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ARTICLE INFO ABSTRACT
Article history: The study of a very large class of linear and non-linear, stationary and evolutive partial
Received 21 May 2010 differential problems in the half-space (or similar) under the slip boundary condition is
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) reduced here to the much simpler study of the corresponding results for the same problem
Submitted by V. Radulescu

in the whole space. The approach is particularly suitable for proving new results in strong
norms. To determine whether this extension is available, turns out to be a simple exercise.

ﬁi{,ﬁ(ﬁf{p boundary conditions The verification depends on a few general features of the functional space X related to
Navier-Stokes equations the space variables. Hence, we present an approach as much as possible independent of
Inviscid limits the particular space X. We appeal to a reflection technique. Hence a crucial assumption is
Non-Newtonian fluids to be in the presence of flat boundaries (see below). Instead of stating “general theorems”

we rather prefer to illustrate how to apply our results by considering a couple of interesting
problems. As a main example, we show that sharp vanishing viscosity limit results that
hold for the evolution Navier-Stokes equations in the whole space can be extended to
the slip boundary value problem in the half-space. We also show some applications to
non-Newtonian fluid problems.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the following we consider the slip boundary condition

u-n=0,
- (1.1)
txn= 0,
where 1 is the outward unit normal to the boundary I, t =7 -n is the stress vector, and
v T
T:—n1+§(Vu+Vu )
is the stress tensor. On flat portions of the boundary (1.1) simply reads
u-n=0,
(1.2)
wxn=0,

where w =V x u. In the general case they differ only by lower order terms. In the sequel we appeal to (1.1), since our
results are proved in the case of flat boundaries.

* Corresponding author.
E-mail address: bveiga@dma.unipi.it (H. Beirdo da Veiga).
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The literature on slip boundary conditions is particularly vast. The boundary conditions (1.1) were proposed by Navier,
see [31]. A first mathematical study is due to Solonnikov and S¢adilov in the pioneering paper [33]. In [3], a quite general
and self-contained presentation is given. In these two references regularity results up to the boundary are considered. See
also [1,4], where the regularity problem is considered in the half-space. We also refer to [17,18,35].

As already announced in the abstract, as a main result, we turn resolution and properties of the evolution Navier-Stokes
equations

ou+ (Uu-Vyu—vAu+Vp=0,

V.u=0, (13)

u(0) =a(x),
under the slip boundary condition into the corresponding results for the Cauchy problem, all at once. Often, sharp results for
the Cauchy problem are known, but counterparts under boundary conditions are known only in weaker forms. This is the
situation concerning the convergence of the solutions ii¥ of the Navier-Stokes equations under the slip boundary condition
to the solution of the Euler equations, as the viscosity v goes to zero. As an application we will consider this problem. We
show that if the initial data a is given in a suitable functional space X then the solutions ii” to the Navier-Stokes problem
belong to C([0, T]; X) (T. Kato’s persistence property). Further, as the viscosity v goes to zero, ti” converges in the strong,
and uniformly in time, C([0, T]; X) norm to the solution of the Euler equations under the zero-flux boundary condition.
We may also assume that the initial data a” to the Navier-Stokes problem depends on the viscosity, and converges in X to
some d. See Theorem 8.2 below, where X = ng (Ri). By using the same ideas one can also approach stationary problems.
Clearly in this case a force term must be included. See Theorem 9.1 (stationary problem, for shear-thickening fluids), and
Theorem 10.1 (evolution problem for shear-thinning fluids).

It is worth noting that, either in the evolution or in the stationary case, one can study several problems besides the
Navier-Stokes equations and get different properties for the solutions.

Since we are mainly interested in applications to incompressible fluids, we assume from the very beginning that
spaces X consist of divergence free vector fields. Further, as a rule, functions labeled by a tilde are defined in the half-
space Ri.

The reflection technique, followed here, applies in the presence of flat boundaries, for instance cubic domains (like that
used in Refs. [7,8]), 3-D strips, or the half-space R3 = {x e R3: x3 > 0}. To fix ideas, we mainly refer to the half-space case
and set

r={xeR’ x3=0}.
Note that I is called “boundary”, even when we consider functions defined in the whole space. The unit normal to I

(outward, with respect to ]Ri) is denoted by n. Traces on I" “from above” and “from below” mean, respectively, from the
x3 > 0 side, and from the x3 < O side.

2. Functional framework

In the following, by “boundary value problem” we always refer to (1.2). Roughly speaking, our main interest is showing
that results hold for the boundary value problem in the framework of a given functional space X (]Ri), if they hold for the
corresponding problem in X(R3). Due to the general nature of this last hypothesis, it would be restrictive to dwell upon the
spaces X. This is not difficult, since the main lines depend only on some general properties of X. Some basic assumptions
on the functional spaces X are obvious from the context, for example, elements are locally integrable functions, together
with a certain number of partial derivatives. To fix ideas, we suggest that the reader thinks of X(R3) as being a Sobolev
space WoP(R3) (o stands for “divergence free”).

Concerning the link between the spaces X(R3) and X (]Ri), we assume the following, standard, properties: Restrictions
uy to R3 (resp. u_to R?) of elements u € X(R?) belong to X(R3) (resp. X(R2)). Moreover, if u € X(R?), the norm of u in
this space is equivalent to the sum of the norms of the restrictions uy and u_ in the above corresponding spaces. Norms
in X(R3) and in X(R?) are defined “symmetrically”.

It is in general false (for spaces used in PDE’s) that uy € X(]Ri), and u_ € X(R2) implies u € X(R?). In the sequel we
assume the following typical situation.

Assumption 2.1. The functional spaces X consist of divergence free vector fields. Further, in correspondence to a given X(R?)
space, an integer Iy = lg(X) exists so that partial derivatives of elements of X(R3) have traces on I', in the usual sense, if
and only if their order is less or equal to lo. Moreover, u belongs to X(R3) if and only if its restrictions satisfy u, € X (Ri),
u_ € X(R2), and traces of homonymous derivatives coincide, from above and from below, up to the order Io.

Assumption 2.1 avoids some singular cases like Sobolev spaces W*P, if s — % is an integer. In this case, and in similar
ones, the theory presented in the sequel needs some adaptation, not considered here.

For convenience, we often use the symbol X! to specify the largest order of the derivatives that appear in the definition
of X. Clearly, Iy <. For instance, if X' =H'=H"2, | integer, then lp =1 —1.
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3. Some basic results
We set
X = (x1,X2, —X3)
and start this section by introducing the following definition.

Definition 3.1. Let p and v be an arbitrary scalar field and an arbitrary vector field in R3. We set, for each x € R3, (Tp)(x) =
p(x), and

(Tv) (%) = (Tv1 (%), Tv2(x), =Tv3(x)) = (V1 (%), v2(X), —v3(%)).
We also define (Tv)(x), for x e R?, if v is defined in R3..

Proposition 3.1. One has

V(Tp) =T(Vp),

V.- (Tv) =TV -v),

V x (Tv) = -T(V x v),
A(Tv) =T(Av),

((Tv) . V)(Tv) =T((v . V)v),
0:(Tv) =T(;v).

Note that T> = I.

The proof is left to the reader.

Lemma 3.1. Let v be a vector field in R3. IfTv = v then v3(x1,x2,0) =0.IfTv = —v then v;(x1,x2,0) =0, for j =1, 2. In particular,
ifTv=vthen (V x v)j(x1,X2,0)=0,for j=1,2.

In fact, from Tv = v it follows that

(Tv)3(x1, X2, X3) = V3(X1, X2, X3).

On the other hand,

(Tv)3(x1, X2, x3) = —(Tv3) (X1, X2, X3) = —V3(X).

Consequently, v3 =0 for x3 = 0. The second statement follows by a similar argument. The last statement follows from the
relation (3.1)3 for Tv=v

Vxv=-=T(V xv).
Corollary 3.1. If v =Tv then v satisfies the boundary conditions (1.2).

4. An explanatory interlude

Before going to the next section it looks useful to justify it by appealing to an example. To this end we appeal to the
solution to the evolution Navier-Stokes equations. One has the following result.

Proposition 4.1. If u is a solution to the Cauchy problem (1.3) with initial data a, then Tu is a solution to the Cauchy problem with
initial data Ta.

Ifa e X(R?), a =Ta, and u is the unique solution to the Cauchy problem (1.3), then u = Tu for each t € [0, T].

Moreover, the restriction of u(t) to ]Ri solves the initial boundary-value problem in the half-space, under the boundary condi-
tion (1.2).

Proof. The proof of the first part follows by applying the linear operator T to each of the single Egs. (1.3), and by appealing
to Proposition 3.1. The proof of the second assertion follows from the first part and from the uniqueness of the strong
solutions to the Cauchy problem. The third claim follows by appealing to Corollary 3.1. O
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The above result essentially shows that if a € X(R3) satisfies a = Ta, then statements that hold for the Cauchy problem
(like inviscid limit results) also hold in the half-space, for the boundary value problem (1.2) with initial data a = a|R3+ .

However, in considering directly the boundary value problem, the initial data a is defined in the half-space. Hence, we have
to study how general @ € X (Ri) may be, so that it is the restriction to Ri of some a € X(R3) for which a =Ta. In other
words, we must express the implicit constraint a = Ta in terms of explicit assumptions on a. This leads to the following
problem.

Problem 4.1. Given an arbitrary a € X (Ri), which satisfies the slip boundary condition, look for necessary and sufficient
conditions so that a is the restriction to Ri of some a € X(R?) for which Ta =a.

This is the subject of the next section. For instance, we will see that, if Iy < 3, the answer is always positive (as, for
instance: for H2; for W(B,’p and arbitrarily large p). On the contrary, HZ and Wé’p require compatibility conditions.

5. The compatibility conditions, and “fitting” on the boundary
The main subject of this section is to prove that the conditions (5.1) below are the right compatibility conditions.

Assumption 5.1. Let d = (41, d2,d3) € X'(R3). If lp = [o(X") > 3, then for each odd integer k € [3,lo], the partial derivatives
8§&j, j=1,2, vanish on I":

95a1(x1, X2, 0) = 9502 (x1, X2, 0) =0. (51)

In the next section we show that these conditions are independent.

We introduce the following convention. If g is defined in R (or in Ri UR3), we say that g fitson I', or just fits, if the
traces on I', from above and from below, coincide. Furthermore, the expression fits by zero means that both traces vanish
on I'. Clearly, these definitions are meaningful only when the traces from both sides exist. If not, “fitting” is not defined.

The following theorem is the main result in this section.

Theorem 5.1. Let d € X’(Ri) satisfy the slip boundary conditions. Then there is an
aeX! (R3)

such that Ta = a in R3, and
a|R3+ =d,

if and only if a satisfies the assumptions (5.1).

For instance, if l[p = 3 or lp = 4, the assumption
3341 =834, =0 onT,

guaranties that the traces, from above and from below, of any derivative of a of order less or equal to Iy (a defined by (5.3))
fiton I'.
In order to prove Theorem 5.1, we define in R3 the mirror-extension Ta of a, defined on Ri, by the equation

~ . 3
a inR3,

a=Ta:={
Ta inR3.

(5.2)
It is obvious that a =Ta is the unique extension of a for which a = Ta. The point here is whether or not a € X (Ri) implies
that a = Ta, belongs to X(R3). By Assumption 2.1, this is equivalent to proving the coincidence of the traces on I" “from
above and from below” of all partial derivatives of a up to order ly. We will show that this is equivalent to the conditions

on the traces (obviously from above) of the derivatives of a referred to in Assumption 5.1.
For convenience we write (5.2) in the more explicit form

aj(x1,%2,X3) =dj(x1,%,x3) inR3, if j=1,2,3;
aj(x1,X2,—x3) inR3,ifj=1,2,

aj(X1,X2,X3) =1 "_ s

—a3(x1,x2, —x3) inRZ, if j=3,

and also the slip boundary condition (1.2) in the explicit form
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{ as(x1,x2,0)=0, (5.4)

030(x1,X2,0) = 9jaz(x1,x2,0), forj=1,2.

It is worth noting that if a function fits (respectively, fits by zero), then its tangential derivatives of any order also fit
(respectively, fit by zero). Hence, the “fitting problem” for a partial derivative a’;a;"a j is reduced to the same problem for
the pure normal derivative d5'a;. For convenience, we put in evidence this result.

Lemma 5.2. If a partial derivative 35'a; fits (resp. fits by zero) on I', then any partial derivative 8’; 03'a; fits (respectively, fits by zero).
The next result follows easily from the definitions.

Proposition 5.1. Let a be given in ]Ri, and let a = Ta be the mirror-extension of @ to R3. Then:

(a) Partial derivatives of a3, of odd order in the normal direction, fit on I". Partial derivatives of aj, for j =1, 2, of even order in the
normal direction, fiton I'.

(b) Partial derivatives of as, of even order in the normal direction, and partial derivatives of a;, for j =1, 2, of odd order in the normal
direction, fit on I' if and only if they fit by zero.

Proposition 5.1 shows that a necessary and sufficient condition for the resolution of Problem 4.1 is the fitting by zero
of the partial derivatives considered in part (b). However these conditions are not independent. We start by proving the
following result.

Proposition 5.2. Compatibility conditions are not required for derivatives of order less than or equal to two. In particular they are not
required if lo(X) < 2.

Proof. We have to show that

as(x1,x2,0) = d3a;(x1, X2, 0) = d7a3(x1,%2,0) =0, forj=1,2. (5.5)
The two first assertions follow easily from (5.4). On the other hand, due to the divergence free property, one has
—03a3 =Y 9;03a;. (5.6)
j=1,2

By results already shown, both terms on the right-hand side of the above equation have zero trace on I". O

Proposition 5.3. Let a be a divergence free vector field defined in Ri and let a = Ta be the mirror-extension of a to R3. If, for some
odd integer k,

d%a;=0 onTl, forj=1,2, (5.7)

then

#as =0 (5.8)

k+1
83

on I'. In other words if 8§&j fits by zero, for j =1, 2, then as fits by zero.

Proof. By appealing to the divergence free property we get

Y2 (0;9Kd;) (0) ifx3 > 0,

—05 a3 (x) = o
(—DK1 Y2 (9;0%a,) ) ifxs <0,

(5.9)

This leads to the thesis. O

Note that the result also holds for even values of k. Proposition 5.3, together with results already established, prove
Theorem 5.1.
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6. Independence of the compatibility conditions

We have already shown that (5.7) and (5.8) are necessary conditions for fitting. Proposition 5.3 shows that these con-
ditions are not independent. We wonder whether the subset in Assumption 5.1 is minimal. We show here that this is the
case, by constructing a divergence free vector field v € C*®°(R3), with compact support contained in a sphere centered in
the origin, and with radius arbitrarily small, which satisfies the boundary conditions and all the compatibility conditions
up to an arbitrary odd order n — 1, but which does not satisfy the compatibility condition of order n. This shows not only
that the last compatibility condition is needed (this was already known), but also that it does not follow from the set
of all the previous (lower order) compatibility conditions, together with the boundary conditions and the divergence free
property.

Let n > 2 be an integer, fix a scalar field p € C3°(B(0, 1)), and define the vector field w —x”“ (1,1,0) in R3. It is easy
to check that the divergence free vector field v =V x (pw) vanishes on the boundary, together with any partial derivative
of order less or equal to n — 1. In particular, v satisfies our boundary conditions, and

v1(x1, X2, 0) = 05V (%1, %2,0) = 0, (6.1)

on I, for each k < n. However

v (x1,x2,0) = p(n+1)!(—1,1,0) (6.2)

shows that 95 vq and 95v, do not vanish on I". Consider an odd value n > 3. Then, by (6.1), the compatibility condition (5.1)
is satisfied up to order n — 1. In particular it holds for all odd k, up to order n — 2 included. But the last compatibility
condition does not hold, as follows from (6.2).

7. On a class of solutions to the Navier-Stokes equations in R3. The “abstract” Theorem 7.1

Thanks to Proposition 4.1 and Theorem 5.1 we may extend to boundary value problems many properties which hold for
the Cauchy problem. The same arguments hold for stationary problems, where a force field f appears in place of d. Actually,
if we want to extend properties from a problem P = P(R3), in the whole space, to the corresponding slip boundary value
problem P= P(R3) in the half-space, we merely have to check that: (a) a (respectively f ) satisfies the assumptions (5.1),
and the boundary conditions (1.2); (b) if u is a solution of problem P(R3) then Tu is solution of the same problem; (c) the
solution u is unique (actually, this point may be bypassed).

Theorem 7.1 below follows the above picture. This theorem is the foundation of many possible applications to the Navier-
Stokes equations, in particular that (inviscid limit) considered by us in the next section.

Note that the preliminary hypotheses below consist in assuming that a very basic result holds in R3.

We suppose that the functional space X!(R3) satisfies Assumption 2.1.

Theorem 7.1. Preliminary R3-hypotheses: for each a € X'(R?) the Cauchy problem (1.3) admits a unique solution u €
C(0,T]; X'(]R3)),for some positive T =T (a).

The Ri result: Assume that the initial data a X’(]Ri) satisfy the boundary conditions (1.2) and the compatibility conditions
described in Assumption 5.1. Then the initial-boundary value problem (1.3), (1.2) admits a (unique) solution ii € C([0, T]; X! (Ri)) in
[0, T].

More precisely, the solution ii is constructed as follows. Given a € X ’(Ri) as above, we define a = Ta € X'(R3) as being the mirror-
extension of @ to R3 (see (5.2) above). Furthermore, let u € C([0, T]; X'(R3)) be the solution to the Cauchy problem with the initial
data a. Then, for each t € [0, T], the above solution ii(t) is simply the restriction of u(t) to the half-space Ri. In particular,

clu® ||X(R3) la® ||X(R3 Ju® ”X(R3)’ (71)

where ¢ = c(1), is a positive constant.

Proof. Theorem 7.1 follows immediately from Theorem 5.1 together with Proposition 4.1. Indeed the hypotheses on the data
@ in Theorem 7.1 are the same as in Theorem 5.1. From this last theorem we get a € X!(R3) and a = Ta. Therefore the
assumptions on a in Proposition 4.1 are satisfied and we get that the restriction of u(t) to ]R%r solves the initial boundary-
value problem in the half-space. O

The link between the solutions # and u shows that (7.1) holds, in general, for any other X;-norm satisfying Assump-
tion 2.1, provided that Iy(X7) < Ilp(X).

Concerning time instant T (a), in typical situations there is a lower bound for the values T, which depends (decreasingly)
only on the X'-norm of a, and not on a itself. Often, a weaker norm is sufficient to determine T.

Note that Theorem 7.1 is not the more general result that one can get. We have preferred to avoid the full generality,
since our interest is mainly concerned with the inviscid limit result in strong topologies. This means that if the initial data
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is given in a Banach space X, the convergence result should be established in C([0, T]; X). Actually, one can deduce that the
initial-boundary value problem (1.3), (1.2) has a unique solution in some class (such as LP(0, T; W”q(Ri))) if the Cauchy
problem has a unique solution in the corresponding class, provided that the initial data (prescribed in Ri) satisfies the
boundary conditions and the compatibility conditions given in Assumption 5.1.

8. The inviscid limit

Vanishing viscosity limit results in 3-D domains, without boundary conditions, have been studied by many authors. See,
for instance, [13,21,22,24,26,34], and the more recent papers [6,29]. In [6,22,29] results are proved in the strong topology. For
results concerning inviscid limits in non-smooth situations we refer to [14].

Concerning the vanishing viscosity problem in bounded domains, under slip boundary conditions, we refer to
[7,8,15,19,36] and references therein.

In the particular 2-D case the assumption w x n =0 on I" is simply replaced by w = 0. For specific 2-D vanishing
viscosity results under slip-type boundary conditions we refer to the classical papers [2,20,30,32]. See also the more recent
papers [12,27,35].

In the following we consider the Navier-Stokes equations

i’ + (0" - V)" —vAl” +VpY =0,
V-V =0, (8.1)
u”(0) =a"(x),
in Ri, under the boundary condition
u’-n=0,
{ @&’ xn=0.

We assume that the positive viscosities v are bounded from above by an arbitrary, but fixed, constant.

As already remarked, on flat portions of the boundary, (1.2) coincides with the well-known boundary condition (1.1). In
the 3-D problem, if the boundary is not flat, it is not clear how to prove strong inviscid limit results. In fact, a substantial
obstacle appears. See [7] for some details on this point.

Denote by X!'(R3) the initial data’s space. We want to prove the convergence in C([0, T]; X'(R3)) of the solutions @”, as

the viscosity v goes to zero (and, possibly, @’ converging to some @) to the solution &i® of the Euler equations in Ri

3’ + (@°-v)a® + vp° =0,

v.-i’=o0, (8.3)
1%0) = ax)
under the zero-flux boundary condition
9. n=0. (8.4)

Previous results, particularly related to ours, were proved in [36], in the space W3-2; in [7], in spaces W2P and W?3P,
for any arbitrarily large p; and in Ref. [8], in arbitrary WP spaces. However, uniform convergence in time with values in
the initial data space X is not proved. On the contrary, for the Cauchy problem, some sharp vanishing viscosity limit results
are known. Theorem 7.1 allows immediate extension of these results to the initial-boundary value problem. The following
assumption is, in fact, a condition on X!(R3). It requires that the vanishing viscosity limit result holds in X!(R3) for the
Cauchy problem

du’ + (u¥ - V)u” —vAu’ +Vp” =0,
V-u’ =0, (8.5)
u’(0) =a"(x).

Assumption 81. For each v > 0 and each a' € X!(R®) the Cauchy problem (8.5) admits a unique solution u' €
C([0, T]; X'(R3)), where T > 0 is independent of v and of the particular a” € X(R3), provided that their norms are bounded
from above by a given constant. Furthermore, if the parameter v tends to zero and a” tends to a in X'(R3), then u" con-
verges in C([0, T]; X'(R3)) to the unique solution u® of the Euler equations in R3.

Theorem 8.1. Under Assumption 8.1 one has the following result:
Let the vector fields a¥ € X’(Ri) satisfy the boundary conditions (8.2), and the compatibility conditions described in Assump-

tion 5.1. Then, for each v > 0, the initial-boundary value problem (8.5), (8.2) admits a unique solution u" € C([0, T]; X’(Ri)).
Furthermore, if the parameter v tends to zero (vanishing viscosity limit) and the initial data a” converge to some a in X’(]Ri), then i
converges in C([0, T]; X! (]Ri)), to the unique solution ii° of the Euler equations (8.3) under the boundary condition (8.4).
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The result follows from Theorem 7.1 together with Assumption 8.1. We define a" =Ta" as being the mirror-images of
the @"’s, and u” € C([0, T]; X'(R3)) as being the solutions to the Cauchy problems (8.5) with viscosity v and initial data a".
Then, the solutions @1V of the boundary value problems are the restrictions to the half-space Ri of the solutions u”, and i°
is the restriction to the half-space ]R§r of u®.

Additional regularity and convergence results for the solutions u”, their time-derivatives, and pressure follow immedi-
ately from corresponding results proved for the Cauchy problem.

To apply the above theorem to a specific problem, we simply replace Assumption 8.1 by the known, desired, vanishing
vilscosity result for the Cauchy problem. For instance, let us show an application of the above theorem, in the case X/(R3) =
HE?(R3).

Theorem 8.2. Assume that the initial data a* € H£;2 (Ri) satisfies the boundary condition (8.2). Further, if| > 4, assume that for each
odd integer k € [3,1 — 1], the compatibility condition

%a;j=0, onr, forj=1,2 (8.6)
holds. Then the initial-boundary value problem (8.5), (8.2) admits a unique solution i" € C([0, T]; Hf;z (Ri)). Furthermore, if

a’ —a, in ng (Ri)
asv — 0, then,asv — 0,

" — 1, inc([0,T]; HY?(R2)), (8.7)

where i is the solution to the Euler equations (8.3) under the boundary condition (8.4).

For instance, if [ =3 one has lp = 2. Hence the vanishing viscosity limit holds in the space Hf; (Ri) without assuming
compatibility conditions on the initial data. If X 5(IRi) = Hg (]Ri), one has Iy = 4. Hence we have to assume the compatibility
condition 33a; =0, for j=1,2.

In Theorem 8.2 Assumption 8.1 holds, as follows essentially from results due to T. Kato, see [21,22]. A simpler proof is
shown by N. Masmoudi, see Theorem 2.1 in Ref. [29]. We may also appeal to [6], to prove the above result in the cubic
domain case.

As another application, we may extend to the boundary value problem the results proved by T. Kato and G. Ponce in [24],
where convergence of Navier-Stokes to Euler follows in Lebesgue spaces L (R"). These spaces are similar to W*P spaces.
See also [23]. It would be redundant to state here other specific results. Checking this possibility case by case is, on the
whole, an easy task.

Remark 8.1. In this section we have appealed to Theorem 7.1 for extending to the boundary value problem the properties
described in Assumption 8.1 for the Cauchy problem. If we want to extend different properties, we merely have to replace
Assumption 8.1 by an assumption describing the corresponding properties for the Cauchy problem.

9. Regularity for shear-thickening stationary flows

In this section we consider the following stationary system describing the motion of a non-Newtonian fluid:

{—V~S(Du)+V7r:f, 91)
V-u=0. ’
We assume that the “extra stress” S is given by

S(Du) = (vo + v1|DulP~?)Du, (9.2)

where Du is the symmetric gradient of u, i.e.

1 T
Du = 2(Vu+Vu ),
Vg, V1 are positive constants, and p > 2. Here, and in the next section, we sacrifice a greater generality to emphasizing the
main ideas. Thus (9.2) and (10.5) (see below) are just the canonical representatives of a wider class of extra stress tensors
to which our proof applies.

As done for the initial-boundary value problem (1.3), we draw new results for the system (9.1) under the slip-boundary
conditions (1.2) from the corresponding known results for the whole space. We are mainly interested in regularity results
up to the boundary. This problem has received various contributions in recent years. The main open problem is to prove
the L2-integrability, up to the boundary, of the second derivatives of the solutions, in both the cases p <2 and p > 2. In
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Ref. [5] the half-space case ]1%3+ is considered, under slip (and non-slip) boundary conditions, and p > 2. The author shows

that the second “tangential” derivatives belong to L2 (Ri), while the second “normal” derivatives belong to some Lfoc(Ri),
for a suitable I < 2. See [9,10] for recent, and more general, related results (under the non-slip boundary condition), and for
references.

In the sequel the reflection technique enables us to improve the regularity results, by overcoming the loss of regularity

from the tangential to the normal direction. See Theorem 9.1 below.

Following the notation in [5], we define 51(]1%1) = D1*2(]Ri) as the completion of Cgo(R_i) with respect to the norm
[Vv], and set

Vo(R3) ={veD'(R3): V-v=0, v3y3—0 =0},
endowed with the norm ||Vv|. We denote by (Vz (]Ri))’ the dual space of Vs, (Ri). Finally we set

V(RE) ={veVy(R): DV, < oo},

endowed with the norm ||[Vv| + [ Dv|,. We use
DI(R®). V2(B%). (V2(R%)). V()

for the corresponding spaces in R3.
Assume that f € (V3)'. We say that u is a weak solution of system (9.1) if u € V satisfies

1
3 /(uo + v1|Du|p*2)Du -Dv dx:/f - vdx, (9.3)

R3 R3

for all v € V, where the integral on the right-hand side denotes a duality pairing. A corresponding definition holds for the
boundary value problem.
We start by recalling the following result (for a sketch of the proof, see below).

Proposition 9.1. For each f € (V2(R?))’ N L2(R3), the system (9.1) in R3 admits a unique weak solution u € V (R?). Furthermore,
the derivatives Du belong to L%(R3).

By the above proposition, and thanks to the procedure described at the beginning of Section 7, one has the following
theorem.

Theorem 9.1. Let be f’ € L$ (Ri) N Lz(Ri). Then, the boundary value problem (9.1), (1.2) in Ri admits a unique weak solution
i € V(R3). Furthermore, the derivatives D21 belong to L2(R)).

Proof. It is easy to see that ]‘ can be extended, using (5.2), to a function f € Ls (R3)NL2(R3), which satisfies the hypothesis
of Proposition 9.1. Hence, we merely have to check that if u is a solution of (9.1) in R? so is Tu, where T is given by
Definition 3.1. This last property is immediate, since

(Du)jj(x), asi=j=3ori,je{l,?2},

(D(Tu))ij(x) - { —(Pu)jj(x), asi=3, je{l,2}.

It is worth noting that, due to the low regularity of the force term, we do not have to require any extra assumption, like
Assumption 5.1.

As for Proposition 9.1, the existence and uniqueness of weak solutions in R> are well known, and derive from basic
theory of monotone operators. See [25]. As far as the L2 regularity is concerned, we note that the results in [28] immediately

show that the derivatives D%u belong to leoc(R3)' By appealing to our reflection technique results, this yields D?ii € leoc(Ri).
Here the restriction “local” merely means “at finite distance”. This restriction is not substantial, since it is formally due to
the fact that in [28] the authors consider a bounded domain. Clearly, one gets “global” regularity in R3 by appealing to the
Nirenberg’s translation technique in the whole space (as in [5, Lemma 4.1]). Note that in [5] translations are allowed only in
the tangential directions, since the problem is considered in the half-space. However, in R3, translations can be done in any
direction. Since we turn the problem in the half-space with slip-boundary conditions into the problem in the whole space,
the solution u of the boundary value problem has second derivatives in LZ(RE’F), since it is the restriction to the half-space
of the solution u, with D?u € L2(R?). O
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10. The evolution shear-thinning problem in the “periodic cube”

As announced in the introduction, the technique followed for the half-space applies to other domains with flat bound-
aries. Here we show in which way one can extend the procedure to problems in the so called “periodic cube”, with slip
boundary conditions on two opposite faces which make up here the significant boundary I", and periodicity on the remain-
ing two pairs of faces. This is by now a canonical situation, that allows to avoid localization techniques and unbounded
domains, hence to focus attention on the main (the boundary value) problem. Consider the half-cube

5_ 112 (11
S=(-1.1) x( 2,2). (10.1)

We assume the slip boundary conditions (recall (5.4)) on I = {x: |x1] <1, |x2| <1, x3= :t%}, namely

s . 1
as(x) = 03a1(x) = 03a2(x) =0, ifx3= ii’ (10.2)

together with periodicity in the x; and x, directions, where a € X’(ﬁ). Notation apes that used in the previous sections for
the half-space case, with the obvious adaptations.

Now we perform a mirror-extension (recall (5.2) and (5.3)), on the upper and lower faces, from each a € X(2) to a
corresponding a, defined in the cube §2 = (—1,1)3, in the following way

a(x) =a(x), ifxe 2,

ai(x) = aj(x1,x2, 1 —x3), ifxs e ,1} andi=1,2,

M1
2
- . [1
asz(x) = —as(xq1,x, 1 —x3), ifx3 € _5, 1:|, (103)

- . 1 ,
ai(x) =aj(x1,x2, —1 — x3), ifx3 € —1,—§:| andi=1,2,

. ) 1
a3(x) = —az(x1,x2, —1 —x3), ifxze —1,—5}.

By imposing the compatibility conditions (similar to (5.1))
- 1 - 1
8§a1 <x1,xz, :|:5> = 8§a2 <x1,xz, ii) =0, VkeN, kodd, ke]3,lp],

we get a € X!(£2). A direct computation shows that, for any admissible multi-index «,

D%a(x1,x2, —1) = D%a(x1,x2, 1).

By using this procedure, we have transformed the original problem with mixed boundary conditions in a purely periodic
one. Likewise to the half-space case, if we start from a suitable solution to the totally periodic problem, its restriction to
the half-cube turns out to be a solution of the slip-periodic problem. Clearly, regularity properties are preserved. As an
application we show here an existence and regularity result in the framework of the shear-thinning fluids. The problem
considered is the evolution of a non-Newtonian fluid in a periodic cube with slip boundary conditions, namely

ou—V.-SDu)+@w-Vu+Vp=0,
V-u=0, (10.4)
u(0,x) =ax),
where, for the sake of simplicity, we assume that the extra stress S is of the following type
S(Du) = (1 + |Dul)’~*Du. (10.5)

We want to solve problem (10.4) in the cube 2 with boundary conditions (10.2) and p < 2. We require vanishing mean
value, as usual in the space periodic case. Let us introduce the spaces

Vp={veW!'P(2), V.v=0, visx-periodic},
~ ~ 1
Vp = {v eW'P(2), V-v=0, vis (x1, x2)-periodic, v3 =0if x3 = ii}'

We start by recalling the following result.
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Proposition 10.1. Let be p € (%, 2). For each a € W22(2) N Vp the initial value problem (10.4) in £2 admits a unique solution
uel®(0,T; V) NL20, T; W22(£2)), deu € L?(0, T; L2(£2)), for some positive T = T (a).

The existence of a solution is ensured by Theorem 17 in [16], while its uniqueness follows by Corollary 18 and Theo-
rem 19 in the same reference. See also [11] for the degenerate case S(Du) = |Du|P—2Du.
One has the following theorem.

Theorem 10.1. Let be p € (%,2). Let the vector field @ € W22(2) N Vp satisfy the boundary conditions (10.2). Then, the
initial-boundary value problem (10.4), (10.2) in £2 admits a unique solution @i € L°(0, T; V) N L*(0, T; W22($2)) and &ii €
L2(0, T; L2(£2)).

The proof follows by extending the initial data a by means of Egs. (10.3), and by observing that if u solves system (10.4)
then Tu solves the same system (see the previous section).
We remark that in the present case the compatibility conditions are not needed, as stated in Proposition 5.2.
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