r) dS ≤ c ρ Sn

∫ δ0

2 δ

µf (x0; r)
dr

r
,
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where Sn is the area of the surface of the n-dimensional unit sphere. It
follows that

I2 ≤ c ρ qx0(f) .

Finally, a crude estimate for I3 shows that

I3 ≤ c ρ

∫
Ωc(x0; δ0)

1

|x0 − y |n
| f(y)− f(x0) |dy ≤ 2 c δ−n0 ρ ‖ f ‖ .

By appealing to equation (1.42) and to the estimates proved above for
I1, I2 , and I3 , we obtain that

| ∂i w(x)− ∂i w(x0) | ≤ c ρ ( qx0
(f) + ‖ f ‖ ) .

Since

| ∂i v0(x)− ∂i v
0(x0) | ≤ k1 ρ | f(x0) | ,

it follows that

c| ∂i u(x)− ∂i u(x0)| ≤ | ∂i w(x)− ∂i w(x0) |+ | ∂i v0(x)− ∂i v
0(x0) |

≤ c ρ
(
qx0(f) + ‖ f ‖+ k1 | f(x0) |

)
.

So,

| ∂i u(x)− ∂i u(x0)|
|x− x0|

≤ c ( qx0
(f) + ‖ f ‖) , ∀x ∈ Ω, x 6= x0 . (1.44)

This shows (1.39), completing the proof.
�

The proof of Theorem 1.3.1 follows immediately from proposition 1.4.1.
Note that, by appealing to the first equation (1.13), we obtain

|∂i u(x)| ≤ ‖f‖
∫

Ω

|∂i g(x, y)| dy ≤ c ‖f‖ , ∀x ∈ Ω .

Hence,

‖∇u ‖ ≤ c ‖f‖ , (1.45)

where u is the solution of problem (1.10).

1.5 Proof of Theorem 1.3.2.

Due to Theorem 1.3.1, it is sufficient to show that the second order classi-
cal derivatives of the solution u(x) exist and are continuous, everywhere
in Ω.
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Consider the solutions um of problems{
Lum = fm in Ω,

Bum = 0 on Γ.
(1.46)

Clearly um → u in C(Ω) . Further, by assumption, um ∈ C2(Ω) . By
applying the result stated in theorem 1.3.1 to the system{

L(um − un) = fm − fn in Ω,

B(um − un) = 0 on Γ,
(1.47)

we obtain ‖ ∂ij um− ∂ij un ‖ ≤ c0 ‖ fm− fn ‖∗ . This proves that ∂ij um
is a Cauchy sequence in C(Ω) . Hence, by the completeness of C(Ω) ,
there exists an element vij ∈ C(Ω) such that the sequence ∂ij u

m is
uniformly convergent in Ω to vij . Furthermore, by applying estimate
(1.45) to um − u , it follows that

‖∂ium − ∂iu‖ ≤ c ‖fm − f‖.

Hence ∂ium converges uniformly in Ω to ∂iu.
The above results guarantee that the second order derivatives ∂iju

exist and are given by vij , for i, j = 1, ..., n.

1.6 Proof of Proposition 1.3.4.

In this section we prove the Proposition 1.3.4. The density of smooth
functions is a crucial ingredient in proving full regularity. As already
remarked, Proposition 1.3.4 is a typical first step to try to prove that
smooth functions are dense in B∗(Ω) . We start with some preliminary
results. Recall that

Ωδ ≡ {x : dist(x, Ω ) < δ }.

It is well known that, for sufficiently small, positive δ , we can construct
a suitable system of parallel surfaces Γr , where − 2 δ < r < 2 δ , and
Γ0 = Γ . The surface Γr is at distance | r | from Γ . It lies inside or
outside Ω , depending on the negative or positive sign of the parameter
r . Furthermore, a one to one correspondence between pairs of points
in the opposite surfaces Γr and Γ−r is defined by imposing that they
belong to the same straight segment, orthogonal to Γ . We say that
these points, denoted here by x and x , are obtained from each other,
by reflection (with respect to Γ ).

Note that a positive lower bound for δ depends on the upper bound
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of the absolute values of the principal curvatures of the boundary Γ .

We denote such a positive lower bound by δ , and use this same value
in definitions (1.23) and (1.24).

Lemma 1.6.1. There exist δ > 0 and k ≥ 1 (which depend only on
the given set Ω ), such that the following holds. Given f ∈ C(Ω) , there
is an extension f̃ : Ω2 δ → R ,

f̃(x) = f(x) for x ∈ Ω ,

such that, for each r ∈ (0, δ ) ,

ωf̃ (x; r) ≤


ωf (x; k r) , if x ∈ Ω ,

ωf (x; k r) , if x ∈ Ωδ − Ω .

(1.48)

Proof. We define

ωf (x; r) = sup
y∈Ω(x; r)

| f(x)− f(y) | , (1.49)

and similarly,

ωf̃ (x; r) = sup
y∈Ω2 δ(x; r)

| f(x)− f(y) | . (1.50)

Obviously, if x ∈ Ω , and dist(x, Γ ) ≥ δ , it follows that

ωf̃ (x; r) = ωf (x; r) .

Hence we assume below that dist(x, Γ ) ≤ δ .

In the sequel we show the basic ideas that lead to a more formal proof,
whish is left to the interested reader.

We start by considering the particular case x0 ∈ Γ , and by assuming
that inside the δ-neighborhood of x0 the boundary Γ is flat. Under
these assumptions, compare the quantity

ωf̃ (x0; r) = sup
y∈ I(x0; r)

| f(x0)− f(y) |,

with that defined by (1.49) for x = x0 . In the case of f̃ , the points y
describe a full ball, while, in the case of f , the points y describe a half
ball. However, the set of numerical values f(y) into play are, in both
cases, exactly the same. The reader may verify that a similar situation
occurs whenever the sphere I(x; r) intersects Γ , in the flat case. The
numerical values f(y) into play are still the same, for y ∈ I(x; r) and
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y ∈ Ω(x; r) . The above remarks show that, in the locally-flat boundary
case, (1.48) holds with k = 1 .

In the general, non-flat, case, the geometrical situation is simply a
deformation of the above one. Let us start by assuming that x /∈ Ω ,

and I(x, r ) does not intersect Γ . Here, contrary to the flat boundary
case, the reflection of I(x, r ) is not I(x, r ) . However, the reflection
is contained in a (possibly large) sphere I(x, k r ) (roughly speaking,
k ≤ 1 , if Γ is locally convex, and k ≥ 1 , if Γ is locally concave). Since
we assume that Ω is regular (in particular, locally situated in one side
of the boundary) the local values obtained for k are uniformly bounded
from above.

Finally, if I(x, r ) intersects the boundary Γ , the more general pic-
ture is simply an overlap of the two single situations, already described.
Details are left to the reader.

�

Proof of proposition 1.3.4. By lemma 1.6.1, we may construct an exten-
sion f̃ : Ω2 δ → R of the given function f , such that (1.48) holds. It
follows that, for each x ∈ Ω ,∫ δ

0

ωf̃ (x; r)
dr

r
≤
∫ δ

0

ωf (x; k r)
dr

r
,

and, for each x ∈ Ωδ − Ω ,∫ δ

0

ωf̃ (x; r)
dr

r
≤
∫ δ

0

ωf (x; k r)
dr

r
=

∫ k δ

0

ωf (x; r)
dr

r
.

In particular, it follows (note that extension of formula (1.18) holds)
that

〈 f̃ 〉∗, δ ≤ 〈 f 〉∗, k δ ≤ 〈 f 〉∗, δ + 2
(

log k
)
‖ f ‖ .

�

1.7 The embedding B∗(Ω) ⊂ C∗(Ω) is strict.

Below we construct an oscillating function in the interval [0, 1] which
belongs to B∗(Ω) but not to C∗(Ω) .

Proposition 1.7.1. The inclusion C∗(Ω) ⊂ B∗(Ω) is proper.

Proof. For each non-negative integer n set

rn = e− 2n ,
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and define, in the interval I = [0, 1] , the real continuous function

fn(x) =



2−n

rn
(x− ( 2−n − rn ) ) , if 2−n − rn ≤ x ≤ 2−n ;

2−n

rn
( ( 2−n + rn )− x ) , if 2−n ≤ x ≤ 2−n + rn ;

0 , if |x− 2−n | ≥ rn .
(1.51)

Note that fn is linear in the intervals [ 2−n− rn, 2−n ] and [ 2−n, 2−n+

rn ] . Below we work with δ = r0 = 1
e in Definition 1.17.

Define, in I the function

f(x) =

∞∑
n= 0

fn(x) .

Note that 0 ≤ f(x) ≤ x . We start by showing that f /∈ C∗(Ω) . For
convenience, we set

ω(r) = ωf (r) .

Clearly, if rn+ 1 ≤ r ≤ rn then

2− (n+ 1) = ω(rn+ 1) ≤ ω(r) ≤ ω(rn) = 2−n .

Hence ∫ δ

0

ω(r)
dr

r
≥

∞∑
n= 0

∫ rn

rn+1

ω(rn+ 1)
dr

r
≥

∞∑
n= 0

1

2
= ∞ .

This shows that f /∈ C∗(Ω) .

Next we prove that f ∈ B∗(Ω) . We want to show that there exists a
constant c0 such that, for all x ∈ I ,∫ δ

0

ωf (x; r)
dr

r
≤ c0 . (1.52)

We start by considering the points xn = 2−n where the function f(x)

attain local maximum values. Actually, f(2−n) = 2−n . Other points
x ∈ I can be treated by following a similar argument.

Let xn = 2−n be fixed. One has

ωf (xn; r) ≤



2−n r
rn
, if 0 < r ≤ rn ;

2−n+ 1 , if rn ≤ r ≤ 2−n ;

2−n + r , if 2−n ≤ r ≤ r0 .

(1.53)
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Note that equality holds in the first row of equation (1.53). Further,
in the second row, the inequality r ≤ 2−n should be interpreted as
xn + r ≤ 2−n+ 1 . The second and third rows follow from the inequality

ω(x, r) ≤ x+ r ,

which holds for all x ∈ I and r > 0 .
Next, in accordance with (1.53), we decompose the integral on the

left hand side of equation (1.52) as the sum of three integrals, and we
estimate each of the integrals by appealing to the related region in (1.53).
After some elementary calculations (left to the reader) it is east to see
that equation (1.52) holds with c0 = 3 , for each point xn . Finally note
that, for x = 0 , equation (1.52) holds with c0 = 1 .

Assume now that

xn−1 < x < xn , (1.54)

for some index n . We will follow the argument used above. As before,

ωf (x; r) ≤


2−n+ 1 , if rn ≤ r ≤ 2−n ;

2−n + r , if 2−n ≤ r ≤ r0 .

(1.55)

It remains to consider the case in which 0 < r ≤ rn . Under this assump-
tion, and by taking into account (1.54), it readily follows that points y
satisfying |y − x| < rn do not reach the supports of fn+ 2 and fn− 1 .

Hence we may replace here f by fn + fn+ 1 . It follows that

ωf (x; r) ≤ ω( fn+ fn+1 )(x; r) ≤ ωfn(x; r) + ωfn+1
(x; r) ,

for 0 < r ≤ rn . The above considerations lead to (1.52).
�

We remark that the above function f is not the limit in the B∗(Ω)

norm of the sequence of Lipschitz continuous functions

FN (x) =

N∑
n= 1

fn(x) ,

since 〈 fn 〉∗ ≥ 1
2 , for every n . This fact does not exclude the possibility

of approximating f by a sequence of elements belonging to C∗(Ω) .
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