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Abstract

We consider the evolutionary Navier-Stokes equations with a Navier
slip-type boundary condition, and study the convergence of the solutions,
as the viscosity goes to zero, to the solution of the Euler equations under
the zero-flux boundary condition. We obtain quite sharp results in the
2-D and 3-D cases. However, in the 3-D case, we need to assume that the
boundary is flat.
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1 Introduction and results

Throughout this paper, Ω is an open bounded set in R3 (or R2) locally situated
on one side of its boundary Γ. The unit outward normal to Γ is denoted by
n = (n1, n2, n3) . We consider, in a suitable time-interval [0, T ] , the Navier-
Stokes equations

(1.1)

 ∂t u
ν + (uν · ∇)uν − ν∆uν + ∇π = 0,

div uν = 0 ,
u(0) = u0 ,

and the corresponding Euler equations

(1.2)

 ∂t u+ (u · ∇)u+ ∇π = 0,
div u = 0 ,
u(0) = u0 .

Our aim is to investigate strong convergence, up to the boundary, of the solutions
uν of the first system to the solution u of the second system, as ν → 0, under
physical meaningful boundary conditions. Concerning the Euler equations, we
assume the classical zero-flux boundary condition

(1.3) u · n = 0 .

Existence of local in time classical solutions to the Euler equations in R3 was
proved by L. Lichtenstein, see [29]. W. Wolibner, [40], proves the existence of
global in time solutions in R2 . For other 2-D results see also [2], [22], [23],
[27] and [39]. Concerning 3-D existence results under the boundary condition
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(1.3) we refer the reader to the classical papers [13], [19], [26] and [36]. For a
very interesting overview of problems relating to the Euler equations, we refer
to [15].

Concerning the Navier-Stokes equations, the first thought goes to the classi-
cal non-slip boundary condition u = 0 on Γ. However, it is well known that in
this case “strong” convergence does not hold up to the boundary, since boundary
layers appear; see the thorough analysis of [15], in particular section 3.

The other boundary condition that comes to mind is the slip boundary
condition:

(1.4)
{
u · n = 0,
t · τ = 0 ,

for any tangential vector τ . The stress vector t is defined by t = T · n , where

T = −π I +
ν

2
(∇u+∇uT ) ,

is the stress tensor. The literature on this type of boundary conditions is endless.
We quote here Solonnikov and Šcadilov’s pioneering paper [34], and also [9],
where a more general self-contained presentation is given. In these two references
regularity results up to the boundary are considered (see also [8] and [1], where
the regularity problem is considered in the half-space). Further, in [10], it is
shown that the linear Stokes operator, under slip boundary conditions, generates
an analytical semi-group. This may be applied to study evolution Stokes and
Navier-Stokes equations.

It is worth noting that, on flat portions of the boundary, the boundary
conditions (1.4) and

(1.5)
{

(u · n)|Γ = 0,
ω × n = 0 ,

coincide, where ω = curl u . This leads us to consider (1.5), even when the
boundary is not flat. Note that the boundary condition (1.5) is strongly related
to the slip boundary condition (1.4). In fact,

t · τ =
ν

2
(ω × n) · τ − ν u · ∂ n

∂ τ
.

Note, also, that the last term on the right hand side is a lower order term, and
that ω× n and ∂ n

∂ τ are tangential to Γ , while | ∂ n∂ τ | is the normal curvature in
the τ direction. For n = 2 , the second boundary condition in equation (1.5) is
simply replaced by ω = 0 . Furthermore,

t · τ =
ν

2
ω − ν u · ( k τ ) ,

where k is the curvature of Γ . For a discussion on Navier-Stokes equations
under some non-standard boundary conditions related to (1.5), we refer to [3]
and [21].

Vanishing viscosity limit results in R3 without boundary conditions, can be
found, for instance, in [16], [24], [25], [28], [31], [35], and in the recent paper
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[12]. Note that here we are interested only in ”smooth solution” situations. For
some main results concerning inviscid limits in non-smooth situations we refer
to [17] ( L2 theory) and [18] ( Lp theory).

We are mainly interested in 3-D problems. However, if the boundary is not
flat, it is not clear how to prove the inviscid limit result. In fact, a substantial
obstacle appears. In section 4 we discuss this point in some detail. This situation
leads us to consider, together with the 3-D flat boundary case, also the 2-D
general problem, since in this case we are able to prove the convergence results
for non-flat boundaries (section 5).

The 3-D inviscid limit for solutions uν to the boundary value problem (1.1),
(1.5) has been considered by Xiao and Xin in smooth domains, by means of a
new and very interesting approach to the problem. In [41] these authors state
the following result (see [41], theorem 8.1). Assume that div u0 = 0 , and that
u0 ∈ H3 satisfies the boundary conditions (1.5). Then, as ν → 0 ,

uν → u in Lp(0, T ; H3(Ω) ) ∩ C( [0, T ]; H2(Ω) ) ,

for some T > 0 and any p ∈ [1, +∞) , where u is the solution to the Euler
equations (1.2), (1.3). However, if the boundary is not flat, the proof seems to
contain an oversight (see the remark 4.1).

We develop here an Lp theory, for arbitrarily large values of p , which is
a novelty in the context of the above vanishing viscosity limit problems. In
particular, our convergence results are substantially stronger than the previous
ones. Since the problem has a local character, in studying the 3-D flat boundary
case we consider a cubic domain Q (for details, see the following section), and
prove the following result.

Theorem 1.1. Assume p > 3
2 . For each ν > 0 denote by uν the solution to

the initial boundary value problem (1.1), (1.5), in the“cubic domain” Q (flat
boundary case). Assume also that the initial data u0 belongs to W 3, p(Q) , is
divergence free in Ω and satisfies the boundary conditions (1.5). Then

(1.6)

 uν ⇀ u in L∞(0, T0; W 3, p(Ω) ) weak− ∗ ,

uν → u in C([0, T0]; W s, p(Ω) ) , for each s < 3 ,

where u is the unique solution to the Euler equations (1.2), (1.3). Further,

(1.7) ∂t u
ν → ∂t u in L∞(0, T0; W 1, p(Ω) )

and, if p ≥ 2 ,

(1.8) ∂t u
ν → ∂t u in Lp(0, T0; W 1, 3 p(Ω) ) .

In the 2-D case the assumption ω×n = 0 on Γ is simply replaced by ω = 0 .
Moreover equation (3.4) is replaced by (5.1). For 2-D vanishing viscosity results
under slip-type boundary conditions we refer to the classical papers, [2], [22],
[33]. See also the more recent papers [14] and [38]. In [14] the authors consider
the slip boundary condition

(1.9) u · n = 0 , τ(u) + α(x)uτ = 0 ,
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where α is a given positive, twice continuous differentiable function on Γ . They
assume that u0 ∈ H2 satisfies the boundary conditions (1.9), that div u0 = 0 ,
and that curl u0 ∈ L∞ , and prove that

uν → u in Lq(0, T ; Wα, q′(Ω) ) ,

for any α ∈ (0, 1) and q, q′ ∈ (1, ∞) . Further, uν ⇀ u in L2(0, T ; H1(Ω) )
weakly, and ων ⇀ ω in L∞(0, T ; L∞(Ω) ) weak-* .

In fact, we show that in the 2-D case the results stated in Theorem 1.1 hold
without the flat-boundary assumption. More precisely, we prove the following
result.

Theorem 1.2. Let Ω ⊂ R2 be a simply connected, open set, locally situated
on on side of its boundary Γ that we assume to be a C3 manifold. Then, the
results stated in Theorem 1.1 hold with Q replaced by Ω . More precisely, the
estimate (1.8) holds with the exponent 3 p replaced by any finite q. Moreover,
the results are global in time, in the sense that they hold for any arbitrarily large
T0.

The effective construction of the solution to the problem (1.1), (1.5) follows
easily from our a priori estimates. We may appeal to [10] or to well-known
approximation methods like, for instance, Faedo-Galerkin procedure (see, for
instance, [16], [20], [30], [37]).

In studying problems like inviscid limits, incompressible limits, well-posedness,
etc., the relevance of the results strictly depend on the topology in which con-
vergence is proved. In the framework of smooth solutions, if the initial data
are given in a Banach space X, ultimate results should establish convergence in
C([0, T ]; X) . In the present context, this means to replace (1.6) by

(1.10) uν → u in C([0, T0]; W 3, p(Ω)) .

We believe that (1.10) can be proved by following ideas developed in previ-
ous papers, see [11] for references, even though the proofs become much more
involved. Moreover it seems that there is not sufficient awareness of the math-
ematical importance of this kind of achievement.

The vanishing viscosity limit in strong topology, without a spatial boundary,
was proved in [25], pages 54-56. For a very elementary proof of this same result
see the recent paper [12]. See also [28] and, for n = 2 , [27]. In [25] Kato points
out that in his previous paper [24] he was able to prove only the weak topology
result, and not the strong result. Kato’s remark shows how large is the gap
between the strong, and any weaker convergence result.

Remark 1.1. Let us present some other remarks concerning the gap between
weak and strong topology convergence results. We take the very classical prob-
lem of the uniform continuous dependence on the initial data as model problem
since some basic technical obstacles are similar. The uniform continuous de-
pendence, in strong topology, on the initial data for solutions to the boundary
value problem (1.2), (1.3), was proved in [19] by appealing to infinite dimen-
sional Riemannian geometry techniques. A first analytical proof, well-founded
only in 2-D, is given in [4]. For arbitrary dimensions the first analytical proof
is given in [26]. The following claim is included in the introduction of reference
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[26]. The authors wrote: “A remark is in order regarding the continuous de-
pendence in strong of the solution on the data. It is the most difficulty part
in a theory dealing with nonlinear equations of evolution. As far as we know,
[19] is the only place where continuous dependence (in the strong sense) has
been proved for the Euler equation in a bounded domain. The general theory
developed in [25] by one of the authors for non-linear equations is unfortunately
nor applicable, since it is difficult to find the operator S with the required
properties in the case of a bounded domain” . (Actually, the result was proved
later on, even in W k, p spaces, just by appealing to the above Kato’s general
perturbation theory; see references [6], [7], and [28].)

2 Some main estimates in general 3-D domains

The following result is a main tool in our proofs.

Theorem 2.1. Let Ω be a regular open, bounded, set in R3 . Then, for each
p > 1, and sufficiently regular vector fields v ,
(2.1)
−
∫

∆ v · ( |v|p− 2 v) dx = 1
2

∫
|v|p− 2 | ∇ v|2 dx+ 4 p− 2

p2

∫ ∣∣∇ |v| p2 ∣∣2 dx
−
∫

Γ
| v |p− 2 (∂i vj)ni vj dΓ .

See [32], and [5] Lemma 1.1. Note that

(2.2)
∫

Γ

| v |p− 2 (∂i vj)ni vj dΓ =
1
p

∫
Γ

∂n | v |p dΓ .

As remarked in [5], one has

(2.3)
∣∣∇ |v| p2 ∣∣2 ≤ ( p

2
)2 |v|p− 2 |∇ v|2 .

Note that, for p ≥ 3
2 , the absolute value of the second term on the right hand

side of equation (2.1) is bounded by a positive constant times the first term,
and that the above term is no-negative if p ≥ 2 .

It is easily shown that if v and n are two arbitrary, sufficiently regular, vector
fields then

(2.4) (∂i vj)ni vj = (curl v) × n · v + (∂j vi)ni vj .

Since we mainly work with the solution uν of the Navier-Stokes equations (1.1),
in the following we denote this solution by u, except when both solutions uν

and u appear at the same time.
In the sequel we set

(2.5) ω = curl u , ζ = curl ω , χ = curl ζ ,

and assume, for convenience, that Ω is simply-connected.
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By multiplying both sides of equation (3.4) by |ω |p− 2 ω , by integrating in
Ω , and by taking into account the Theorem 2.1, one gets the general relation

(2.6)

1
p
d
d t‖ω‖

p
p + ν

2

∫
|ω |p− 2 | ∇ω|2 dx+ 4 ν p− 2

p2

∫ ∣∣∇ |ω | p2 ∣∣2 dx
+ 1

p

∫
(u · ∇ ) |ω |p dx −

∫
|ω |p− 2

(
(ω · ∇)u

)
· ω dx

= ν
∫

Γ
|ω |p− 2 (∂i ωj)ni ωj dΓ .

Due to div u = 0 in Ω , and to u · n = 0 on Γ , the third integral on the left
hand side vanishes. Hence,

(2.7)

1
p
d
d t‖ω‖

p
p + ν 2( 2 p− 3)

p2

∫ ∣∣∇ |ω | p2 ∣∣2 dx
≤
∫
| ∇u | |ω |p dx + ν

∫
Γ
|ω |p− 2 (∂i ωj)ni ωj dΓ ,

where we have used (2.3).
Next we follow the above argument with ω replaced by ζ. By applying the

operator curl to both sides of equation (3.4) one gets, with obvious notation,

(2.8) ∂t ζ − ν∆ ζ + (u · ∇) ζ +
∑

c (Du ) (Dω ) = 0 .

Next, multiply both sides of the above equation by | ζ |p− 2 ζ , integrate in Ω ,
and take into account the Theorem 2.1. An obvious extension of the above
argument gives

(2.9)

1
p
d
d t‖ ζ‖

p
p + ν 2( 2 p− 3)

p2

∫ ∣∣∇ | ζ | p2 ∣∣2 dx ≤ ∫ | ∇u | |∇ω | | ζ |p− 1 dx

+ ν
∫

Γ
| ζ |p− 2 (∂i ζj)ni ζj dΓ .

Finally, by applying the operator curl to the equation (2.8), and by following
devices similar to that used in obtaining (2.9), we get the estimate
(2.10)

1
p
d
d t‖χ‖

p
p + ν 2( 2 p− 3)

p2

∫ ∣∣∇ |χ | p2 ∣∣2 dx ≤∫
( |Du | |D2 ω |+ |D2 u | |Dω | ) |χ |p− 1 dx+ ν

∫
Γ
|χ |p− 2 (∂i χj)ni χj dΓ .

The estimates obtained in this section are not sufficient to extend the Theorem
1.1 to general boundaries. Hence, in order to prove our results, we have to
confine ourselves to flat-boundaries. This is done in the next section. In sec-
tion 4 we comment on the obstacles that prevent us from considering non-flat
boundaries.

3 The 3-D flat-boundary case. Proof of Theo-
rem 1.1.

In this section we consider a cubic domain Q = (]0, 1[)3 , and impose our
boundary conditions only on two opposite faces. On the other faces we assume
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periodicity, as a device to avoid unessential technical difficulties. By working in
this simple context, we concentrate on the basic ideas of proofs. We set

Γ = {x : 0 ≤ x1, x2 ≤ 1 , and x3 = 0 or x3 = 1 } .

The boundary condition (1.5) will be imposed on Γ . The problem is assumed
to be periodic, with period equal to 1, both in the x1 and the x2 directions.

In the flat boundary case, the boundary conditions (1.5) (as well as (1.4))
are simply

(3.1) u3 = ω1 = ω2 = 0 on Γ .

Further, from ω1 = ω2 = 0 on Γ and div ω = 0 it follows that

(3.2) ∂3 ω3 = 0 on Γ .

Proposition 3.1. Assume that ω1 = ω2 = 0 on Γ and div ω = 0 in Ω .
Then

(3.3) (∂i ωj)ni ωj = 0 on Γ .

The result follows by appealing to (3.2) and to n1 = n2 = 0.

Lemma 3.1. Let ω be a vector field in Q such that ω1 = ω2 = 0 on Γ, and
set ζ = curl ω . Then ζ3 = 0 on Γ .

The following lemma was inspired by [41].

Lemma 3.2. Let u be a vector field in Q , and ω = curl u . Assume that
u3 = ω1 = ω2 = 0 on Γ. Then the vector fields (u · ∇)ω and (ω · ∇)u are
normal to Γ.

The proof is left to the reader. Note that ∂3 u1 = ω2 + ∂1 u3 = 0 on Γ , and
similarly for ∂3 u2 .

Lemma 3.3. Assume, in addition to the hypothesis of Lemma 3.2, that ω
satisfies the equation

(3.4) ∂t ω − ν∆ω + (u · ∇)ω − (ω · ∇)u = 0 ,

where ν > 0 . Then
( curl ζ)× n = 0

on Γ , where ζ = curl ω .

Since ω is normal to the boundary, so is ∂t ω . By appealing to Lemma 3.2,
it follows that −∆ω = curl ζ is normal to the boundary.

Proposition 3.2. Under the assumptions of Lemma 3.3 one has

(3.5) (∂i ζj)ni ζj = 0 on Γ .
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The thesis follows from Lemmas 3.1 and 3.3. Note that ∂3 ζ1 = χ2 + ∂1 ζ3 ,
and similarly for ∂3 ζ2 .

Proposition 3.3. Set χ = curl ζ . Under the assumptions of Lemma 3.3 one
has

(3.6) (∂i χj)ni χj = 0 on Γ .

By Lemma 3.3, one has χ× n = 0 . Hence χ1 = χ2 = 0 on Γ . Further, by
appealing to div χ = 0 , it follows that (∂3 χ3)χ3 = 0 .

Lemma 3.4. Let u, ω, ζ, χ be as above. Then, for each non-negative integer k
one has the following norm-equivalence results.

‖ω‖k, p ' ‖u‖k+ 1, p ; ‖ζ‖k, p ' ‖u‖k+ 2, p ; ‖χ‖k, p ' ‖u‖k+ 3, p .

The first claim follows from curl u = ω and div u = 0 in Q , together with
the boundary condition u · n = 0 . The second claim follows from −∆u = ζ
in Q , together with the boundary conditions ∂3 u1 = ∂3 u2 = u3 = 0 . Finally,
the third claim follows from the second claim, by taking into account that
curl ζ = χ and div ζ = 0 in Q , and that ζ · n = 0 on Γ (by Lemma 3.1).

By appealing to equations (3.3), (3.5) and (3.6) one obtains the following
theorem.

Theorem 3.5. If the boundary is flat, the boundary integrals in equations (2.7),
(2.9) and (2.10) vanish.

From the continuous immersion of W 1, 2 in L6 it follows that

(3.7) ‖g ‖p3 p ≤ c ( ‖∇ |g|
p
2 ‖22 + ‖g‖pp ) .

We may use this estimate in equations (2.7), (2.9) and (2.10). From (2.9) and
(3.7), one gets

(3.8)
1
p

d

d t
‖ ζ‖pp + c ν ‖ ζ ‖p3 p ≤

∫
| ∇u | |∇ω | | ζ |p− 1 dx+ c ν ‖ ζ ‖pp ,

where we assume that p > 3
2 . Further, the integral on the right hand side of

(3.8) is bounded by ‖∇u ‖∞ ‖∇ω ‖p ‖ ζ ‖p− 1
p . Since W 1, p ⊂ L∞ , for p > 3 ,

the following result holds.

Theorem 3.6. Assume that p > 3 . Then

(3.9)
1
p

d

d t
‖ ζ‖pp + c ν ‖ ζ ‖p3 p ≤ c ‖ ζ ‖p+ 1

p + c ν ‖ ζ ‖pp .

Similarly, from (2.10) we obtain, if p > 3
2 ,

(3.10)

1
p
d
d t‖χ‖

p
p + c ν ‖χ ‖p3 p ≤∫ (

|Du | |D2 ω |+ |D2 u |2
)
|χ |p− 1 dx+ c ν ‖χ ‖pp .
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Note that, for p > 3
2 , one has ‖Du‖∞ ≤ c ‖Du ‖2, p and

‖ |D2 u|2 ‖p = ‖D2 u ‖22 p ≤ c ‖D3 u‖2p ,

since W 1, p ⊂ L2 p . So, the following result holds.

Theorem 3.7. Assume that p > 3
2 . Then

(3.11)
1
p

d

d t
‖χ‖pp + c ν ‖χ ‖p3 p ≤ c ‖χ ‖p+ 1

p + c ν ‖χ ‖pp .

To avoid an useless dependence on ν, fix a value ν0 and assume that ν ≤ ν0.
Constants c may depend on ν0.

From comparison theorems for ordinary differential equations applied to
(3.11), it follows that ‖χ(t)‖p ≤ y(t) , where y(t) satisfies

(3.12) y′ = c y2 + c y , y(0) = y0 =: ‖χ(0)‖p .

The solution to the above equation is given by

y

1 + y
=

y0

1 + y0
ec t .

Note that y(t) is no-negative, increasing, and goes to ∞ as t goes to T ∗, where
T ∗ is defined by

ec T
∗

=
1 + y0

y0
.

Further, we fix a value T0 ∈ (0, T ∗) . Then y(t) ≤ y(T0) for each t ≤ T0. For
instance, define T0 by

ec T0 =
1
2

( 1 +
1 + y0

y0
) .

It follows that y(T0) = 1 + 2 y0 . Hence

(3.13) ‖χ‖L∞(0, T0;Lp ) ≤ 1 + 2 ‖χ0‖p .

Next, we turn back to the equation (3.11). By integrating it over (0, t), for
t ∈ (0, T0) , and by using (3.13), with a straightforward manipulation we show
that

(3.14) ‖χ‖L∞(0, T0;Lp ) + ν
1
p ‖χ‖Lp(0, T0;L3 p ) ≤ M0 .

The reader may verify that, with the above choice of T0,

Mp
0 ≤ c ‖χ(0)‖pp + c (1 + ‖χ(0)‖p+ 1

p ) .

Denote by N0 positive constants that depend on M0. One has

(3.15) ‖ω‖L∞(0, T0;W 2, p ) + ν
1
p ‖ω‖Lp(0, T0;W 2, 3 p ) ≤ N0 .

Consequently,

(3.16) ‖u‖L∞(0, T0;W 3, p ) + ν
1
p ‖u‖Lp(0, T0;W 3, 3 p ) ≤ N0 .
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From (3.15), it follows that

(3.17) ‖ ν∆ω‖L∞(0, T0;Lp ) ≤ ν N0 .

Further,

(3.18) ‖ (u · ∇)ω ‖L∞(0, T0;W 1, p ) + ‖ (ω · ∇)u ‖L∞(0, T0;W 2, p ) ≤ N0 .

From (3.4), together with the above estimates it follows, in particular, that

(3.19) ‖ ∂t ω‖L∞(0, T0;Lp ) + ‖ ∂t u‖L∞(0, T0;W 1, p ) ≤ N0 .

Since ‖ · ‖s, p ≤ c ‖ · ‖
s
2
2, p ‖ · ‖

1− s
2

0, p , for 0 < s < 2 , it follows from (3.15) and
(3.19), together with

ω(t)− ω(τ) =
∫ t

τ

∂s ω(s) ds ,

that

(3.20) ‖ω‖
C 1− s

2 ([0, T0];W s, p )
≤ c ‖ω‖

s
2
L∞(0, T0;W 2, p ) ‖ ∂t ω‖

1− s
2

L∞(0, T0;Lp ) ≤ N0 .

From the above estimates, together with the uniqueness of the strong solution
to the Euler equations (1.2), (1.3), one obtains the first equation (1.6), and also
the following property

∂t u
ν ⇀ ∂t u in L∞(0, T0; W 1, p) weak− ∗ .

Note that we may pass to the limit directly in equation (3.4), as ν → 0 . The
second equation (1.6) follows by appealing to Ascoli-Arzela’s compact embed-
ding theorem.

Next, we write

∂t ω − ∂t ω
ν + (u− uν ) · ∇ω + uν · ∇ (ω − ων )

+ων · ∇ (uν − u ) + (ων − ω ) · ∇u = − ν∆ων .

From the previous results it follows that the non-linear terms on the left hand
side of the above equation go to zero in C([0, T0]; W s, p) , as ν goes to zero, for
any s < 1 . In view of (3.17), equation (1.8) follows. In particular, the above
non-linear terms go to zero in C([0, T0]; L3 p) , if p ≥ 2. On the other hand,
from (3.15), it follows that

(3.21) ‖ ν∆ω‖Lp(0, T0;L 3 p ) ≤ N0 ν
1
p′ .

Hence (1.8) holds.

If in the above argument we appeal to (3.9) instead of (3.11), we obtain
similar results, where W 3, p is replaced by W 2, p, and s < 2 . In this case it
must be p > 3 everywhere.
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4 On the 3-D non-flat boundary case.

The obstacle that prevents us from extending to non-flat boundaries the proof
of Theorem 1.1 is that, in such a more general case, Lemma 3.2 does not hold.
This lemma was used to show that the boundary integrals vanish. In this
section we show an attempt to overcome this obstacle, by trying to control the
boundary integrals. However, this device seems not sufficient. Nevertheless,
it looks interesting by itself, and we would like to present it to the reader.
Basically, it allows to lower the highest order of the derivatives appearing in the
boundary integrals.

Lemma 4.1. Let the boundary Γ be a surface of class Ck, k ≥ 2 . Then, at
any point x0 ∈ Γ , the component of (u · ∇)ω − (ω · ∇)u in any tangential
direction τ has the form

(4.1) ( (u · ∇)ω − (ω · ∇)u ) · τ =
∑

ai j(x)ui ωj ,

where the coefficients ai j are of class Ck−2 on Γ . Consequently,

(4.2) ν curl ζ · τ = − ν ( ∆ω ) · τ =
∑

ai j(x)ui ωj .

The straightforward proof is left to the reader. This lemma allows us to
estimate the boundary integrals for each positive ν . However, we are interested
in letting ν → 0. To fix ideas, let us consider (2.9). By appealing to (2.4), and
by using arguments similar to that leading to (3.8), we get

(4.3)

1
p
d
d t‖ ζ‖

p
p + ν 2( 2 p− 3)

p2

∫ ∣∣∇ | ζ | p2 ∣∣2 dx
≤
∫
| ∇u | |∇ω | | ζ |p− 1 dx

+ ν
∫

Γ
| ζ |p− 2 (curl ζ) × n · ζ dΓ

− ν
∫

Γ
| ζ |p− 2 (∂j ni) ζi ζj dΓ ,

By (4.2), we find, with obvious notation,

(4.4) ν

∫
Γ

| ζ |p− 2 (curl ζ) × n · ζ dΓ ≤ c

∫
Γ

| ζ |p− 1
∑
|a(x)| |u | |ω | dΓ .

In this way we drop the higher order derivatives in the boundary integral. How-
ever this is obtained at the cost of losing multiplication by ν. Actually, for each
fixed positive ν we can estimate the boundary integral by the two ν− terms that
appear in the left hand side of (4.3). However, if ν goes to zero, the coefficient
ν in the boundary integrals looks crucial. A similar argument can be applied to
(2.10) instead of (2.9).

We end this section by showing that, in the non-flat boundary case, the
tangential component of (u · ∇)ω − (ω · ∇)u is not necessarily equal to zero,
which is the thesis of Lemma 3.2. We show a quite simple counter-example
due to C.R. Grisanti. For convenience we use here the notation (x, y, z) . Let
be Ω =

{
(x, y, z) : z < −x2

}
. The vector field (2x, 0, 1 ) is normal to the
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boundary and the vector fields τ1 = (− 1, 0, 2x) and τ2 = (0, 1, 0) are inde-
pendent, and tangential to the boundary. Note that the above vector fields are
not normalized. Define

u = e− 2 z (1, − 4x y, − 2x) .

One has u · n = ω × n = 0 on Γ; moreover div u = 0 and

curl u = ω = − 4 e− 2 z (2x y, 0, y)

on Ω. Furthermore,

[ (u · ∇)ω ] · τ1 = − [ (ω · ∇)u ] · τ1 = 8 y e4 x2
.

Hence, [ (u · ∇)ω − (ω · ∇)u ] · τ1 does not vanish on Γ , for y 6= 0.

Remark 4.1. Note that the normal derivative of the tangential component
of the above vector field u does not vanish on the boundary. For instance,
∂z (u · τ1 ) = − 2 at the origin. This fact is at odds with the statement of
proposition 4.1 in reference [41].

5 Non-flat boundary in the 2-D case.

In the 2-D case the equation (3.4) is replaced by

(5.1) ∂t ω − ν∆ω + u · ∇ω = 0 ,

where the vector field ω = curl u , orthogonal to the plane motion, is identified
with the scalar ω = ∂1 u2 − ∂2 u1 . Similarly, ζ is a vector lying in the plane,
and χ a scalar. In the 2-D case, the boundary conditions corresponding to (1.5)
are simply given by

(5.2) u · n = 0 , ω = 0 .

The next result corresponds to Proposition 3.2.

Proposition 5.1. Let u be a vector field in Ω, and let ω = curl u . Assume
that (5.1) holds on Γ. Then the vector field u · ∇ω vanishes on Γ.

The result follows from the fact that u · ∇ω is a tangential derivative of ω.

Proposition 5.2. Assume, in addition to the set up in Proposition 5.1, that
ω satisfies the equation (5.1), where ν > 0 . Then

χ = curl ζ = 0

on Γ , where ζ = curl ω .

It thus follows that the boundary integral in equation (2.10) vanishes, since
in 2-D it is given by ∫

Γ

|χ |p− 2 (∂i χ)ni χdΓ .

12



So, in the 2-D case, (2.10) reads

(5.3)

1
p
d
d t‖χ‖

p
p + ν 2( 2 p− 3)

p2

∫ ∣∣∇ |χ | p2 ∣∣2 dx ≤∫
( |Du | |D2 ω |+ |D2 u | |Dω | ) |χ |p− 1 dx .

Since W 1, 2
0 ⊂ Lq , for each finite q, it readily follows that∫ ∣∣∇ |χ | p2 ∣∣2 dx ≥ cq ‖χ ‖pq .

We have take into account that p q
2 is arbitrarily large. Hence the following

result holds.

Theorem 5.1. Let Ω be a regular, bounded, simply-connected, open set in R2 .
Then, for each p > 3

2 and each finite q , one has

(5.4)

1
p
d
d t‖χ‖

p
p + c ν

∫ ∣∣∇ |χ | p2 ∣∣2 dx+ cq ν ‖χ ‖pq ≤∫
( |Du | |D2 ω |+ |D2 u | |Dω | ) |χ |p− 1 dx .

Actually, we may replace |D2 ω | by |D ζ | and |D2 u | by | ζ | . In analogy
to the 3-D flat boundary case, the estimate (5.4) leads to corresponding conver-
gence results, local in time. Actually, the results can be proved globally in time
by following ideas already known in considering 2-D problems. This is left to
the interested reader.
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