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Abstract—We establish the fundamental limits of lossless ana-
log compression by considering the recovery of arbitrary random
vectors x € R™ from the noiseless linear measurements y = Ax
with measurement matrix A € R"*™. Our theory is inspired
by the groundbreaking work of Wu and Verdi (2010) on almost
lossless analog compression, but applies to the nonasymptotic, i.e.,
fixed-m case, and considers zero error probability. Specifically,
our achievability result states that, for Lebesgue-almost all A,
the random vector x can be recovered with zero error probability
provided that n > K (x), where K (x) is given by the infimum of
the lower modified Minkowski dimensions over all support sets I/
of x (i.e., sets I/ C R™ with P[x € /] = 1). We then particularize
this achievability result to the class of s-rectifiable random vectors
as introduced in Koliander ef al. (2016); these are random vectors
of absolutely continuous distribution—with respect to the s-
dimensional Hausdorff measure—supported on countable unions
of s-dimensional C*-submanifolds of R™. Countable unions of
C'-submanifolds include essentially all signal models used in
the compressed sensing literature such as the standard union of
subspaces model underlying much of compressed sensing theory
and spectrum-blind sampling, smooth manifolds, block-sparsity,
and low-rank matrices as considered in the matrix completion
problem. Specifically, we prove that, for Lebesgue-almost all A,
s-rectifiable random vectors x can be recovered with zero error
probability from n > s linear measurements. This threshold is,
however, found not to be tight as exemplified by the construction
of an s-rectifiable random vector that can be recovered with zero
error probability from n < s linear measurements. Motivated by
this observation, we introduce the new class of s-analytic random
vectors, which admit a strong converse in the sense of n > s being
necessary for recovery with probability of error smaller than one.
The central conceptual tools in the development of our theory
are geometric measure theory and the theory of real analytic
functions.

I. INTRODUCTION

Compressed sensing [2]-[6] deals with the recovery of
unknown sparse vectors € R™ from a small (relative to m)
number, n, of linear measurements of the form y = Ax, where
A € R™™ jis the measurement matrix.! Known recovery
guarantees can be categorized as deterministic, probabilistic,
and information-theoretic. The literature in all three categories
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I'Throughout the paper, we assume that n < m.

is abundant and the ensuing overview is hence necessarily
highly incomplete, yet representative.

Deterministic results, such as those in [2], [6]-[10], are
uniform in the sense of applying to all s-sparse vectors
x € R™, ie. vectors x that are supported on a finite
union of s-dimensional linear subspaces of R™, and for a
fixed measurement matrix A. Typical guarantees say that s-
sparse vectors & can be recovered through convex optimization
algorithms or greedy algorithms provided that [11, Chapter
3] s < 3(1+ 1/p), where p denotes the coherence of A,
i.e., the largest (in absolute value) inner product of any two
different columns of A. The Welch bound [12] implies that
the minimum number of linear measurements, n, required for
uniform recovery is of order s2, a result known as the “square-
root bottleneck™ all coherence-based recovery thresholds suffer
from.

Probabilistic results are either based on random measure-
ment matrices A ([3]-[5], [13]-[16]) or deterministic A and
random s-sparse vectors x ([14], [15]), and typically state
that s-sparse vectors can be recovered, again using convex
optimization algorithms or greedy algorithms, with high prob-
ability, provided that n is of order slogm.

An information-theoretic framework for compressed sens-
ing, fashioned as an almost lossless analog compression prob-
lem, was developed by Wu and Verdd [17], [18]. Specif-
ically, [17] derives asymptotic (in m) achievability results
and converses for linear encoders and measurable decoders,
measurable encoders and Lipschitz continuous decoders, and
continuous encoders and continuous decoders. For the partic-
ular case of linear encoders and measurable decoders, [17]
shows that, asymptotically in m, for Lebesgue almost all
(a.a.) measurement matrices A, the random vector x can
be recovered with arbitrarily small probability of error from
n = |Rm| linear measurements, provided that R > Rgp,
where Rp denotes the Minkowski dimension compression
rate [17, Definition 10] of the random process generating X.
For the special case of x with independent and identically
distributed (i.i.d.) discrete-continuous mixture entries, a match-
ing converse exists. Discrete-continuous mixture distributions
ppc 4 (1 — p)ud are relevant as they mimic sparse vectors for
large m. In particular, if the discrete part u< is a Dirac measure
at 0, then the nonzero entries of x can be generated only by
the continuous part ¢, and the fraction of nonzero entries in
x converges—in probability—to p as m tends to infinity. A
nonasymptotic, i.e., fixed-m, statement in [17] says that a.a.
(with respect to a o-finite Borel measure on R™) s-sparse
random vectors can be recovered with zero error probability
provided that n > s. Again, this result holds for Lebesgue
a.a. measurement matrices A € R"*™. A corresponding
converse does not seem to be available. For recent work on



the connection between lossy data compression of stochastic
processes under distortion constraints and mean dimension
theory for dynamical systems, we refer the interested reader
to [19]-[21].

Contributions. We establish the fundamental limits of loss-
less, i.e., zero error probability, analog compression in the
nonasymptotic, i.e., fixed-m, regime for arbitrary random
vectors x € R™. Specifically, we show that x can be recovered
with zero error probability provided that n > K(x), with
K (x) given by the infimum of the lower modified Minkowski
dimensions over all support sets U/ of x, i.e., all sets f C R™
with P[x € U] = 1. This statement holds for Lebesgue-a.a.
measurement matrices. Lower modified Minkowski dimension
vastly generalizes the notion of s-sparsity, and allows for
arbitrary support sets that are not necessarily finite unions of
s-dimensional linear subspaces. For s-sparse vectors, we get
the recovery guarantee n > s showing that our information-
theoretic thresholds suffer neither from the square-root bottle-
neck [12] nor from a log m-factor [14], [15]. We hasten to add,
however, that we do not specify explicit decoders that achieve
these thresholds, rather we provide existence results absent
computational considerations. The central conceptual element
in the proof of our achievability result is the probabilistic null-
space property first reported in [22]. We emphasize that it
is the usage of modified Minkowski dimension, as opposed
to Minkowski dimension [17], [22], that allows us to obtain
achievability results for zero error probability. The asymptotic
achievability result for linear encoders in [17] can be recovered
in our framework.

We particularize our achievability result to s-rectifiable
random vectors x as introduced in [23]; these are random
vectors supported on countable unions of s-dimensional C'*-
submanifolds of R™ and of absolutely continuous—with
respect to s-dimensional Hausdorff measure—distribution.
Countable unions of C!-submanifolds include numerous sig-
nal models prevalent in the compressed sensing literature,
namely, the standard union of subspaces model underlying
much of compressed sensing theory [24], [25] and spectrum-
blind sampling [26], [27], smooth manifolds [28], block-
sparsity [29]-[31], and low-rank matrices as considered in the
matrix completion problem [32]—[34]. Our achievability result
shows that s-rectifiable random vectors can be recovered with
zero error probability provided that n > s. Again, this state-
ment holds for Lebesgue-a.a. measurement matrices. Absolute
continuity with respect to s-dimensional Hausdorff measure
is a regularity condition ensuring that the distribution is not
too concentrated; in particular, sets of Hausdorff dimension
t < s are guaranteed to carry zero probability mass. One
would therefore expect n > s to be necessary for zero error
recovery of s-rectifiable random vectors. It turns out, however,
that, perhaps surprisingly, this is not the case in general.
An example elucidating this phenomenon constructs a set
G C R? of positive 2-dimensional Hausdorff measure that
can be compressed linearly in a one-to-one fashion into R.
This will then be seen to lead to the statement that every 2-
rectifiable random vector of distribution absolutely continuous
with respect to 2-dimensional Hausdorff measure restricted
to G can be recovered with zero error probability from a

single linear measurement. What renders this result surprising
is that all this is possible even though G contains the image
of a Borel set in R? of positive Lebesgue measure under a
C*>°-embedding. The picture changes completely when the
embedding is real analytic. Specifically, we show that if a set
U C R™ contains the real analytic embedding of a Borel set
in R® of positive Lebesgue measure, it cannot be compressed
linearly (in fact, not even through a nonlinear real analytic
mapping) in a one-to-one fashion into R™ with n < s. This
leads to the new concept of s-analytic random vectors, which
allows a strong converse in the sense of n > s being necessary
for recovery of x with probability of error smaller than one.
The qualifier “strong” refers to the fact that recovery from
n < s linear measurements is not possible even if we allow
an arbitrary positive error probability strictly smaller than one.
The only strong converse available in the literature applies
to random vectors x with i.i.d. discrete-continuous mixture
entries [17].

Organization of the paper. In Section II, we present our
achievability results, with the central statement in Theorem
IL.1. Section III particularizes these results to s-rectifiable
random vectors, and presents an example of a 2-rectifiable
random vector that can be recovered from a single linear
measurement with zero error probability. In Section IV, we
introduce and characterize the new class of s-analytic random
vectors and we derive a corresponding strong converse, stated
in Theorem IV.1. Sections V-VII contain the proofs of the
main technical results stated in Sections II-IV. Appendices
A-G contain proofs of further technical results stated in the
main body of the paper. In Appendices H-K, we summarize
concepts and basic results from (geometric) measure theory,
the theory of set-valued functions, sequences of functions
in several variables, and real analytic mappings, all needed
throughout the paper. The reader not familiar with these results
is advised to consult the corresponding appendices before
studying the proofs of our main results. These appendices
also contain new results, which are highly specific and would
disrupt the flow of the paper if presented in the main body.

Notation. We use capital boldface roman letters A, B, ... to
denote deterministic matrices and lower-case boldface roman
letters a,b,... to designate deterministic vectors. Random
matrices and vectors are set in sans-serif font, e.g., A and
x. The m x m identity matrix is denoted by I,,. We write
rank(A) and ker(A) for the rank and the kernel of A,
respectively. The superscript | stands for transposition. The
i-th unit vector is denoted by e;. For a vector x € R™,
lz]]2 = V&Tx is its Buclidean norm and ||z||o denotes the
number of nonzero entries of x. For the set A, we write
card(A) for its cardinality, A for its closure, 24 for its power
set, and 1 4 for the indicator function on A. With A C R™
and B C R", we let A x B = {(a,b):a € Ab € B} and
A@B={a®b:ac A bec B}, where ® denotes the Kro-
necker product (see [35, Definition 4.2.1]). For A, B C R™,
we write A C B to express strict inclusion according to A C B
with A# Bandwelet A-B={a—-b:ac A bec B}. We
set R = RU {—oc, 00}. For the Euclidean space (R, || - ||2),
we designate the open ball of radius p centered at u € R*
by Bi(u, p). We write .(X) for a general o-algebra on X,



P (X) for the Borel o-algebra on a topological space X, and
Z(R™) for the Lebesgue o-algebra on R™. The product o-
algebra of .(X) and . (}) is denoted by .7 (X)®.%()). For
measures 1 and v on the same measurable space, we denote
absolute continuity of p with respect to v by u < v. We
write X v for the product measure of 1 and v. Throughout we
assume, without loss of generality (w.l.0.g.), that a measure on
a measurable space is defined on all subsets of the measurable
space (see [36, Remark 1.2.6]). The Lebesgue measure on
R* and R¥*! is designated as A* and A\**!, respectively.
The distribution of a random vector x is denoted by . If
f: R¥ — R is differentiable, we write Df (v) € R for its
differential at v € R* and define the min{k, /}-dimensional
Jacobian Jf(v) at v € R* by

Jf(v) = Vdet((Df(v))TDf(v)) ifl>k
~ WAet(Df ) (D)) else.

For an open set 4 C R*, a differentiable mapping f: U — R!,
where | > k, is called an immersion if Jf(v) > 0 for all v €
U. A one-to-one immersion is referred to as an embedding.
For a mapping f, we write f = 0 if it is identically zero
and f # O otherwise. For f: U4 — V and g: V — W, the
composition go f: U — W is defined as (go f)(x) = g(f(z))
forall z € Y. For f: U — V and A C U, f|4 denotes the
restriction of f to A. For f: U4 — V and B C V, we set
[71B)={zelU: f(x) € B}.

D

II. ACHIEVABILITY

In classical compressed sensing theory [3]-[6], one typically
deals with the recovery of s-sparse vectors & € R™, i.e.,
vectors @ that are supported on a finite union of s-dimensional
linear subspaces of R™. The purpose of this paper is the
development of a comprehensive theory of signal recovery in
the sense of allowing arbitrary support sets I/, which are not
necessarily unions of (a finite number of) linear subspaces
of R™. Formalizing this idea requires a suitable dimension
measure for general nonempty sets. There is a rich variety
of dimension measures available in the literature [37]-[39].
Our choice will be guided by the requirement of information-
theoretic operational significance. Specifically, the dimension
measure should allow the formulation of nonasymptotic, i.e.,
fixed-m, achievability results with zero error probability. The
modified Minkowski dimension will turn out to meet these
requirements.

We first recall the definitions of Minkowski dimension and
modified Minkowski dimension, compare the two concepts,
and state the basic properties of modified Minkowski dimen-
sion needed in the remainder of the paper.

Definition IL.1. (Minkowski dimension?) [38, Equivalent def-
initions 2.1] For &/ C R™ nonempty, the lower and upper
Minkowski dimension of ¢/ is defined as

log N,
— liminf Lul(p) )
log 5

dimp ()

p—0

2Minkowski dimension is sometimes also referred to as box-counting
dimension, which is the origin of the subscript B in the notation dimp(-)
used henceforth.

and
. log N,
dimp (M) = limsup L”l(p), 3)
p—0 log »

respectively, where

Ny(p) = min{k eN:UC U B (ui,p), u; € Rm} ()
ie€{l,....k}
is the covering number of U for radius p. If dimp(U) =
dimp (i), this common value, denoted by dimg (i), is the
Minkowski dimension of U/.

Definition IL2. (Modified Minkowski dimension) [38, p.
37] For 4 C R™ nonempty, the lower and upper modified
Minkowski dimension of I/ is defined as

dimy5(U) = inf{supdimB(Ui) U C UUZ} )]
ieN ieN

and

diimMB(U) = inf{supdirng(?/{i) U - U L{l}, (6)
ieN o
respectively, where in (5) and (6) the infima are over all
possible coverings {U;};cn of U by nonempty bounded sets
U;. TIf dimy;p (U) = dimyp (U), this common value, denoted
by dimyg (i), is the modified Minkowski dimension of /.

The main properties of modified Minkowski dimension are
summarized in Lemma H.15. In particular,

dimyp(-) < dimg(-) (7)
and
dimyp(+) < dimg(-). ®)

Both lower and upper modified Minkowski dimension have
the advantage of being countably stable, a key property we
will use frequently. In contrast, upper Minkowski dimension
is only finitely stable, and lower Minkowski dimension is not
even finitely stable (see [38, p. 34]). For example, all countable
subsets of R™ have modified Minkowski dimension equal to
zero (the Minkowski dimension of a single point in R™ equals
zero), but there exist infinitely countable sets with nonzero
Minkowski dimension:

Example II.1. [38, Example 2.7] Let 7 = {0,1/2,1/3,...}.
Then, dimyp(F) =0 < dimp(F) = 1/2.

Minkowski dimension and modified Minkowski dimen-
sion also behave differently for unbounded sets. Specifically,
by monotonicity of (upper) modified Minkowski dimension,
dimyp(A) < dimvp(A) < dimyg(R™) = m for all
A C R™, in particular also for unbounded sets, whereas
dimp(A) = dimp(A) = oo for all unbounded sets A as a
consequence of N4(p) = oo for all p € (0,00). Working
with lower modified Minkowski dimension will allow us to
consider arbitrary random vectors, regardless of whether they
admit bounded support sets or not.

The following example shows that the modified Minkowski
dimension agrees with the sparsity notion used in classical
compressed sensing theory.



Example IL.2. For 7 finite or countable infinite, let 7;, i € Z,
be linear subspaces with their Euclidean dimensions dim(7;)
satisfying

max dim(7;) = s, 9)

and consider the union of subspaces

u=\JT.

i€l

(10)

As every linear subspace is a smooth submanifold of R™,
it follows from Properties ii) and vi) of Lemma H.15 that
dimyp(U) = s. In the union of subspaces model, prevalent
in compressed sensing theory [3]-[6], |Z| = (") and the
subspaces 7; correspond to different sparsity patterns, each
of cardinality equal to the sparsity level s.

The aim of the present paper is to develop a theory for
lossless analog compression of arbitrary random vectors x €
R™. An obvious choice for the stochastic equivalent of the
sparsity level s is the stochastic sparsity level S(x) defined as

k
S(x) :min{s 3T, Tk WithPlxe Uﬁ] =1 }’
= (11D

where every 7; is a linear subspace of R of dimension
dim(7;) < s and k € N. This definition is, however, specific
to the (finite) union of linear subspaces structure. The theory
we develop here requires a more general notion of description
complexity, which we define in terms of the lower modified
Minkowski dimension according to

K(x) = inf{dimyz () : U CR™ Px eU] =1}. (12)

Sets satisfying P[x € U] = 1 are hereafter referred to
as support sets of x. While the definition of S(x) involves
minimization of Euclidean dimensions of linear subspaces,
K (x) is defined by minimizing lower modified Minkowski
dimensions of general support sets. Definitions (11) and (12)
imply directly that K(x) < S(x) for all random vectors
x € R (see Example I1.2). We will see in Section III that
this inequality can actually be strict.

Next, we show that application of a locally Lipschitz map-
ping cannot increase a random vector’s description complexity.
This result will allow us to construct random vectors with
low description complexity out of existing ones simply by
applying locally Lipschitz mappings. The formal statement is
as follows.

Lemma IL1. Let x € R* and f: R¥ — R™ be locally
Lipschitz. Then, K(f(x)) < K(x).

Proof.
K(f(x)) (13)
= inf{dimy;z(V) : V CR™, P[f(x) e V] =1}  (14)
= inf{dimyp(f(U)) : U CR", Pxet] =1}  (15)
< inf{dimyp(U) : U CR* Plx € U] = 1} (16)
= K(x), (17)

where (16) follows from Property vii) of Lemma H.15. [

When the mapping f is invertible and both f and f~!
are locally Lipschitz, the description complexity remains un-
changed:

Corollary IL.1. Let x € R™ and consider an invertible
mapping f: R™ — R™. Suppose that f and f~! are both
locally Lipschitz. Then, K (x) = K(f(x)).

Proof. K(x) = K((f~' o f)(x)) < K(f(x)) < K(x), where
we applied Lemma II.1 twice. O

As a consequence of Corollary II.1, the description com-
plexity K (x) is invariant under a basis change. Our main
achievability result can now be formulated as follows.

Theorem IL.1. (Achievability) For x € R™, n > K(x) is
sufficient for the existence of a Borel measurable mapping
g: R™*™ x R™ — R™, referred to as (measurable) decoder,
satisfying

(18)
Proof. See Section V. O

Plg(A, Ax) #x] =0 for \"*™-aa. A € R"*™.

Theorem II.1 generalizes the achievability result for linear
encoders in [17] in the sense of being nonasymptotic (i.e., it
applies for finite m) and guaranteeing zero error probability.

The central conceptual element in the proof of Theorem II.1
is the following probabilistic null-space property for arbitrary
(possibly unbounded) nonempty sets, first reported in [22] for
bounded sets and expressed in terms of lower Minkowski
dimension. If the lower modified Minkowski dimension of
a nonempty set U is smaller than n, then, for A"*"™-a.a.
measurement matrices A € R"*™, the set U intersects the
(m — n)-dimensional kernel of A at most trivially. What is
remarkable here is that the notions of Euclidean dimension
(for the kernel of the linear mapping induced by A) and of
lower modified Minkowski dimension (for I/) are compatible.
The formal statement is as follows.

Proposition IL1. Let U C
dimy ;g (U) < n. Then,

ker(A) N U\{0}) =0 for A"*™-aa. A €R"™™.

R™ be nonempty with

19)

Proof. By definition of lower modified Minkowski dimension,
there exists a covering {U; };en of U by nonempty compact
sets U; with dimp(U;) < n for all ¢+ € N. The countable
subadditivity of Lebesgue measure now implies that

)\"X’”{AER"X’” : ker(A) N (U\{0}) #@} (20)

<Y OAmLA € R ker(A) N (U \{0}) # 0}, (21)
i€eN

The proof is concluded by noting that [22, Proposition 1] with

dimp(U;) < n for all ¢ € N implies that every term in the
sum of (21) equals zero. O]

We close this section by elucidating the level of generality of
our theory through particularization of the achievability result
Theorem II.1 to random vectors supported on attractor sets of
systems of contractions as defined below. The formal definition



is as follows. Let A C R™ be closed. For i = 1,...,k,
consider s;: A — A and ¢; € (0,1) such that

Isi(u) — s;(v)]|2 < ¢i]|u —vl||2 for all w,v € A.  (22)

Such mappings are called contractions. By [38, Theorem 9.1],
there exists a unique compact set  C A, referred to as an
attractor set, such that

k
K= si(K). (23)
i=1
Thanks to [38, Proposition 9.6], dimp(K) < d, where d > 0
is the unique solution of

(24)

If, in addition, KC satisfies the open set condition [38, Equation
(9.12)], then dimp(K) = d by [38, Theorem 9.3]. The
middle-third Cantor set [38, Example 9.1], Sierpiriski gaskets
[38, Example 9.4], and the modified von Koch curves [38,
Example 9.5] are all attractor sets (with their underlying
contractions) that meet the open set condition [38, Chapter
9]. As dimy;(K) < dimp(K) by Property iv) of Lemma
H.15, every x € R™ such that P[x € K] = 1 has description
complexity K(x) < d (see (12)). For an excellent in-depth
treatment of attractor sets of systems of contractions, the
interested reader is referred to [38, Chapter 9]. We finally note
that for self-similar distributions [17, Section 3.E] on attractor
sets /C satisfying the open set condition [38, Equation (9.12)],
an achievability result in terms of information dimension was
reported in [17, Theorem 7].

ITI. RECTIFIABLE SETS AND RECTIFIABLE RANDOM
VECTORS

The signal models employed in classical compressed sens-
ing [3], [4], model-based compressed sensing [25], and block-
sparsity [29]-[31] all fall under the rubric of finite unions
of linear subspaces. More general prevalent signal models
in the theory of sparse signal recovery include finite unions
of smooth manifolds, either in explicit form as in [28] or
implicitly in the context of low-rank matrix recovery [32]-
[34]. All these models are subsumed by the countable unions
of C''-manifolds structure, formalized next using the notion of
rectifiable sets. We start with the definition of rectifiable sets.

Definition IIL.1. (Rectifiable sets) [40, Definition 3.2.14] Let
s € N, and consider a measure y on R™. A nonempty set
UCR™ is
i) s-rectifiable if there exist a compact set A C R® and a
Lipschitz mapping ¢: A — R™ such that i = p(A),
ii) countably s-rectifiable if it is the countable union of s-
rectifiable sets,
iii) countably (u, s)-rectifiable if it is y-measurable and there
exists a countably s-rectifiable set V such that u(U\V) =
0.
iv) (u, s)-rectifiable if it is countably (u, s)-rectifiable and
uw(U) < oo.

Our definitions of s-rectifiability and countably s-
rectifiability differ from those of [40, Definition 3.2.14] as
we require the s-rectifiable set to be the Lipschitz image of
a compact rather than a bounded set. The more restrictive
definitions i) and ii) above have the advantage of s-rectifiable
sets and countably s-rectifiable sets being guaranteed to be
Borel. (This holds since the image of a compact set under
a continuous mapping is a compact set, and a countable
union of compact sets is Borel.) We note however that, by
Lemma H.2, our definitions of (u, s)-rectifiable and countably
(1, s)-rectifiable (see Definition IIL.1, Items iii) and iv)) are
nevertheless equivalent to those in [40, Definition 3.2.14].

In what follows, we only need Items iii) and iv) in Definition
II.1 for the specific case of u = 7 (see Definition H.3),
in which measurability of I/ is guaranteed for all Borel sets.
Therefore, s-rectifiable sets and countably s-rectifiable sets are
also #°-measurable, which leads to the following chain of
implications:

U is s-rectifiable = U is countably s-rectifiable = I/ is

countably (7%, s)-rectifiable.

The following result collects properties of (countably) s-
rectifiable sets for later use.

Lemma IIIL.1.

i) If Y C R™ is s-rectifiable, then it is t-rectifiable for all
t € N with ¢ > s.
ii) For locally Lipschitz ¢;, 7 € N, the set

v=Jn®)

1€EN

(25)

is countably s-rectifiable.
iii) If 4 C R™ is countably s-rectifiable and V C R" is
countably t-rectifiable, then

W={u" v :ucld,vcV} CR™"  (26)

is countably (s + ¢)-rectifiable.

iv) Every s-dimensional C'-submanifold [36, Definition
5.3.1] of R™ 1is countably s-rectifiable. In particular,
every s-dimensional affine subspace of R™ is countably
s-rectifiable.

v) For A; countably s;-rectifiable and s; < s, i € N, the set

A= U A; 27)
i€N
is countably s-rectifiable.

Proof. See Appendix A. O

Countable unions of s-dimensional C'!'-submanifolds of R™
are countably s-rectifiable by Properties iv) and v) of Lemma
III.1. For countably (¢, s)-rectifiable sets we even get an
equivalence result, namely:

Theorem III.1. [40, Theorem 3.2.29] A set &/ C R™ is
countably (7%, s)-rectifiable if and only if J#%-a.a. of U
is contained in the countable union of s-dimensional C'!-
submanifolds of R™.

We now show that the upper modified Minkowski dimension
of a countably s-rectifiable set is upper-bounded by s. This



will allow us to conclude that, for a random vector x admitting
a countably s-rectifiable support set, K (x) < s. The formal
statement is as follows.

Llnma IL2. If 4 C R™ is countably s-rectifiable, then
dimMB(U) S S.

Proof. Suppose that &/ C R™ is countably s-rectifiable. Then,
Definition III.1 implies that there exist nonempty compact sets
A; C R® and Lipschitz mappings ¢;: A; — R™, with ¢ € N,
such that

U= ei(A). (28)

i€eN

Thus,
diiInMB (U) = sug ﬁMB(@i (.AZ)) (29)
ic

< sup dimyp (A;) (30)

ieN
< sup dimys(R?) (31)

ieN
=s, (32)

where the individual steps follow from properties of Lemma
H.15, namely, (29) is by Property vi), (30) by Property v),
(31) by Property iii), and (32) by Property ii). O

We next investigate the effect of locally Lipschitz mappings
on (countably) s-rectifiable and countably (7%, s)-rectifiable
sets.

Lemma IIL.3. Let &/ C R™, and consider a locally Lipschitz
R > R™ IfU is
i) s-rectifiable, then f() is s-rectifiable,
ii) countably s-rectifiable, then f(I/) is countably s-
rectifiable,
iii) countably (¢, s)-rectifiable and Borel, then f(U) =
AU B, where A is a countably (7%, s)-rectifiable Borel
set and J27%(B) = 0.

Proof. See Appendix B. O

A slightly weaker version of this statement, valid for Lips-
chitz mappings, was derived previously in [23, Lemma 4].
We are now ready to define rectifiable random vectors.

Definition ITLI.2. (Rectifiable random vectors) [23, Definition
11] A random vector x € R™ is s-rectifiable if there ex-
ists a countably (%, s)-rectifiable set &/ C R™ such that
tx < J€%|y. The corresponding value s is the rectifiability
parameter.

It turns out that an s-rectifiable random vector x always
admits a countably s-rectifiable support set and, therefore, has
description complexity K (x) < s by Lemma III.2. The formal
statement is as follows.

Lemma IIl.4. Every s-rectifiable random vector x € R™
admits a countably s-rectifiable support set. In particular,
every s-rectifiable random vector x has description complexity
K(x) <s.

Proof. Suppose that x is s-rectifiable. Then, there exists a
countably (J€7,s)-rectifiable set &/ C R™ such that py <

A%y As U is countably (2%, s)-rectifiable, by Definition
III.1 there exists a countably s-rectifiable set V C R™ such
that s2°(U \V) = 0. Set W = (U\V) UV and note
that 4 C W implies J¢%|,, < #°|y by monotonicity
of J#°%. Moreover, from the definition of W, the countable
additivity of 7%, and s°(U \V) = 0, it follows that
%S|W = %Sh;. Thus, %sh,{ < C%ﬂsh}’ and puy < t%ﬂsh,{
implies p1x < J°|y. Therefore, as 7%y (R™\V) = 0, we
can conclude that P[x € R™ \ V] = 0, which is equivalent
to P[x € V] = 1, that is, the countably s-rectifiable set V
is a support set of x. The proof is now concluded by noting
that K (x) < dimy(V) < s, where the latter inequality is by
Lemma III.2. O

In light of Theorem III.1, an s-rectifiable random vector x €
R™ is supported on a countable union of s-dimensional C'-
submanifolds of R™. Absolute continuity of p with respect to
the s-dimensional Hausdorff measure is a regularity condition
guaranteeing that x cannot have positive probability measure
on sets of Hausdorff dimension ¢ < s (see Property i) of
Lemma H.3). This regularity condition together with the sharp
transition behavior of Hausdorff measures (see Figure 3 in
Appendix H) implies uniqueness of the rectifiability parameter.
The corresponding formal statement is as follows.

Lemma IILS. If x € R™ is both s and ¢-rectifiable, then
s=1t.

Proof. See Appendix C. O

We are now ready to particularize our achievability result
to s-rectifiable random vectors.

Corollary III.1. For s-rectifiable x € R™, n > s is sufficient
for the existence of a Borel measurable mapping g: R™*" x
R™ — R™ satisfying

Plg(A, Ax) #x] =0 for \"*™-aa. A € R"*™. (33)

Proof. Follows from the general achievability result Theorem
II.1 and Lemma IIT.4. [

Again, Corollary III.1 is nonasymptotic (i.e., it applies
for finite m) and guarantees zero error probability. Next,
we present three examples of s-rectifiable random vectors
aimed at illustrating the relationship between the rectifiability
parameter and the stochastic sparsity level defined in (11).
Specifically, in the first example, the random vector’s rectifi-
ability parameter will be shown to agree with its stochastic
sparsity level. The second example constructs an (r + ¢ — 1)-
rectifiable random vector of stochastic sparsity level S(x) = r¢
for general r,t. In this case, the stochastic sparsity level rt
can be much larger than the rectifiability parameter r +¢ — 1,
and hence Corollary III.1 implies that this random vector can
be recovered with zero error probability from a number of
linear measurements that is much smaller than its stochastic
sparsity level. The third example constructs a random vector
that is uniformly distributed on a manifold, namely, the unit
circle. In this case, the random vector’s rectifiability parameter
equals the dimension of the manifold, whereas its stochastic
sparsity level equals the dimension of the ambient space, i.e.,
the random vector is not sparse at all.



Example IIL.1. Suppose that x = (ex, ... ex, )z € R™, where
z € R® with 1, < X* and k = (k... ko))" € {1,...,m}*
satisfies k; < -+ < ky. We first show that S(x) = s. To this
end, let

U={x eR":|z|o < s} (34)

Since P[x € U] = 1 by construction, it follows that S(x) < s.
To establish that S(x) > s, and hence S(x) = s, towards a
contradiction, assume that there exists a linear subspace 7 C
R™ of dimension d < s such that P[x € 7] > 0. Since

0 < px(T) (35)
= P[(ekl eks)z S 7-] (36)
< > Plle,...e)zeT], (37

1< < <is<m

there must exist a set of indices {i1,..
with 47 < --- < 74 such that

P[Ez€ T] >0,

Lisr € {1,...,m}

(38)
where E = (e, ...

T={zeR° :EzcT}CR",

e;.). Next, consider the linear subspace
(39)

which, by (38), satisfies Plz € 7] > 0. As d < s by
assumption and dim(7) < dim(7) = d, there must exist
a nonzero vector by € R* such that bz = 0 for all z € 7.
It follows that P[blz = 0] > P[z € T] > 0, which stands in
contradiction to z, < \° because \*({z : blz = 0}) = 0.
Thus, we indeed have S(x) = s. It follows from Properties
iv) and v) in Lemma III.1 that ¢/ in (34) is countably s-
rectifiable and, therefore, also countably (/7% s)-rectifiable.
We will see in Example IV.3 that x is in fact s-analytic,
which, by Property ii) of Lemma IV.3, implies p, < J°.
Finally, by P[x € U] = 1, we get ux < 97|y, which, thanks
to the countable (.7#°%, s)-rectifiability of I establishes the s-
rectifiability of x.

Example IIL2. Let x = a® b with a € R¥ and b € R’
Suppose that a = (ep, ... ep.)u and b = (eq, ... €q,)V,
where u € R” and v € R? with p, X py < A"V, and p =
(pr---pr)T €{l,....,k} andq=(q1...q:)" € {1,...,1}}
satisfy p; < --- < p, and q; < --- < qy, respectively. We first
show that S(x) = rt. Since P[||x||o < rt] = 1 by construction,
it follows that S(x) < rt. To establish that S(x) > rt, and
hence S(x) = rt, towards a contradiction, assume that there
exists a linear subspace 7 C R™ of dimension d < 7t such
that P[x € 7] > 0. Since

0 < ux(T) (40)
= Pl((ep, - - €p,)u) @ ((€q, - €q V) € T] @n
=Pl((ep, .- €,) ® (€q, --- €q,))(u@V) € T] (42)

<X
1<ip < <ip <k
1<j1<+ <<l

P[((ei1 ei'r') ® (ejl s e.jt))(u ®V) € 7-]7

(43)

where (42) relies on [35, Lemma 4.2.10], there must exist a set
of indices {é1,...,4.} C {1,...,k} with ¢; < --- < 4, and

a set of indices {j1,...,7:} € {1,...,1} with j3 < --- < j;

such that
P(E1 ® E;)(u®@v) € T] >0, (44)
where Ev = (e;,...e;.) and E; = (e, ... ej,). Next,
consider the linear subspace
T={2eR": (BE,@E)zcT}CR", (45

which, by (44), satisfies Plu®@ v € 7~'] > 0. As d < rt by
assumption and dim(7") < dim(7) = d, there must exist a
nonzero vector by € R™ such that biz = 0 for all z € T.
It follows that Pl (u®@v) = 0] > Plu®v € T] > 0. As
fu Xy << A7t by assumption, we also have

M@ o) u e R, v R by (u@v) =0}) > 0.
(46)

We now view bl (u®w) as a polynomial in the entries of w and
v. Since a polynomial vanishes either on a set of Lebesgue
measure zero or is identically zero (see Corollary K.1 and
Lemma K.5), it follows that

bi(u®v)=0 foralluecR andveR, (47)

which stands in contradiction to by # 0. Thus, we indeed have

S(x) = rt. We next construct a countably (r-+t—1)-rectifiable

support set U of x. To this end, we let
A={a cR":|alo <7},
B={beR :|b]o<t},

(48)
(49)

and set Y = A ® B. Since A is a support set of a and B is a
support set of b, I/ is a support set of x = a ® b. Note that

U = (A\{0}) ® B. For a € A\ {0}, let a denote the first
nonzero entry of a. We can now write

a®b= (%) ® (@b) forallaec A\{0},beB. (50)
This allows us to decompose U according to U = A® B,
where

A={aec A\{0}:|alo<ra=1}. (51)

Now, since A is a finite union of affine subspaces all of
dimension r—1, it is countably (r—1)-rectifiable by Properties
iv) and v) in Lemma III.1. By the same token, B as a finite
union of linear subspaces all of dimension ¢ is countably t-
rectifiable. Therefore, the set

C={(a"d") :acAbeB} CR" (52

is countably (r 4+ ¢ — 1)-rectifiable thanks to Property iii) of
Lemma III.1. Now, the multivariate mapping o : RF*! — R,
(a" b")T = a ® b is bilinear and as such locally Lipschitz.
Moreover, since Y = o(C) with C countably (r + ¢t — 1)-
rectifiable, it follows from Property ii) of Lemma III.3 that U/
is countably (r+t—1)-rectifiable and, therefore, also countably
(AL r + ¢ —1)-rectifiable. We will see in Example 1V.4
that x is in fact (r + ¢ — 1)-analytic, which, by Property ii)
of Lemma V.3, implies 1, < 22771 With Px e U] = 1
this yields yx < 7 +t=1];, and, in turn, thanks to countable



(A1t —1)-rectifiability of U, establishes (r+t—1)-
rectifiability of x.

Example II1.3. Let S' denote the unit circle in R?, z € R
with g, < Al and g: R — 8%, 2z + (cos(z) sin(z))T. Set
x = g(z), and note that this implies P[x € S| = 1. We first
establish that S(x) = 2. Since P[x € R?] = 1, it follows that
S(x) < 2. To establish that S(x) > 2, and hence S(x) =
2, towards a contradiction, assume that there exists a linear
subspace 7 C R? of dimension one such that P[x € 7] > 0.
Set A = 7 N S!, which consists of two antipodal points on
S! (see Figure 1). Now, 0 < P[x € 7] = P[x € A] =
Pz € g71(A)], which constitutes a contradiction to i, < A!
because g~ !(A)—as a countable set—must have Lebesgue
measure zero. Therefore, S(x) = 2. Finally, x is 1-rectifiable
by [23, Section III.D].

Since s-rectifiable random vectors cannot have positive
probability measure on sets of Hausdorff dimension ¢ < s,
it is natural to ask whether taking n > s linear measurements
is necessary for zero error recovery of s-rectifiable random
vectors. Surprisingly, it turns out that this is not the case.
This will be demonstrated by first constructing a 2-rectifiable
(and therefore also (72, 2)-rectifiable) set G C R? of strictly
positive 2-dimensional Hausdorff measure with the property
that el : R3 — R, (z; 22 x3)7 ~ z3 is one-to-one on
G. Then, we show that every 2-rectifiable random vector x
satisfying iy < #2|g can be recovered with zero error
probability from one linear measurement, specifically from
y = el x. Moreover, all this is possible even though G contains
the image of a Borel set in R? of positive Lebesgue measure
under a C'*°-embedding.

The construction of our example is based on the following
result.

Theorem IIL2. There exist a compact set A € %(R?) with
A2(A) = 1/4, and a C*°-function x: R? — R such that # is
one-to-one on A.

Proof. See Section VI for an explicit construction of « and

A. O

We now proceed to the construction of our example demon-
strating that n > s is in general not a necessary condition for
zero error recovery of s-rectifiable random vectors.

Example III.4. Let x and A be as constructed in the proof
of Theorem III.2 and consider the mapping

h: RZ 5 R3

2z (2" K(2))".

(53)
(54)

We set G = h(A) and show the following:
i) h is a C*°-embedding;
ii) G is 2-rectifiable;
iii) 0 < #%(G) < o0;
iv) el: R® = R, (z; x5 x3)T > x3 is one-to-one on G.
v) For every 2-rectifiable random vector x € R3 with p, <

H?|g, there exists a Borel measurable mapping g: R3 x
R — R? satisfying P[g(eg, egx) #* x] =0.

It follows immediately that h is one-to-one. Thus, to establish
Property 1), it suffices to prove that h is a C'°°-immersion.
Since k is C°°, so is h. Furthermore,

Jh(z) = \/det((Dh(=))T Dh(2)) (55)
= \/det(Ig +a(z)a(z)T) forall z € R?* (56)
where
85(2)
a(2) = | oo (57)
Ozo

Since a(z)a(z)T is positive semidefinite, Jh(z) >
det(I3) = 1 for all z € R2, which establishes that h is
an immersion and completes the proof of 1).

To prove ii), note that h is C° and as such locally Lipschitz.
As A is compact, Lemma H.12 implies that h| 4 is Lipschitz.
The set G = h(.A) is hence the Lipschitz image of a compact
set in R? and as such 2-rectifiable.

To establish iii), we first note that

H(G) = A*(h(A)) (58)
< LPAP(A) (59)
= L?)\}(A) (60)
< 00, 61)

where the individual steps follow from Properties of Lemma
H.3, namely, (59) from Property ii) with L denoting the
Lipschitz constant of h|4, and (60) from Property iii).

To establish #2(G) > 0, consider the linear mapping

7 R3S — R?

(£C1 o 1’3)1— — (.’El ZCQ)T.

(62)
(63)

Clearly, 7 is Lipschitz with Lipschitz constant equal to 1.
Therefore,

H2(G) > A (x(G)) (64)
= H*(A) (65)
= \(4) (66)
=1 (67)

where (64) follows from Property ii) of Lemma H.3, (65) from
m(G) = A, and (66) is by Property iii) of Lemma H.3.

To show iv), let x1,x5 € G with 1 # x5. Thus, ;1 =
(2] K(z1))" and x5 = (29 kK(22))T with 21,25 € A and
z1 # z. As K is one-to-one on A, we conclude that e;,r is
one-to-one on G.

It remains to establish v). Since /1, < 5#?|g by assumption,
it follows that P[x € G] = 1. We show that there exists a Borel
measurable mapping g: R? x R — R? such that

G{UGQ:aTU:y} ifweG:a'v=y
9la.y)y _ | else

(68)

where e is an arbitrary vector not in G, used to declare a
decoding error. Since P[x € G] = 1 and e] is one-to-one on



G, this then implies that P[g(e3, e]x) # x| = 0. To construct
g in (68), consider first the mapping

[RExRxR® =R

(a7 yau) = ‘y - a'Tu"

(69)
(70)

Since f is continuous, Lemma 1.3 implies that f is a normal
integrand (see Definition 1.4) with respect to Z(R? x R). Let

T ={(a,y) € R®* x R:Ju € G with f(a,y,u) <0} (71)
= {(a,y) € R®* xR :Ju € G with a"u = y}. (72)
Note that G as the Lipschitz image of the compact set A is
compact (see Lemma H.13). It now follows from Properties ii)
and iii) of Lemma L5 (with T = R3>* xR, a = 0, K = G, and
f as in (69)—(70), which is a normal integrand with respect
to B(R? x R)) that i) T € Z(R? x R) and ii) there exists a
Borel measurable mapping
p: T = R3
(a,y) »—)p(a,y) S {u €G:a'u= y}

This mapping can then be extended to a mapping g: R3 xR —
R3 by setting

(73)
(74)

(75)
(76)

glr=p
g|(]R3><]R)\T = €.

Finally, g is Borel measurable owing to Lemma H.8 as p is
Borel measurable and 7 € Z(R? x R).

IV. STRONG CONVERSE

Example III.4 in the previous section demonstrates that
n > s is not necessary for zero error recovery of s-rectifiable
random vectors in general. In this section, we introduce the
class of s-analytic random vectors x, which will be shown
to allow for a strong converse in the sense of n > s being
necessary for recovery of x with probability of error smaller
than one. The adjective “strong” refers to the fact that n < s
linear measurements are necessarily insufficient even if we
allow a recovery error probability that is arbitrarily close to
one. We prove that an s-analytic random vector is s-rectifiable
if and only if it admits a support set I/ that is “not too rich”
(in terms of o-finiteness of %), show that the s-rectifiable
random vectors considered in Examples III.1-III.3 are all s-
analytic, and discuss examples of s-analytic random vectors
that fail to be s-rectifiable. Random vectors that are both s-
analytic and s-rectifiable can be recovered with zero error
probability from n > s linear measurements, and n > s linear
measurements are necessary for recovery with error probability
smaller than one. The border case n = s remains open.

We now make our way towards developing the strong con-
verse and the formal definition of s-analyticity. The following
auxiliary result will turn out to be useful.

Lemma IV.1. For x € R™ and A € R"*™, consider the
following statements:
i) There exists a Borel measurable mapping g: R"*™ x
R™ — R™ satisfying Plg(A, Ax) # x| < 1.
ii) There exists a set U € Z(R™) with P[x € U] > 0 such
that A is one-to-one on .

Then, i) implies ii).
Proof. See Appendix D. O

We first establish a strong converse for the class of random
vectors considered in Example III.1. This will guide us to the
crucial defining property of s-analytic random vectors.

Lemma IV.2. Let x = (ey, ... ex, )z € R™, where z € R?
with g, < A¥ and k = (ky ... ks)T € {1,...,m}* satisfies
ki < --- < k. If there exist a measurement matrix A € R"*™
and a Borel measurable mapping g: R™*™ x R™ — R™ such
that P[g(A, Ax) # x] < 1, then n > s.

Proof. Towards a contradiction, suppose that there exist a
measurement matrix A € R™ ™ and a Borel measurable
mapping g: R"*™ x R™ — R™ so that P[g(A, Ax) #x] <1
for n < s. By Lemma IV.1, there must exist a i/ € Z(R™)
with P[x € U] > 0 such that A is one-to-one on /. Since

ex.)z € U]
P[(eil .

Plx e U] =P[(ex, ..

>

1<ip<--<is<m

(77)

e; )z elU], (78)

there must exist a set of indices {i1,...,is} C {1,...,m}
with i1 < --- < 144 such that the rank-s matrix H :=
(es, ... €;,) satisfies PlHz € U] > 0. Setting A = {z € R®:
Hz € U} yields u,(A) = P[Hz € U] > 0. Furthermore, A
as the inverse image of the Borel set ¢/ under a linear mapping
is Borel. Finally, since p, < A® by assumption, we conclude
that A*(A) > 0. Summarizing, there exist a set A € B(R?)
with A*(A) > 0 and a matrix H € R™*# such that ¢/ contains
the one-to-one image of A under H. We now follow the line
of argumentation used in the proof of the converse part of [17,
Theorem 6]. Specifically, as A is one-to-one on U/ and H is
one-to-one on R?*, it follows that AH is one-to-one on A,
ie.,

ker(AH)N (A— A) = {0}. (79)

As A*(A) > 0, the Steinhaus Theorem [41] implies the
existence of an r > 0 such that B;(0,7) C A — A C R".
Since dim ker(AH ) > s—n > 0, we conclude that the linear
subspace ker(AH) must have a nontrivial intersection with
A — A, which stands in contradiction to (79). O

The strong converse just derived hinges critically on the spe-
cific structure of the s-rectifiable random vector x considered.
Concretely, we used the fact that, for every U € Z(R™) with
P[x € U] > 0, there exist a set A € B(R?) with \*(A4) >0
and a matrix H € R™** such that &/ contains the one-to-one
image of A under H. The following example demonstrates,
however, that this property is too strong for our purposes as
it fails to hold for random vectors on general manifolds like,
e.g., the unit circle:

Example IV.1. Let S' C R? denote the unit circle and
consider x € R? supported on S, ie., Px € S = 1.
Towards a contradiction, suppose that there exist a set A €
A(R) with A'(A) > 0 and a vector h € R? such that
{hz : z € A} C S! and h is one-to-one on A. Since h
is one-to-one on A and A(A) > 0, it follows that h # 0.
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Figure 1. For every vector h C R2?\ {0}, the linear subspace T, := {hz :
z € R} intersects the unit circle Sp in the two antipodal points +h/||k||2.

Noting that {hz : z € A} C {h/| hl||2, —h/| h||2} (see Figure
1), A necessarily satisfies A C {1/||h|2, —1/|h||2}. Thus,
AL(A) = 0, which is a contradiction to A!(A) > 0.

The reason for this failure is that every h € R2? maps
into a 1-dimensional linear subspace in R2, and 1-dimensional
linear subspaces in R? intersect the unit circle in two antipodal
points only. To map a set A € Z(R) to a set in R? that
is not restricted to be a subset of a 1-dimensional linear
subspace, we have to employ a nonlinear mapping. But this
puts us into the same dilemma as in Example II1.4, where we
demonstrated that even the requirement of every U € Z(R™)
with P[x € U] > 0 containing the embedded image—under
a C'*°-mapping—of a set A € ZA(R®) of positive Lebesgue
measure is not sufficient to obtain a strong converse for general
x. We therefore need to impose additional constraints on the
mapping. It turns out that requiring real analyticity is enough.
Examples of real analytic mappings include, e.g., multivariate
polynomials, the exponential function, or trigonometric map-
pings. This finally leads us to the new concept of s-analytic
measures and s-analytic random vectors.

Definition IV.1. (Analytic measures) A Borel measure p
on R™ is s-analytic, with s € {1,...,m}, if, for each
U € B(R™) with p(U) > 0, there exist a set A € B(R®)
of positive Lebesgue measure and a real analytic mapping
(see Definition K.1) h: R® — R™ of s-dimensional Jacobian
Jh # 0 such that h(A) CU.

Note that the only requirement on the real analytic mappings
in Definition IV.1 is that their s-dimensional Jacobians do not
vanish identically. Since the s-dimensional Jacobian of a real
analytic mapping is a real analytic function, it vanishes either
identically or on a set of Lebesgue measure zero (see Lemma
K.7). By Lemma K.8, this guarantees that, for an analytic
measure y, every U € Z(R™) with p(U) > 0 contains the real
analytic embedding of a set A € Z(R®) of positive Lebesgue
measure.

We have the following properties of s-analytic measures.

Lemma IV.3. If p is an s-analytic measure on R™, then the
following holds:
i) w is t-analytic for all t € {1,...,s —1};
i) p <« 7,
iii) there exists a set & C R™ such that p = pfyy and F2°|y
is o-finite if and only if there exists a countably (52°%, s)-
rectifiable set W C R™ such that p = u|w.

Proof. See Appendix E. O

We are now ready to define s-analytic random vectors.

Definition IV.2. (Analytic random vectors) A random vector
x € R™ is s-analytic if py is s-analytic. The corresponding
value s is the analyticity parameter.

We have the following immediate consequence of Lemma
IV.3.

Corollary IV.1. Let x be s-analytic. Then, x is s-rectifiable
if and only if it admits a support set U such that J#¢|;, is
o-finite.

Proof. Follows from Properties ii) and iii) in Lemma IV.3 and
Definition IIL.2. O

By Corollary IV.1, an s-analytic random vector is s-
rectifiable if and only if it admits a support set U/ that is “not
too rich” (in terms of o-finiteness of 77°% /). As an example of
an s-analytic random vector that is not s-rectifiable, consider
an (s + 1)-analytic random vector x with s > 0. By Property
1) in Lemma IV.3, this x is also s-analytic, but it cannot be
s-rectifiable, as shown next. Towards a contradiction, suppose
that x is s-rectifiable. Then, by Lemma II1.4, x has a countably
s-rectifiable support set I/, which by Property i) in Lemma
IIL.1 is also countably (s + 1)-rectifiable. As, by assumption,
x is (s 4 1)-analytic, Property ii) in Lemma IV.3 implies
px K 5T Thus, py < #7571, with U countably (s+1)-
rectifiable, and we conclude that x would also be (s + 1)-
rectifiable, which contradicts uniqueness of the rectifiability
parameter, as guaranteed by Lemma IIL.5.

We just demonstrated that s-analytic random vectors cannot
be s-rectifiable if they are also (s + 1)-analytic. The question
now arises whether s-analytic random vectors that fail to be
(s+1)-analytic (and, therefore, fail to be ¢-analytic for all ¢ >
s by Property i) in Lemma IV.3) are necessarily s-rectifiable.
The next example shows that this is not the case.

Example IV.2. Let C be the middle third Cantor set [38, pp.
xvi-xvii] and consider Y = {(c )T : c € C,t € [0,1]} C R%.
Since 0 < s#n2/ 1“3((3) < oo [38, Example 4.5], it follows
that the random vector x with distribution i, = 7 x (A!{j0.1]),
where

%ln 2/ 1n3|c
= 23 (C)

is the normalized Hausdorff measure on C, is well defined. We
now show that

(80)

1) x is l-analytic;
ii) x is not 2-analytic;
iii) x is not 1-rectifiable.



To establish i), consider B € %(R?) with P[x € B] > 0. Now,

0 < ie(B) (81)

_ / MN({te0: )T eBYdn(c) ()
C

< / N({teR: (ct)T € B))dn(e), (83)
C

where in (82) we applied Corollary H.1 (with the finite
measure spaces (R, Z(R),7) and (R, Z(R), A!|jg,1]) and (83)
is by monotonicity of Lebesgue measure. Thus, by Lemma
H.4, there must exist a ¢o € C such that A := {t € R :
(co t)T € B} satisfies A'(A) > 0. Now, define the mapping
h: R — R2 t + (co t)7 and note that this mapping is
(trivially) real analytic with Jh = 1. Moreover, h(A) C B
by construction, and 4 is Borel measurable as the inverse
image of the Borel set 3 under the real analytic and, therefore,
continuous mapping h. Thus, x is 1-analytic.

We next show that x is not 2-analytic. Towards a contra-
diction, suppose that x is 2-analytic. Since uyx(U) = 1, by
2-analyticity of x, there must exist a set D € %(R?) with
A2(D) > 0 and a real-analytic mapping g: R> — R? of
2-dimensional Jacobian Jg # 0 such that g(D) C U. By
Property ii) in Lemma K.8, we can assume, w.l.o.g., that g|p
is an embedding. It follows that

H(g(D)) = /D Jo(z) dX2(2)

>0,

(84)
(85)

where in (84) we applied the area formula Corollary H.3 upon
noting that g|p is one-to-one as an embedding and locally
Lipschitz by real analyticity of g, and (85) is by Lemma H.4,
A?(D) > 0, and Jg(z) > 0 for all z € D. Since g(D) C U
and 72(g(D)) > 0, monotonicity of 7 yields 2 (U) > 0.
Upon noting that #1+1"2/103(1f) < oo [38, Example 4.3],
this results in a contradiction to Property i) in Lemma H.3.

Finally, to establish iii), towards a contradiction, suppose
that x is 1-rectifiable. Then, Lemma III.4 implies that x admits
a countably 1-rectifiable support set. As every countably 1-
rectifiable set is the countable union of 1-rectifiable sets, the
union bound implies that there must exist a 1-rectifiable set V
with P[x € V] > 0. By Definition III.1, there must therefore
exist a compact set L C R and a Lipschitz mapping f: K —
R? such that V = f(K). It follows that

0 < x(V) (86)
= ux(f(K)) (87)
_ /C)\l({t c0,1]: (8T € FIO)) ) dn(e),  (88)
_ /C)\l({t €l0,1]: (c )T € f(A)}) dn(c),  (89)

where in (88) we applied Corollary H.1 (with the finite
measure spaces (R, Z(R),n) and (R, Z(R), A!|j1)) and in
(89) we set, for every c € C,

Ac=f'{ct)yT :te0,1]}) C K.

Note that the sets A. C K are pairwise disjoint as inverse
images of pairwise disjoint sets. Now, Lemma H.4 together

(90)

with (86)—(89) implies that there must exist a set 7 C C with
7 (F) > 0 such that

M({te0,1]:(ct)T € f(A:)}) >0 forall ce F. (91)

Since m = M2/ 3|0/ ™2/ 03(C) and 0 < 7(F) < 1,
the definition of Hausdorff dimension (see Definition H.4)
implies dimy(F) = In2/In3. As every countable set has
Hausdorff dimension zero [38, p. 48], we conclude that F
must be uncountable. Moreover,

M(A) = #H(AL) (92)
> LA (F(A) 93)
> 2AM{re00): ()T e fA)})  ©Od
= N ({re D enTefA}Y)  09)
>0 forallceF, (96)

where (92) and (95) follow from Property iii) in Lemma H.3,
(93) is by Property ii) in Lemma H.3 with L the Lipschitz con-
stant of f, (94) is again by Property ii) in Lemma H.3 with the
Lipschitz constant of the projection ed : R2 — R, (¢ )T + ¢
equal to one, and in (96) we used (91). As the sets A, are
pairwise disjoint subsets of positive Lebesgue measure of the
compact set KC, it follows that

sup M (A) < AH(K) < oo, 97)

ECF:|E|<o0 g

which, by Lemma H.11, contradicts the uncountability of F.
Therefore, x cannot be 1-rectifiable.

Our strong converse for analytic random vectors will be
based on the following result.

Theorem IV.1. Let A € %(R®) be of positive Lebesgue
measure, h: R® — R™, with s < m, real analytic of s-
dimensional Jacobian Jh # 0, and f: R™ — R" real analytic.
If f is one-to-one on h(A), then n > s.

Proof. See Section VIL. O

With the help of Theorem IV.1, we can now prove the strong
converse for s-analytic random vectors.

Corollary IV.2. For x € R™ s-analytic, n > s is necessary
for the existence of a measurement matrix A € R"*™ and a
Borel measurable mapping g: R™”*™ x R™ — R™ such that
Plg(A, Ax) # x] < 1.

Proof. Suppose, to the contrary, that there exist a measure-
ment matrix A € R"*™ and a Borel measurable mapping
g: R™™™ x R™ — R™ satisfying P[g(A, Ax) # x] < 1 for
n < s. Then, by Lemma IV.1, there must exist a U € Z(R™)
with P[x € U] > 0 such that A is one-to-one on U. As
P[x € U] > 0, the s-analyticity of uy implies the existence of
a set A € B(R®) of positive Lebesgue measure along with a
real analytic mapping h: R® — R™ of s-dimensional Jacobian
Jh # 0 such that h(A) C U. As A is one-to-one on h(.A)
and linear mappings are trivially real-analytic, Theorem IV.1
implies that we must have n > s, which contradicts n < s. [J



We next show that the s-rectifiable random vectors con-
sidered in Examples III.1-IIL.3 are all s-analytic with the
analyticity parameter equal to the corresponding rectifiability
parameter. We need the following result, which states that
real analytic immersions preserve analyticity in the following
sense.

Lemma IV4. If x € R™ is s-analytic and f: R™ — R¥*, with
m < k, is a real analytic immersion, then f(x) is s-analytic.

Proof. See Appendix F. O

Example IV.3. We show that x in Example III.1 is s-analytic.
To this end, we consider an arbitrary but fixed U € Z(R™)
with ux(U) > 0 and establish the existence of a set A €
P(R®) of positive Lebesgue measure and a real analytic
mapping h: R® — R™ of s-dimensional Jacobian Jh # 0
such that h(A) C Y. Since

0 < ux(U) (98)
=Pl(ex, ... ek, )z € U] (99)
< > Plle, ... ei)zel], (100)

1<ip < <is<m

there must exist a set of indices {i1, ..
with 47 < --- < 14 such that

iy C {1, m)

Plu(z) € U] > 0, (101)

where u: R® — R™ z — (e;...€;)z. As u, <€ A°
by assumption, z is s-analytic thanks to Lemma IV.5 below.
The mapping w is linear and, therefore, trivially real analytic.
Furthermore,

Ju(z) = \/det ((ei1 e )T (e, - eis)) (102)
= +/det I (103)
=1 forall z € R?, (104)

where (102) follows from Du(z) = (e;, ... e;,) for all
z € R®, which proves that u is an immersion. We can therefore
employ Lemma IV.4 and conclude that u(z) is s-analytic.
Hence, Definition IV.2 together with (101) implies that there
must exist a set A € #(R?®) of positive Lebesgue measure
and a real analytic mapping h: R® — R™ of s-dimensional
Jacobian Jh # 0 such that h(A) CU.

Lemma IV.5. If x € R™ with uy < A™, then x is m-analytic.

Proof. We have to show that, for each & € ZB(R™) with
ux(U) > 0, we can find a set A € ZAB(R™) of positive
Lebesgue measure and a real analytic mapping h: R™ — R™
of m-dimensional Jacobian Jh # 0 such that h(A) C Y. For
given such U € B(R™), simply take A = U and h the identity
mapping on R™. O

Example IV.4. We show that x = a®b € R¥! as in Example
M2 is (r + ¢t — 1)-analytic. To this end, let Y € ZB(RF)
with px(U) > 0 be arbitrary but fixed. We have to establish
that there exist a set A € Z(R"'~1) of positive Lebesgue
measure and a real analytic mapping h: R™~1 — RF of

(r+t—1)-dimensional Jacobian Jh # 0 such that h(A) C U.
Since

0 < px(U) (105)
= P[((ep, --- €p,)u) ® ((eq, - - - €q,)v) € U] (106)
=Pl((ep, ... €p,) @ (eq, ... €q,))(uRV) € U] (107)

1<iy<--<in<k
1<51 << <
(108)

where (107) relies on [35, Lemma 4.2.10], there must exist a
set of indices {i1,...,i,} C {1,...,m} with i3 < --- < i,
and a set of indices {j1,...,7:y C {1,...,m} with j; <
-+ < j; such that

Pv(u®v) e U] > 0, (109)

where
v: R — RM (110)
w— ((e;...e,)Q(ej ... ej5)w. (111)

Since fiy X fty < A"t by assumption, it follows from Lemma
IV.6 below that u ® v is (r + ¢t — 1)-analytic. The mapping v
is linear and, therefore, trivially real analytic. Furthermore,

Jo(w) = \/det ((E1 © Es)T(E; © Eg)) (112)
- \/det ((ElTEl) ® (E;Eg)) (113)
= Vdet(I, @ I) (114)
=1 forall we R"™, (115)

where (112) follows from Dv(w) = E; ® E, for all w €
R"™ with E, = (6i1 eir) and E;, = (ejl 6‘7‘t), and
(113) relies on [35, Equation (4.2.4)] and [35, Lemma 4.2.10],
which proves that v is an immersion. We can therefore employ
Lemma IV.4 and conclude that v(u®v) is (r+t¢— 1)-analytic.
Hence, Definition IV.2 together with (109) implies that there
must exist a set A € ZB(R"T~1) of positive Lebesgue measure
and a real analytic mapping h: R~ — R of (r+t —1)-
dimensional Jacobian Jh # 0 such that h(A) C U.

Lemma IV.6. If a € R¥ and b € R! with pip x i, << AFF,
then a® b is (k + [ — 1)-analytic.

Proof. See Appendix G. [

Example IV.5. Let x, z, and h be as in Example II1.3. We
first note that sin and cos are real analytic. In fact, it follows
from the ratio test [42, Theorem 3.34] that the power series

e (_1)n22n+1

sin(z) = Z;) T (116)
e —1)" 2n

cos(z) = Y ((2)”; (117)
n=0 !

are absolutely convergent for all z € R. Thus, sin and
cos can both be represented by convergent power series at
0 with infinite convergence radius. Lemma K.l therefore



implies that sin and cos are both real analytic. As each
component of / is real analytic, so is h. Furthermore, Jh(z) =
\/sin?(2) + cos?(2) = 1 for all z € R, which implies that h
is a real analytic immersion. Since z is 1-analytic by Lemma
IV.5 and x = h(z), Lemma IV.4 implies that x is 1-analytic.

V. PROOF OF THEOREM II.1 (ACHIEVABILITY)

Suppose that K(x) < n. It then follows from (12) that x
must admit a support set &/ C R™ with dimy;5(U) < n. We
first construct a new support set V C R™ for x as a countable
union of compact sets satisfying dimy;p(V) < n. Based on
this support set }V we then prove the existence of a measurable
decoder g satisfying P[g(A, Ax) # x] = 0. The construction
of V starts by noting that, thanks to Property i) in Lemma
H.15, dimy;5(U/) < n implies the existence of a covering
{U;}ien of U by nonempty compact sets U; satisfying

sup dimg (U;) < n. (118)

ieN

For this covering, we set
v=Ju, (119)

ieN
and note that
dimy ;5 (V) = inf< supdimg(V;) : V C U V; (120)
€N iEN
< sup dimp (4;) (121)
ieN

<n, (122)

where (120) follows from Property i) in Lemma H.15 with the
infimum taken over all coverings {V;};en of V by nonempty
compact sets V;, (121) is by (119), and in (122) we used
(118). Since dimpp(R™) = m by Property ii) of Lemma
H.15, and dimyz(V) < n < m, we must have ¥V C R™.
Now, V is a support set because it contains the support set I/
as a subset. Furthermore, since P[x € V] =1 and V C R™,
there must exist an e € R™\V such that P[x = e] = 0.
This e will be used to declare a decoding error. We will show
in Section V-A that there exists a Borel measurable mapping
g: R™*™ x R™ — R™ satisfying

ifdveV: Av=y
else.

g(A7y){€{v€V:Av:y}

= e

(123)

The mapping ¢ is guaranteed to deliver a v € V that is
consistent with (A, y) (in the sense of Av = y) if at least one
such consistent v € V exists, otherwise an error is declared by
delivering the “error symbol” e. Next, for each A € R"*™,
let p.(A) denote the probability of error defined as

pe(A) = Plg(A, Ax) # x]. (124)

It remains to show that p.(A) = 0 for A"*™-a.a. A. Now,

Pe(A) (125)
= Plg(A, Ax) # x,x € V] + P[g(A, Ax) # x,x ¢ V]
(126)
=P[g(A, Ax) # x,x € V] (127)
—P[(A,x) € A] forall A R™™, (128)

where (127) follows from P[x € V] = 1 and in (128) we set

A={(A,z) e R"*™ x V:g(A, Ax) # x}. (129)
Since A € ABR"™) @ B(R™) by Lemma V.1 below
(with X = R™, Y = R™™™, f(x,A) = g(A, Azx), and
YV € H(R™) as a countable union of compact sets), we
can apply Corollary H.1 (with the o-finite measure spaces
(R™, Z(R™), uy) and (R™*™, Z(R"*>*™), A"*™)) to A and
get

/ Pe(A) AT (4) (130)
RnXm

= /m )\nxm({A (Ax) € A}) dp(a).

Next, note that for y = Az with & € V, the vector g(A,y)
can differ from x only if there is a v € V\{x} that is consistent
with y, i.e., if y = Av for some v € V\{x}. Thus,

(131)

AC{(A,z) e R™*™ x V :ker(A) NV, # {0}}, (132)
where, for each © € V, we set
Ve ={v—x:veV} (133)
As (132) yields
{AeR™™: (A ,x) e A} (134)
- {A e R™™ : ker(A) NV, # {0}}, (135)
monotonicity of A”*™ implies
AVTLA e R™™ (A ) € A}) (136)
<A ({A e R™™ iker(A)N Ve #{0}})  (137)

for all £ € V. The null-space property Proposition II.1, with
U = Vy and dimy;p (Vz) = dimy5 (V) < n ((lower) modified
Minkowski dimension is invariant under translation, as seen by
translating covering balls accordingly) now implies that (137)
equals zero for all € V. Therefore, (136) must equal zero as
well for all € V. We conclude that (131) must equal zero as
the integrand is identically zero (recall that V) is a support set
of x), which, by (130)-(131) and Lemma H.4, implies that we
must have p.(A) = 0 for \**™-a.a. A, thereby completing
the proof. O

A. Existence of Borel Measurable g

Recall that i) V = (J;,cyUi & R™, where U; € R™ is
nonempty and compact for all 7 € N and ii) the error symbol
e € R™\ V. We have to show that there exists a Borel
measurable mapping g: R™"*™ x R™ — R™ such that

ce{fveV:Av=y} IfweV:Av=y
g(A7y){_{ J
=e else.
(138)



To this end, first consider the mapping
IRV xR xR™ - R
(Aa y,’u) = ”y - AvHQ'

(139)
(140)
Since f is continuous, Lemma 1.3 implies that f is a normal
integrand (see Definition 1.4) with respect to Z8(R™*™ x R™).
For each 7 € N, let
T.={(A,y) e R x R" : Ju € U; with f(A,y,u) <0}

(141)

={(A,y) e R x R" : Ju € UY; with Au = y}.

(142)
It now follows from Properties ii) and iii) of Lemma 1.5 (with
T=R"™™ xR", a=0, K=U;, and f as in (139)—(140),
which is a normal integrand with respect to (R™*™ x R"™))
that i) 7; € Z(R™*™ x R™) for all ¢ € N and ii) for every
1 € N, there exists a Borel measurable mapping

pi: Ti = R™

(143)
(144)
For each 7 € N, the mapping p; can be extended to a mapping
gi: R™*™ x R™ — R™ by setting

(145)
(146)

gi

gi|(Rn><7n xRP\T; — e,

Ti = Pi

which is Borel measurable thanks to Lemma H.8 as p; is
Borel measurable and 7; € Z(R"*™ x R™). Based on this
sequence {g;};cn of Borel measurable mappings g;, we now
construct a Borel measurable mapping satisfying (138). The
idea underlying this construction is as follows. For a given
pair (A,y), we first use g7 to try to find a consistent (in the
sense of y = Au) u € U;. If ¢g; delivers the error symbol e,
we use go to try to find a consistent w € Us. This procedure
is continued until a g; delivers a consistent u € U;. If no
g; yields a consistent w € U;, we deliver the error symbol
e as the final decoder output. The formal construction is as
follows. We set G1 = g1 and, for every i € N\{1}, we define
the mapping G;: R™*"™ x R™ — R™ iteratively by setting

A y) _ Gifl(A/y) if Gifl(A7y) 7& e
’ 9i(Ay)  else.

Then, G; (= g1) is Borel measurable, and, for each i € N\
{1}, the Borel-measurability of G; follows from the Borel-
measurability of G;_1 and g; thanks to Lemma V.2 below.
Note that by construction

Gi( (147)

Gi(A,y) € {v c U U Av = y} (148)
j=1

if there exists a v € U;Zluj such that Av = y and

G;(A,y) = e else. Finally, we obtain g: R"*" x R" — R™
according to

i—00

which satisfies (138) by construction. As the pointwise limit
of a sequence of Borel measurable mappings, g is Borel
measurable thanks to Corollary H.2. O

Lemma V.1. Let X and )Y be Euclidean spaces, consider a
Borel measurable mapping

[:AXY =X, (150)

and let V € B(X). Then,
A={(z,y) eV xY: f(z,y) #x} (151)
€ B(X xY)=B(X) B(Y). (152)

Proof. We first note that Z(X x X) = B(X) ® B(X) and
B(X x)Y) = BX)® AB(Y), both thanks to Lemma H.5.
Therefore, V x X € #(X x X). Now, consider the diagonal
D = {(z,z) : € X} and note that D as the inverse image
of {0} under the Borel measurable mapping g: X x X — X,
(u,v) »u —visin B(X x X). Let C = (V x X) N ((X x
X)\D). Since D € B(X x X), it follows that C € B(X x X).
Define the mapping

F: X xY—>XxX
(z,y) = (x, f(,9)),

(153)
(154)

and note that it is Borel measurable thanks to Lemma H.7
(with f1: X XY = X, (z,y) = z and fo: X XY — X,
(z,y) — f(z,y)). Finally, A € (X x Y) as A = F~1(C).

O

Lemma V.2. Let X and )Y be topological spaces and yo € Y
and suppose that f,g: X — ) are both Borel measurable.
Then, h: X — Y,

if f(z) # yo

(155)
else

is Borel measurable.

Proof. We have to show that h=1(U) € AB(X) for all
U € A(Y). To this end, consider an arbitrary but fixed
U e B(). Now, {yo} € A(Y) implies U\{yo} € HB(Y). We
write h~1(U) = AU B with

A={z e X hx)el, f(z)+#y}
B={zeX :h(x) €U, f(z)=yo}

(156)
(157)

and show that A and B are both in #(X), which in turn
implies h=1(U) € SB(X). Since
A={zeX: f(z) U, f(z) # yo}
=/ U\ {wo}),

U\{yo} € B(Y), and f is Borel measurable by assumption,
it follows that A € %(X). Finally, as

(158)
(159)

B={recX:g(x)cl, flxr)=1yo}
= {wh) ng W),

{yo} € B), U € B(Y), and f and g are both Borel
measurable by assumption, it follows that B € %(X’). Thus,
h=1(U) = AUB € %(X). Since U was arbitrary, we conclude
that h is Borel measurable. O

(160)
(161)
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Figure 2. The set Q2 consists of the four grey squares. The set @3 consists
of the sixteen shaded black squares.

VI. PROOF OF THEOREM III.2

Construction of A. Consider the sequence {ay}recn, where
ap = 1/2+1/2%, and note that

lim a; = 1 (162)
k—o0
ar > apy1 for all k € N. (163)
Let Q; = [0,1]? be the unit square of side length one. We
define

Qo =021 UQ22UQ3UQay,

where every square Qy; C Qp has side length ay/2 with
(00)T € Q21, (10)T € Q22, (01)7T € Qo3, and (1 1)7
Qs 4. It follows from (163) that the squares Qo 1, ..., Q2 4 are
pairwise disjoint and Qs C Q1. To define Q3, we follow the
same procedure and split up every set Qs ; into the disjoint
union of four squares with side length a3/4. The sets Q1, Qa,
and Q3 are depicted in Figure 2. We iterate this construction
and obtain a sequence {Qj}ren, Where Qp is the disjoint
union of 4+-1 squares Q;,7 = 1,... ,4’“*1, of side length
ap /21 and

(164)

Qi1 C Qp forall k€N, (165)

Next, we set

-/4: lem

keN

(166)

which, as the intersection of closed sets, is closed. Since A is
also bounded it must be compact by the Heine-Borel theorem
[42, Theorem 2.41]. Finally,

N (A) = Jim A\ (Qr) (167)
— 00
o 4k-lg2
S (2k=1)2 (168)
= lim a? (169)
k—o0
=1 (170)

where (167) follows from Property iii) of Lemma H.1.
Construction of k. We now construct a C°°-function
%: RZ — R that is one-to-one on A as defined in (166). This

will be accomplished by building compactly supported C'°-
functions ¢y ;: R?2 — [0,1], i = 1,...,4*71, k € N, such
that

4(z)7 1 iszQk’i,
TR0 iz e Qg ge {1, A6,

The construction of these functions is effected by Lemma VI.1
below with ¢y ;(2) = Vs, ;,a,.,ws, (%), Where wy; denotes
the center of Qp ;, ai; equals half the side-length of Qy ;,
and Jd;, ; is chosen sufficiently small for (171) to hold (recall
that the squares Q) ; are closed and disjoint). Next, we define
the C'°°-functions

(171)

4k 1
j{j = L (172)
and note that
7
or(z) = 1 (173)
forall z € Qs i=1,...,4*" 1 and k € N, and
i
Pr(z) —pW)| = —
(ou(2) — gufw) = LT (174
1
> 1 (175)

forall z € Qi we€ Qpy, 1 <i<j<4k ! and k € N.
For [ € N and a,b € Ny, consider now the C'*°-function

anrb !

55 (z2) = 176
s E) = ; oL 179
l a
-y 1 0 Toy(2) a7
Pt 82" (M), +1) 02025
with
My, = max mex d(i,]), (178)
d(i,j) = sup max{ 8@i(zz,) ra,beNg, a+b=7j
zER? 029023

(179)

We now show that this particular choice for the constants

%uarantees for each a,b € Ny, that the sequence

}en of C*°-functions converges uniformly and denote

the corresponding limiting functions by x(**). Corollary J.1
then implies

Ork(*0)(2)
— (a+1,b)
o7 K (2) (180)
k(@) (2)
— (ab+1)
9% K (2) (181)

forall a,b € Ny and z € R2, and £(©% must therefore be C'°.
We set & = £(%:0)_ It remains to prove uniform convergence of
the sequences {sl(a’b)}leN of C*°-functions for all a,b € Ny.
To this end, let a,b € Ny be arbitrary but fixed and note that

1 0"t Ppi(2) d(k,a +b) (182)
82" (Mk + 1) 82’%823 - 82 (Mk + 1)
1
< @F (183)



for all k£ > a+b and z € R?. Furthermore, by the sum formula
for the geometric series,

> 1
> =

k=a-+b+1

1 1
<Z§:§'

keN

(184)

We can now conclude from (182) and (184) that the sequence
(a,b) o :
{t;""" }1en of C*°-functions

a+b+1 a+b
(a.b) 1 9" pi(z)
t (z) := E , - (185)
l k=a+b+1 82" (M, +1) 027023

satisfies the assumptions of Theorem J.1 and therefore con-
verges uniformly to a function, which we denote by p(®?).

a+b a+b
(a.b) 3 1 0% 0k(2) | (a)
= t
(@) = 8" (M), +1) 0z{023 FHi-a-o(2)

(186)

for all I > a + b, we conclude that {sl(a’b)}leN must converge
uniformly to

a+b

1
(a,b) L
K zZ) .= N
( ) ; 82" (M +1)

o a+b§0k<z)
029025

+ p(a’b)(z).
(187)

Since a and b are arbitrary, this implies that {sl(a’b)}leN
converges uniformly for all a,b € Ny, thereby concluding the
proof of x being C'*°.

It remains to show that x is one-to-one on A. To this end,
consider arbitrary but fixed zg and wq in A with zy # wgy. We
have to show that x(zg) # k(wy). Note that by construction
of A (see (166)), there exists a ky € N such that

i) for every k > ko, there exist i;, and ji in {1,...,4%"1}

with 4, # ji such that 29 € Qi ;, and wg € Qi j,, and
ii) for every k < ko, there exists an i such that zo and wq
are both in Oy ;, .
We therefore have

|t(20) — K(wo)] (188)
wr(20) — pr(wo)

- k 189

05D "
or(z0) — or(wo)

= 190

2 TR (L+ 1) (o0

> ko (20) — @iy (wo)] vr(20) — wr(wo)

= 82k0 (Mk0+1) i 821“'(Mk+1)
(191)

< 19Ko(20) = @ro (wo)| i ek (20) — @r(wo)|

= 82k0 (Mk0+1) i 82k(Mk;+1)
(192)

L1 (lewz0) — pr(w)|

= Mk0+1 g2ko

3 |sak<zo>8—2:ok<wo>|>, (193
k=ko+1

where (189) follows from the uniform convergence of
{s"MY1en to &, in (190) we used (173) and ii) above, (191)
is by the reverse triangle inequality, and (193) follows from
My, < My for all k € N (see (178)). Moreover, (174)—(175)
imply |pr, (20) — @k, (wo)| > 1/4%~1 and (173) yields

lok(20) — wr(wo)| < [pr(20)] + |@r(wo)] (194)
ik + Jk

=+ (195)

<92 forall k€N, (196)

We can therefore further lower-bound |x(zg) — k(wq)| accord-
ing to

|k(z0) — K(wo)| (197)
> Mk01+ - <4k0_182k0 - k:%:H 83) (198)
- Mk01+ : ( 4,60,182% - gﬁ; 82k+2k+> (199)
> Mk01+1 ( 4%_18% - 8230+1 k%\;;) (200)
> e (5 %) o
> 0. (202)

Since z( and wy are arbitrary, this establishes that ~ is indeed
one-to-one, thereby finishing the proof. O

Lemma VL1. Fora > 0,6 > 0, and w = (w; ws)' € R?,
consider the mapping

V.m0 R —[0,1] (203)
z = ps.a(z1 — wi1)psa(z2 — wa), (204)
where
ps.a: R —[0,1] (205)
‘s fla+0—1t) (206)

fla+d—1t)+ f(lt| —a)

with f(t) = e"Y/*1g, (t). Then, 154, is C° and satisfies

wé,a,w(z) =

0 if min{|z — w1l |22 —w2|} > a+4.
(207)

{1 if max{|z1 —w1|,|z2 — w2|} < q,

Proof. It follows from [43, Lemma 2.22] with H = ps ,, 11 =
a, and 7, = a + 0 that p;s , is C° and satisfies

ps,a(t) = (208)

1 if |t| € [0,a],
0 if || € [a+6,00).

The claim now follows from 15,4 w = ps,a(21 —W1)ps,a(22 —
wy) and the properties of ps 4. O



VII. PROOF OF THEOREM IV.1 (STRONG CONVERSE)

Towards a contradiction, suppose that the statement is false.
That is, we can find an s € N such that there exist

i) an A € Z(R®) with A\*(A) > 0,
ii) a real analytic mapping h: R® — R™, with s < m, of
s-dimensional Jacobian Jh # 0, and
iii) an n € N with n < s and a real analytic mapping
f:R™ — R™ that is one-to-one on h(A).

Let sg be the smallest s € N such that i)—iii) hold. The proof
will be effected by showing that this implies validity of i)—iii)
for sy — 1 and n — 1, which contradicts the assumption that s,
is the smallest natural number for i)-iii) to hold. The reader
might wonder what happens to this argument in the case where
n = 1. In fact we establish below that, if i)—iii) is satisfied,
then necessarily n > 2, see the claims a)-c) right after (223).

Let A, h, n, and f satisfy i)—iii) for so. We start by noting
that

m>so>n>1 (209)
by ii) and iii). Next, we write
f@) = (fi(@)... fola))" (210)

and set ¢»; = fioh, i =1,...,n, and ¢ = f o h, which,
by Corollary K.2, are all real analytic as compositions of real
analytic mappings. We now show that there must exist an ¢g €
{1,...,n} and a set A;, C A such that

A0 (A;) >0, (211)

J;,(z) > 0, and Jh(z) > 0 for all z € A;,. To this end, we
first decompose

A= AUl A, (212)
i=1
where
A; ={z € A: Dy;(z) #0,Jh(z) >0} (213)
={zeA: JyY;(z) >0,Jh(z) >0} (214)
fori=1,...,n and

Ao={z€ A: DyY(z) =0} U{z € A: Jh(z) =0}.
(215)

By Lemma VIL.1 below (with s = sq), Di(z) # 0 for A%-
aa. z € A. Furthermore, Jh(z) # 0 for A\*°-aa. z € A
because of Jh # 0 and Lemma K.7. Thus, A%¢(Ag) = 0
by the countable subadditivity of Lebesgue measure. Since
A%9(A) > 0 by assumption, and A% (Agy) = 0, it follows,
again by the countable subadditivity of Lebesgue measure,
that there must exist an ¢y such that (211) holds.
Now, for each y € R, let

M,y = ({y}). (216)

We show in Section VII-A below that there exist a yg € R
and a z9 € A;, N M,, such that

%071 (B, (z0,7) N Ajy N My,) >0 for all 7> 0,

217)
JYiy(z) >0 forall z € M,,

(218)
Jh(zo) > 0. (219)

It now follows from (218), real analyticity of v;,, My, # 0,
and Lemma K.11 that M, is a (so — 1)-dimensional real
analytic submanifold of R%. Therefore, by Lemma K.9, there
exist a real analytic embedding ¢: R%~! — R% and ann > 0
such that

¢(0) = zo,
Bso(zovn) mMyo C C(R5071)’

(220)
221)
and ¢ (R 1) is relatively open in M,,, i.c., there exists an

open set V C R* with ((R*~!) = VN M,,. Combining
(217) and (221) yields

%pso—l(C(Rso—l) N Aio) > 0. (222)

Next, let
Ci, = C71 (C(RSO?I) N Aio)-
We now show that
a) gio € :@(Rso_l) with /\So_l(cio) > 0,
b) h = ho(: R~ — R™ is real analytic and of (so — 1)-

dimensional Jacobian Jh # 0, and
¢) so —1>mn—1>0 and the real analytic mapping

(223)

f:R™ -5 R*! (224)
x> (fi(@) ... fig—1(®) figr1(x) ... ful@))"
(225)

is one-to-one on h(C;, ),
which finally yields the desired contradiction to the statement
of sy being the smallest natural number such that i)—iii) at the
beginning of the proof are satisfied.

Proof of a). We first establish that C;, € Z(R*°~1). Since
¢(R*~1) is relatively open in M, and, therefore, a Borel
set in R®°, it follows from (223) that C;, is the inverse image
of a finite intersection of Borel sets under the real analytic
embedding ¢ and, therefore, also a Borel set. Next, we show
that A*0~1(C;,) > 0. Since

/c JC(w) AN H(w) = 270 7H(¢(Cyy )

i

(226)

=% (RO N A;,) (227)
>0, (228)

where (226) follows from the area formula Corollary H.3
upon noting that ( is one-to-one as an embedding and locally
Lipschitz by real analyticity, (227) is by (223), and in (228) we
applied (222). Using Lemma H.4, we conclude from (226)-
(228) that A*0~1(C;,) > 0.

Proof of b). By Corollary K.2, h is real analytic as the
composition of real analytic mappings. It remains to show



that Jh # 0. To this end, we establish .J iL(O) > 0. First note
that the chain rule yields

Dh(0) = (Dh)(¢(0))D¢(0) (229)

= Dh(z0)D((0), (230)

where the second equality is by (220). Since ¢: R%~! — R%0
is an embedding, it follows that

rank(D((0)) = so — 1. (231)

Moreover, as h: R%0 — R™ with m > sg, (219) implies
rank(Dh(zg)) = so. (232)

Applying Lemma K.12 to Dh(0) = Dh(z)DC(0) therefore
yields rank(Dh(0)) > s — 1, which in turn implies .J(0) >
0 because Dh(0) € R™*(s0=1),

Proof of ¢). so—1 > n—1 simply follows from sy > n (see
(209)). To prove that f is one-to-one on /(Cy, ), we first show

that f;, is constant on h(C;,). In fact, since ¢(C;,) € My,
and M, = (fi, o h) " ({yo}), it follows that
fio (M(w)) = yo  for all w € Cy, . (233)

As [ is one-to-one on h(A) and f;, is constant on h(C;,) with
h(Ciy) = (ho()(Ci,) € h(A) by (223), we conclude that f
must also be one-to-one on h(C ). It remains to show that we
must have n > 1, which obviously implies n—1 > 0. Suppose,
to the contrary, that n = 1. Since h is real analytic with Jh % 0
and X\*~1(C;,) > 0, it follows from Property ii) of Lemma
K.8 that & is one-to-one on a subset of C;, of positive Lebesgue
measure. Thus, the set iL(CZ‘U) is uncountable. Now, since by
(233) fi, is constant on /(C;, ), and a constant function cannot
be one-to-one on a set of cardinality larger than one, the
uncountability of h(C;,) implies that f;, cannot be one-to-
one on h(Cy,). But f = f;, for n =1 (with i9 = 1) and f is
one-to-one on h(C;,) C h(.A) by assumption, which results in
a contradiction. Therefore, we necessarily have n > 1 and we
can conclude that a)-c) must hold, which finalizes the proof
of the theorem.

A. Proof of (217)—(219)
We start by noting that

/ A5 (Ay N M) AN (y) (234)

R

_ / Tibs, (2) X0 (2) (235)
.A-;O

= / La,, (2)Jt5,(2) dA™(2) (236)
R#0

> 0, (237)

where (235) is by the coarea formula Corollary H.4 upon
noting that 1;, is locally Lipschitz by real analyticity, and
(237) follows from 14, (2)Jti,(2) > 0 for all 2 € A;,
A% (A;,) > 0 (see (211)), and Lemma H.4. Also by Lemma
H.4 and (234)—(237), there must exist a set D C R with
AL(D) > 0 such that

A% (A, " My) >0 forall y €D. (238)

Furthermore,
M({y € R: 3z € M,, with Jy;,(z) = 0}) (239)
= A (i, ({2 € R = Ty (2) = 0})) (240)
=0, (241)

where (240) is by (216) and (241) follows from Property ii) of
Theorem H.2 with 1;, being C'*° (recall that v;, = fi, o h is
real analytic as a composition of real analytic mappings and,
therefore, C'>° by Lemma K.3). Now, (239)-(241) together
with AY(D) > 0 implies the existence of a o € D such
that (218) holds. For this y, we must have ,%”S"’l(Aio N
My,) > 0 by (238). Therefore, Lemma H.9 implies that there
must exist a zg € A;, N My, such that (217) holds. As this
zp € Aiy "My, C Ajy, (219) finally follows from (214). [

Lemma VIL1. Let A € %B(R®) be of positive Lebesgue
measure, h: R® — R™, with s < m, real analytic of s-
dimensional Jacobian Jh # 0, and f: R™ — R"™ real analytic.
If f is one-to-one on h(A), then D(f oh)(z) # 0 for A®-a.a.
ze A

Proof. Towards a contradiction, suppose that f is one-to-one
on h(A) and D(f oh) =0 on a set B C A with A*(B) > 0.
Since f o h is real analytic by Corollary K.2, D(f o h) is real
analytic as a consequence of Lemma K.3. It therefore follows
from Lemma K.5 that D(f o k) is identically zero. Hence,
f o h must be constant. In particular, f o h must be constant
on B and, therefore, f must be constant on h(B). Since f is
one-to-one and constant on h(B), it follows that h must be
constant on . Thus, Jh(z) = 0 for all z € BB, and Lemma
K.5 implies Jh = 0. This is a contradiction to Jh # 0. [

APPENDIX A
PROOF OF LEMMA II1.1

Proof of i). Suppose that U is s-rectifiable. Then, U = (. A)
with A C R® compact and ¢ Lipschitz. For ¢t € N with ¢ > s,

take
B={<g):zeA}CRf (242)
and define
b: B R™ (243)
<3) = p(z). (244)
Then, U = (B) is t-rectifiable as a consequence of B

compact and 1 Lipschitz.
Proof of ii). First note that we can cover R? according to

:UAkn

keN

(245)

with 4; C R® compact for all £ € N (take, for example,
Ay = B,s(0,k)). Setting, for every i,k € N, p; . = ©;i|a,
(locally Lipschitz mappings are Lipschitz on compact sets by
Lemma H.12), we can write

V= J eir(A),

i,keN

(246)



which implies that V is countably s-rectifiable.
Proof of iii). Suppose that I/ is countably s-rectifiable and
V is countably t-rectifiable. Then, we can write

U=Jei(A) (247)
€N

V={]JvB) (248)
jEN

where the 4; C R® and the B; C R? are compact and the
©;: R® — R™ and the 1;: R® — R™ are Lipschitz. Thus,

W= [ 0:;(Ci;) (249)
i,jEN
where we defined
0 R*TH — R (250)
(@ b)" = (vila) ;b)) (251)
and set
Cij={(ab):acAbebB;}. (252)

Now, the §; ; are Lipschitz because the ¢; and the ; are
Lipschitz for all 4,7 € N, and the C;; are compact by
Tychonoff’s theorem [44, Theorem 4.42] thanks to A; and B;
compact for all 4, j € N. Therefore, WV is countably (s + t)-
rectifiable.

Proof of iv). Let M be an s-dimensional C*-submanifold
of R™. By [36, Definition 5.3.1], we can write

M= U Oa(Uye

xeM

(253)

where, for every @ € M, U, C R? is open, and ¢z : Uy —
R™ is C! and satisfies T € @, (Uy) and 0z (Usyz) = Vo N M
with V, C R™ open. Now, there must exist a countable set
{z; : i € N} C M such that

M= Ve, N M. (254)
€N
For if such a countable set does not exist, the open set
v=J Ve (255)

reM
would not admit a countable subcover, which would contradict
that V' as an open set in R™ is Lindelof [45, Definition 5.6.19,
Proposition 5.6.22]. With the countable set {x; : i € N} C M
we can now write

M= e:th) (256)
ieN
where we set ¢; = @, and U; = Uyp,. Now fix + € N

arbitrarily. As U; is open, for every u; € U;, there exists an
Ty, > 0 such that

BS(’U,i,T‘ui) g Z/{,L'.

Tu,; )
5 .

(257)

We can thus write

U B?® (u,,

u; €U;

(258)

Since U; as an open set in R™ is Lindelof [45, Definition
5.6.19, Proposition 5.6.22], there exists a countable set {u; ; :
j € N} CU; such that

=Yl ty)

jEN

(259)

where we set r; j = 7y, ; for all j € N. Using B*(u; ;,7; ;) C
U; for all j € N (see (257)), it follows that

U; = U Bs (“z}j’ “7])

JEN

(260)

Since ¢ € N was arbitrary, using (256) and (260), we get

M = U 901< (u%”r”)).

1,JEN

261)

Finally, all the ¢; as C'' mappings are locally Lipschitz and,
therefore, Lipschitz on the compact sets 53° (u,; e 7) for all
j € N, which establishes countable rectifiability of M.

Proof of v). Since every s;-rectifiable set, with s; < s, is
s-rectifiable by i), it follows that .4 is a countable union of
s-rectifiable sets and, therefore, countably s-rectifiable. O

APPENDIX B
PROOF OF LEMMA 111.3

Proof of i). Suppose that U is s-rectifiable. Then, there exist
a compact set A C R® and a Lipschitz mapping ¢: A — R™
such that Y = ¢(A). As fop: A — R™ is Lipschitz owing to
Lemmata H.12 and H.14, f(U) = (f o ¢)(A) is s-rectifiable.

Proof of ii). Suppose that I/ is countably s-rectifiable. We
can write U = | J, oy Ui, where U; is s-rectifiable for all i € N.
As f(U) = U,en f(U;) and f(U;) is s-rectifiable for all i € N
by i), it follows that f(I{) is countably s-rectifiable.

Proof of iii). Suppose that U € ZLB(R™) is countably
(2%, s)-rectifiable. We have to show that f(U) = AU B,
where A € Z(R") is countably (J#°,s)-rectifiable and
H°(B) = 0. As U € A[R™) is countably (7, s)-
rectifiable, [46, Lemma 15.5] implies that 7%, is o-finite.
We can therefore employ Lemma H.10 to decompose

U=wulJv,
JEN
where J°(Vy) = H°|u(Vo) = 0 and V; C R™ is compact

for all j € N. This decomposition allows us to write f(U) =
AU B, where

(262)

A=Jrv) (263)
jEN
B = f(V). (264)

Now, thanks to Lemma H.13, the f(V);) are compact. There-
fore, A as a countable union of compact sets is Borel.
Furthermore, J7°(B) = 0 because of #*(},) = 0 and
Lemma B.1 below. It remains to show that A is countably
(2%, s)-rectifiable. Since U is countably (%, s)-rectifiable,

there exists a countably s-rectifiable set U, such that 525 (U/\



Uy) = 0. Furthermore, as U; is countably s-rectifiable, f({7)
is countably s-rectifiable by ii). Finally,

(AN f(U)) < °(FU)\ f(Uh)) (265)
S (fUN\UL)) (266)
=0, (267)

where (265) follows from the monotonicity of 77° and
fU) = AU B, (266) is by monotonicity of s#° and
FAONf(UL) C f(U\Uy), and (267) follows from Lemma B.1
below. This proves that A is countably (¢, s)-rectifiable,
thereby concluding the proof. O

Lemma B.1. If // C R™ with #*(U) = 0 and f: R™ — R"
is locally Lipschitz, then J#°(f(U)) = 0.

Proof. We employ the following chain of arguments:

() = (f(UnJBa0.))  @68)
leN
—%G(Uf (0,1) mu)) (269)
leN

<> A (f(Bm(0,1) NUY) (270)
leN

<Y LiA (Bm(0,1) NU) @71)
leN

<> Lot (272)
leN

=0, (273)

where (270) follows from the countable subadditivity of #°,
in (271) we applied Property ii) of Lemma H.3, where, for
every | € N, L; denotes the Lipschitz constant of f|z—c— B (0.0)°
and in (272) we used the monotonicity of J#%.

APPENDIX C
PROOF OF LEMMA I11.5

Towards a contradiction, suppose that there exist r,¢t € N
with r # t such that x is r-rectifiable and t-rectifiable. We
can assume, w.l.o.g., that » < {. Now, Lemma III.4 implies
the existence of

i) a countably r-rectifiable set I/ satisfying P[x € U] = 1

and

ii) a countably ¢-rectifiable set V satisfying P[x € V] = 1.

With Definition III.1, we can conclude that there exist

i) compact sets A; C R" and Lipschitz mappings ¢;: A; —
R™, ¢ € N, such that

U= U%‘(A

ieN

(274)

and
ii) compact sets B; C R" and Lipschitz mappings 1, : B; —
R™, 5 € N, such that

v=JwiB)

jEN

(275)

20

The union bound now yields

Plx cUNV] = [erU% ) N, (B )} (276)
ieNjeN
<Y N Plx € wi(A) N(By)]. (277)
1€EN jEN

Since P[x € U NV] = 1, which follows from P[x € U] =1
and P[x € V] = 1, (276)—(277) guarantee the existence of an
ip and a jo, both in N, such that jix (s, (Ai,) N5, (Bj,)) > 0.
As pix < |y by the t-rectifiability of x and S|, < H#
by the monotonicity of ", it follows that 2 (p;, (A;,) N
¥j,(Bj,)) > 0. Property i) of Lemma H.3 therefore implies
(recall that r < t by assumption) " (;, (As, ) NYj,(Bj,)) =
0o. The monotonicity of 77" then yields

%r((pio ('Alo)) > %T(Qoio (Aio) N 1pjo (Bjo)) (278)
= 0. 279)
But we also have
" (pig(Aiy)) < LA (Ayy) (280)
= LN (Ay) (281)
< 00, (282)

where (280) follows from Property ii) of Lemma H.3 with
L the Lipschitz constant of ¢;,, (281) is by Property iii) of
Lemma H.3 and the fact that A;, as a compact set is in
Z(R"), and finally (282) is a consequence, again, of A;,
being compact. This contradicts (279) and thereby concludes
the proof. [

APPENDIX D
PROOF OF LEMMA IV.1

Suppose that there exists a Borel measurable mapping
g: R™*™ x R® — R™ such that P[g(A, Ax) # x] < 1
and set Y = {z € R™ : g(A,Ax) = =x}. We first
show that &/ € %B(R™). To this end, consider the mapping
ha:R™ — R™, & — g(A, Ax), which as the composition
of two Borel measurable mappings, namely,  — (A, Ax)
and g, is Borel measurable. Application of Lemma H.7 (with
X =Y =R™, f; the identity mapping on R™, and fo = h4)
therefore establishes that

F:R™ - R™ x R™
z (@, ha(x))

(283)
(284)

is Borel measurable. Now, consider the diagonal D = {(x, x) :
x € R™} and note that D as the inverse image of {0}
under the Borel measurable mapping d: R™ x R™ — R™,
(u,v) = u — v is in B(R™ x R™). Since U = F~1(D),
we conclude that & € Z(R™). Now, P[x € U] > 0 as
P[x ¢ U] = P[g(A, Ax) # x] < 1 by assumption. It remains
to show that A is one-to-one on Y. To this end, consider
arbitrary but fixed uw, v € U and suppose that Au = Awv. This
implies g(A, Au) = g(A, Av). As u,v € U by assumption,
this is only possible if w = v. Thus, A is one-to-one on U,
which concludes the proof. O



APPENDIX E
PROOF OF LEMMA 1V.3

Proof of i). The proof is by induction. Suppose that p is
s-analytic for s € N\{1}. We have to show that this implies
(s —1)-analyticity of p. Consider C € B(R™) with u(C) > 0.
Then, by Definition IV.1, there exist a set A € HB(R?®)
of positive Lebesgue measure and a real analytic mapping
h: R® — R™ of s-dimensional Jacobian Jh # 0 such that
h(A) C C. By Property ii) of Lemma K.8, we can assume,

w.lo.g., that h| 4 is an embedding. For each z € R, let
A ={veR1:(v2)T €A} (285)

We now use Fubini’s Theorem to show that there exists a
2o € R such that A*~1(A,,) > 0. Concretely,

0< / La(=)Th(z) X ()

= /]1@(/]1@5—1 1a((v 2)")Jh((v 2)") d)\s_l(v)> dr!(z)
(287)

:/</ 1a.(v)Jh((v 2)") dAs_l(v)) d\(2),
R \JRs—1

(288)
where (286) follows from Lemma H.4 with A\*(4) > 0 and

Jh(z) > 0 for all z € A, and in (287) we applied Theorem
H.1. We conclude that there must exist a zg € R such that

/]RS_1 La., (v)Jh((v zo)T) A\t (v) > 0.

Again using Lemma H.4 establishes that \*~!(A,,) > 0.

It remains to show that there exists a real analytic mapping

h: Rt — R™ with h(A.,) C C and of (s — 1)-dimensional
Jacobian Jh # 0. To this end, consider the mapping

@: R 5 RS (290)

v (v 2)" (291)

(286)

(289)

and set h = hop: RS™1 — R™. Now, ¢ is real analytic thanks
to Corollary K.1. Thus, & as a composition of real analytic
mappings is real analytic by Corollary K.2. Furthermore, since
©(A.,) C A by (285), it follows that 2(A.,) C C. It remains
to establish that Jh # 0. To this end, we first note that the
chain rule implies Dh(v) = Dh(v, z) Dg(v). Therefore,

rank(Dh(v)) = rank(Dh(v, z0) Do (v)) (292)
= rank(Dh(v, 20)(Is_1 0)T) (293)
>s—1 forallveA,, (294)

where (294) is by Lemma K.12 upon noting that Dh(v, zg) €
R™>5 with rank(Dh(v, z9)) = s (recall that (v z9)" € A
for all v € A, by (285) and that the s-dimensional Jacobian
Jh(z) > 0 for all z € A), and (I,_; 0)7 € R**(5=1_ Since
rank(Dh(v)) > s — 1 and Dh(v) € R™*(5=1) we conclude
that Jiz(v) > 0 forall v € A,,. Thus, Jh % 0, which finalizes
the proof.

Proof of ii). Suppose that p is s-analytic and consider C €
PB(R™) with u(C) > 0. We have to show that 72°(C) > 0.
By Definition IV.1, there exist a set A € Z(R®) of positive
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Lebesgue measure and a real analytic mapping h: R® — R™
of s-dimensional Jacobian Jh # 0 such that h(A) C C. By
Property ii) of Lemma K.8, we can assume, w.l.o.g., that h| 4
is an embedding. We now use the area formula Corollary H.3
to conclude that .#°*(C) > 0. Concretely,

0</ Jh(z)dN\°(z) (295)
A
= (h(A)) (296)
< H°(C), (297)

where (295) is by Lemma H.4, A\*(A) > 0, and Jh(z) > 0
for all z € A, in (296) we applied the area formula Corollary
H.3 upon noting that h| 4 is one-to-one as an embedding and
locally Lipschitz by real analyticity of h, and (297) is by
monotonicity of J#° together with h(A) C C.

Proof of iii). ,,="": Suppose that y is s-analytic and there
exists a set U C R™ such that p = ply and S|y is o-
finite. Since 7°° is Borel regular (see Definition H.2), we
may assume, w.lo.g., that &/ € B(R™). By o-finiteness of

JE° |y, there exist sets V; € Z(R™), ¢ € N, such that
u=\Junv, (298)
ieN

and 27°(U NV;) < oo for all i € N. For every i € N, since
UNYV; as the intersection of two Borel sets is in Z(R"™) and
H°(UNV;) < oo, we can write [47, p. 831 UNV; = W;UW;,
where W; is countably (7, s)-rectifiable and W; is purely
A% -unrectifiable, ie., #°(W; NE) = 0 for all countably
(A%, s)-rectifiable sets £ C R™. This allows us to decompose
U according to U = WUW with W = J;cy Wi and W =
Uien VN\/l Since all the W; are countably (7, s)-rectifiable,
SO g W; and since all the W are purely #°-unrectifiable, so
is W.

As p1 = iy by assumption, and U = W U W, it remains
to show that ©()V) = 0 to conclude that ;1 = plyy for the
countably (5%, ﬁ-rectiﬁable set WW. Towards a contradiction,
suppose that p(W) > 0. Analyticity of p then implies that
there exist a set A € #(R?®) of positive Lebesgue measure
and a real analytic mapping h: R® — R"™ of s-dimensional
Jacobian Jh # 0 such that h(A) C W. By countable subad-
ditivity of A\®, we can assume, w.l.0.g., that A is bounded; and
by Property ii) in Lemma K.8, we can assume, w.l.o.g., that
h|4 is an embedding. It follows that

0< / Jh(z) d\*(2) (299)
A

= #°(h(A)), (300)
where (299) is by Lemma H.4, A*(A) > 0, and Jh(z) > 0 for
all z € A, and in (300) we applied the area formula Corollary
H.3 upon noting that h| 4 is one-to-one as an embedding and
locally Lipschitz by real analyticity of h. Moreover, as 72° is
Borel regular (see Property ii) in Definition H.2), there must
existasetC € B(R™) with h(A) C C and 7#°(C\h(A)) = 0.
It follows that C is countably (7%, s)-rectifiable as 2°(C\



h(A)) = 0 and h is Lipschitz on the compact set .A by Lemma
H.12. But this implies

A5WNC) > 2#°(h(A)NC) (301)
= (h(A)) (302)
> 0, (303)

which is not possible as Wis purely .7Z°-unrectifiable, thereby
concluding the proof.

,»<": Suppose that there exists a countably (7%, s)-rectifiable
set W C R™ such that gy = ply. Since 5°° is Borel
regular (see Definition H.2), we may assume, w.l.o.g., that
W e Z(R™). As this W is countably (77, s)-rectifiable,
[46, Lemma 15.5] implies that 7’%|yy is o-finite. O

APPENDIX F
PROOF OF LEMMA 1V.4

Suppose that x € R™ is s-analytic and u = f(x), where
f:R™ — R* is a real analytic immersion, and consider
C € B(RF) with p,(C) > 0. We have to show that there
exist a set A € Z#(R®) of positive Lebesgue measure and a
real analytic mapping ¢g: R® — RF of s-dimensional Jacobian
Jg # 0 such that g(A) C C. Set D = f~1(C) € BR™).
Since px(D) = pu(C) > 0 and x is s-analytic, there exist
a set A € #B(R?®) of positive Lebesgue measure and a real
analytic mapping h: R®* — R™ of s-dimensional Jacobian
Jh # 0 such that h(A) C D. We set ¢ = f o h. Now,
g(A) = f(h(A)) C f(D) C C. Furthermore, g as the compo-
sition of real analytic mappings is real analytic by Corollary
K.2. It remains to show that Jg # 0. To this end, we first
note that the chain rule implies Dg(z) = (D f)(h(z))Dh(z).
Since Jh # 0, there exists a zy € R® such that Jh(zg) # 0.
Thus

rank(Dh(zg)) = s. (304)

Now, as f is an immersion, it follows that & > m and Jf > 0.
Thus,

rank((Df)(h(z0))) = m.

Applying Lemma K.12 to (Df)(h(z9)) € RF*™ and
Dh(zp) € R™** and using (304) and (305) establishes that
rank(Dg(z0)) > s, which in turn implies Jg(zp) # 0 as
Dg(z0) € RF¥s. O

(305)

APPENDIX G
PROOF OF LEMMA 1V.6

Suppose that a € R* and b € R? with i, x pp < AP,
set x = a® b, and consider C € B(R*) with 1, (C) > 0. We
have to show that there exist a set A € Z(R¥+~1) of positive
Lebesgue measure and a real analytic mapping h: RFH—1 —
R* of (k + | — 1)-dimensional Jacobian Jh # 0 such that
h(A) CC. Let

E={(a"b)T:acR*"bcR a®becC}. (306)
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Since C € #(R*!) and ® is Borel measurable, £ as the inverse
image of C under ® is Borel measurable. Furthermore, as x =
a ® b, it follows that

(ta X p1p)(E) = px(C)
>0,

(307)
(308)
which implies \¥*1(£) > 0 as pa x pp, < A*+! by assumption.

Using Corollary H.1, we can write

AN E) = /[R AFFEL(E ) A (), (309)

where, for each z € R,
E={(a’ 'vT)T raeRF veRT (aT vT2)T €&}
(310)

As MFH(E) > 0 we can conclude that there must exist a
20 € R\ {0} such that A**=1(€, ) > 0. We set A = &,,.
Next, we define the mapping

h: RFFIZL  RM (311)

(c1... ck+l_1)T = (e ck)T ® (Ckt1 - -+ Chgi—1 ZO)T,
(12)

which is real analytic thanks to Corollary K.1, and we write

A={(a’ ’UT)T raeRF v e R (aT v'2)" € €}

(313)
={(a’ UT)T raeR veR ™ a® (' 2) €C}

(314)
=h"10), (315)

where (314) follows from (306), and (315) is by (311)-(312).
By construction, h(A) C C. Furthermore, A as the inverse
image of C € Z(R*) under a real analytic and, therefore,
Borel measurable mapping is in Z(R¥*!~1). It remains to
show that there exist an ag € R* and a vy € R~ such that

Jh((aOT ’UE)I—)T)

- \/det ((pn((ad vg)T))TDh((aOT w))7)) @I

> 0. (318)

(316)

This will be accomplished by showing that there exist an ag €
R* and a vy € R~ such that

rank(Dh((af of)7)) =k+1-1.  (19)
Now,
v 0 0 0 alIl_l
zo O 0 O 0
0 v 0 0 aoI_,
0 2 0 O 0
pr((@™ ")) = |+ S
0 0 v 0 akflIlfl
0 O zo O 0
0 0 0 v apl,
0 O 0 =z 0
(320)



for general @ € R* and v € R'™!, and

0 0 0 0 I,
zo 0 0 0 o0
0 O 0o o0 I,
0 2 0 0 0
1)h((ag vJ)T) = B e
0 O 0o o0 I,
0 0 zg O 0
0 0 0 0 I,
0 0 0 2 O
for the specific choices ag = (1...1)T € R* and vy =

(0...0)T € R!~! Since the (kl) x (k + [ — 1) matrix
Dh((af v{)") has the regular (k +1—1) x (k+1—1)
submatrix (recall that zy # 0)

0 I,
ZUIk; 0 ’

(319) indeed holds, which concludes the proof. O]

(322)

APPENDIX H
TOOLS FROM (GEOMETRIC) MEASURE THEORY

In this appendix, we state some basic definitions and results
from measure theory and geometric measure theory used
throughout the paper. For an excellent in-depth treatment of
geometric measure theory, the interested reader is referred to
[36], [40], [48], [49].

A. Preliminaries from Measure Theory

Definition H.1. [36, Definition 1.2.1] A measure (sometimes
called outer measure, see [36, Remark 1.2.6]) on a nonempty
set X' is a nonnegative function p defined on all subsets of X’
with the following properties:

i) u(®) =0.
ii) Monotonicity:
w(A) < u(B) foral ACBCX. (323)
iii) Countable subadditivity:
z (U Ai> <A (324)
i€N ieN
for all sequences {A; };en of sets A; C X.
A set A C X is p-measurable if it satisfies
w(&) =pENA) + p(E\A) forall £ C X. (325)

For a probability measure py, countable subadditivity is
equivalent to the union bound

PPEUAJ

€N

< ZP[X € Al

€N

(326)

The collection of p-measurable sets forms a o-algebra [36,
Theorem 1.2.4], which we denote by .,(X). If X is en-
dowed with a topology,® the smallest o-algebra containing the

3 A topology for X is a collection of subsets of X’ that contains () and X
and is closed under finite intersections and arbitrary unions. The members of
a topology are called open sets.
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open sets is the Borel o-algebra Z(X). A measurable space
(X,.7(X)) is a set X equipped with a o-algebra . (X). A
measure space (X, .7 (X), u) is a set X’ with a measure y and
a g-algebra .7 (X) C .7, (X).

Lemma H.1. [36, Theorem 1.2.5] If (X, (X)), p) is a mea-
sure space and {A, }nen is a sequence of sets A, € (X)),
then the following properties hold.
i) If the sets A,, n € N, are pairwise disjoint, then p is
countably additive on their union. That is,

p(UJAn) =3 A, (327)

neN neN

ii) If A, C A, 41 for all n € N, then
p(UJA) = lim (). (328)

neN

iii) If A,41 C A, for all n € N and p(A;) < oo, then

(1A = fi i)

neN

(329)

Definition H.2. [36, Definition 1.2.10] A measure p on a
nonempty set X endowed with a topology is
i) Borel if all open sets are p-measurable;

ii) Borel regular if it is Borel and, for each A C X, there
exists a set B € B(X) such that A C B and pu(A) =

u(B).
Lemma H.2. Let s € N and consider a measure y on R™.

For every nonempty set i/ C R™, the following statements are
equivalent:

i) There exist compact sets .A; C R® and Lipschitz map-
pings ¢;: A; = R™, i € N, such that

M(U\ U %(J‘b)) =0.

€N

(330)

ii) There exist bounded sets .4; C R® and Lipschitz map-
pings ;: A; — R™, i € N, such that

#(u\ U SDi(Az‘)) =0.

ieN

(331)

iii) There exist Lipschitz mappings ¢;: R® — R™, ¢ € N,
such that

p (u U gaiGRS)) =0. (332)
i€N

Proof. We show that i) = ii) = iii) = 1). i) =-1i) is trivial since
every compact set 4; C R® is bounded. ii) = iii) follows from
the fact that, by [46, Theorem 7.2], for every bounded set
A; C R® and corresponding Lipschitz mapping ¢;: A; —
R™, there exists a Lipschitz mapping ¢,: R® — R™ such
that ;| 4, = ¢;. Finally, iii) = 1) as

0i(R*) = | ¢i(B.(0,5)) forallieN
jEN

(333)

with B;(0, 5) compact for all j € N. O



Definition H.3. (Hausdorff measures) [47, Definition 2.46]
Let d € [0,00) and U4 C R™. The d-dimensional Hausdorff
measure of U, denoted by 7% (U), is defined according to

24U) = lim 24 U), (334)
5—0
where
S U) (335)
/2 .
m inf Z dlam ) : dlam(ul) < (;,
1€EN
ucl u,} (336)
€N

for all § > 0, and the diameter diam(-) of an arbitrary set
U C R™ is defined according to

ifU £ 0

0 else

sup{|ju — v||2 : w,v €U}

diam () = { (337)

with I'(-) denoting the Gamma function.

Lemma H.3. (Main properties of Hausdorff measures)
i) If a > b >0, then 2#%(€) > 0 implies #°(E) =
all £ C R™ (see Fig. 3).
ii) If f: R™ — R™ is Lipschitz with Lipschitz constant L,
then

oo for

HUf(E)) < L&) forall E CR™.  (338)

i) ™€) = A™(E) for all £ € B(R™).
iv) S0 is the counting measure.
Proof. See [47, Proposition 2.49] and [47, Theorem 2.53] for

Properties i)—iii). Property iv) follows immediately from the
definition of the 0-dimensional Hausdorff measure. O

Definition H.4. (Hausdorff dimension) [47, Definition 2.51]

The Hausdorff dimension of &/ C R™, denoted by dimpy (i),
is defined according to

dimy (U) := sup{d > 0: 2U)

= inf{d > 0: 2%U)

(339)
(340)

= oo}
=0},

i.e., dimg(U) is the value of d for which the sharp transition
from oo to 0 in Figure 3 occurs. Depending on the set U/, for
d = dimy(U), #%(U) can take on any value in [0, oc].

As a consequence of Carathéodory’s criterion [36, Theorem
1.2.13], Lebesgue and Hausdorff measures are Borel regular.

Definition H.5. (Measurable mapping) [50, Chapter 2]

i) Let (X, (X)) and (Y, #(Y)) be measurable spaces.
A mapping f: D — Y, with D € L(X), is
(L(X),.7(Y))-measurable if f~1(A) € .7 (X) for all
Ae 7).

ii) Let (X,.7(X)) be a measurable space and ) endowed
with a topology. A mapping f: D — )Y, with D €
S (X), is #(X)-measurable if f~1(A) € #(X) for all
Ae BY).

24

AU)

dimH (U) m

Figure 3. ([38, Figure 3.3]) Graph of #¢(Uf) as a function of d € [0, m)]
for a set Y C R™.

iii) Let X and ) both be endowed with a topology. A map-
ping f: D — ), with D € ZA(X), is Borel measurable
if f71(A) € B(X) for all A€ B(Y).

Lemma H.4. [50, Corollary 4.10] Let (X, (X), ) be a
measure space and consider a nonnegative measurable function
f:+ X = R. Then, f(z) = 0 y-almost everywhere, i.e., u{x €
X : f(z) # 0} =0, if and only if

Ajmmmmz

Definition H.6. [36, Definition 1.3.25] The measure space
(X, (&), p) is o-finite if X' = [J;c As, with A; € S (X)
and p(A;) < oo for all ¢ € N. The measure space is finite
if u(X) < oo. A Borel measure 1 on a topological space X
is o-finite (respectively finite) if (X, B(X),n) is a o-finite
(respectively finite) measure space.

(341)

For example, all probability measures are finite and the
Lebesgue measure is o-finite. However, the s-dimensional
Hausdorff measure with s < m is not o-finite.

Theorem H.1. (Fubini’s theorem) [50, Theorem 10.9] Let
(X, (X)), ) and (Y, (Y),v) be o-finite measure spaces
and suppose that f: X x ) — R is nonnegative and

(#(X) ® . ()))-measurable. Then,
/ f(z,y)dv(y) is #(X)-measurable, (342)
- / F(z,y)du(z) is #()-measurable,  (343)

and "
{Lw@ﬁM@%—Ayyﬂ%deXVMxxw (344)
—Awww@ (345)
Corollary H.1. Let (X,.(X), ) and (Y, #(Y),v) be o-

finite measure spaces and suppose that A € .7 (X) ® L ().
Then,

tAww:mweAnwu> (346)

::/ La(e.y)dpx v)(@ xy)  (347)
X XY

— [l (2,0 € A} dnly). (348)



Proof. Follows from Theorem H.1 with f(z,y) = 14(z,y),
noting that

/y La(e,y) dv(y) = vl(ly : (my) € A}, (349)
/X La(e.y)du(a) = p({z s (.y) € AY). (350)
O

Lemma H.5. [51, Exercise 1.7.19] If X’ and ) are Euclidean
spaces, then B(X x V) = B(X) @ B(Y).

Lemma H.6. [50, Corollary 2.10] Let (X, (X)) be a
measurable space and suppose that {f;};en is a sequence of
. (X)-measurable functions f;: X — R converging point-
wise to f: X — R. Then, f is . (X)-measurable.

Lemma H.7. Let X and Y be Euclidean spaces and suppose

that f;: X — Y, i = 1,...,n, are Borel measurable map-
pings. Then,
frX=Y=Yx-xY 351)
H_/
T times
= (fi(2),. .. falz)) (352)

is Borel measurable.

Proof. Lemma H.5 implies Z()) = Z()) ® --- @ B(Y).
Thus, 93()7) is generated by sets Uy X --- X U,,, where U; €
PB(Y) for i =1,...,n. It is therefore sufficient to show that
YU x - xUy,) € B(X) forallll; € B(X),i=1,...,n.
But [~ (U X - xUp) = fi (U) N0 fH (Un) € B(X)
for all U; € A(Y), i = 1,...,n, as all the f; are Borel
measurable and every o-algebra is closed under finite or

countably infinite intersections. [

Corollary H.2. Let X" be a Euclidean space and suppose that
{fi}ien is a sequence of Borel measurable mappings f;: X —
R™ converging pointwise to f: X — R"™. Then, f is Borel
measurable.

Proof. We can write f(x) = (fM(z),..., f™(x))T, where
f(j): X — R is Borel measurable for j = 1,...,n, and
fi(z) = (fi(l)(x),...,fi(n)(a:))T, where f7: X = R is
Borel measurable for j = 1,...,n and all i« € N. Then,
for each j = 1,...,n, the sequence (fi(J))ieN of Borel
measurable functions converges pointwise to f(), which is
Borel measurable thanks to Lemma H.6. Finally, Lemma H.7
implies that f is Borel measurable as its individual components
FO .., f") are Borel measurable. O

Lemma H.8. Let X' and Y be topological spaces, C € B(X),
f:C — Y Borel measurable, and yg € Y\ f(C). Consider
h: X — Y with hlc = f and h|x\¢ = yo. Then, h is Borel
measurable.

Proof. We have to show that h=!(A) € B(X) for all A €
Z(Y). Consider an arbitrary but fixed A € Z(Y) and suppose
first that yo € A. Now, A € #(Y) and {yo} € #(Y) imply
A\{yo} € B(Y). Therefore,

W= (A) = = (A\{yo}) URT ({wo})
= fTH(A\{yo}) U (X\C) € B(X)

(353)
(354)
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because f is Borel measurable, A\{yo} € #(Y), and X\C €
B(X). If yo ¢ A, then

hHA) = fH(A) € B(X) (355)
as f is Borel measurable and A € Z()). O

Lemma H.9. Let 1 be a measure on R* and consider A C R
with 11(A) > 0. Then, there exists a zy € A such that

(B (zo,7) N A) >0 forall r > 0. (356)

Proof. Suppose, to the contrary, that such a zy does not exist.
Then, for every z € A, there must exist a r, > 0 such that
(B (z,72) N A) = 0. With these ., we write

A= Br(z,72) N A).
zeA

(357)

It now follows from the Lindeldf property of R¥ [45, Defini-
tion 5.6.19]* that there must exist a countable subset {z;:i¢€
N} C A such that

A=JBi(zi,rz,) N A).
€N
Since /L(Bk(zi,rzi) N .A) = 0 for all © € N, the countable
subadditivity of p implies

(358)

p(A) < u(Br(zir,) N A) (359)
€N
=0, (360)
which contradicts the assumption p(A) > 0. O

Lemma H.10. Let (X, Z(X), 1) be a o-finite measure space
and B € #(X). Then,

B=NUA,

where p(N) =0and A =
for all 7 € N.

(361)

sen Ai with A; € R™ compact

Proof. By [47, Proposition 1.43], we can find, for each i € N,
a compact set K; such that I; C B and pu(B\K;) < 1/i.
For j € N, let A; = |JJ_, K;. It follows that {A;} ;e is an
increasing (in terms of C) sequence of compact sets A; C B
satisfying p(B) — p(A;) = p(B\A;) < 1/j for all j € N. We
set A =J;enAj € B. Thus, pi(A) < p(B) by monotonicity
of u. Now,

n(A) = i 1(A;) (362)
= p(B) — lim p(B\A;) (363)
> u(B) — lim ! (364)
Jj—o0 )
= u(B), (365)

where (362) follows from Property ii) in Lemma H.1. We
conclude that p(A) = p(B), which, together with A C B,
yields (361). O

4Recall that R* with the Euclidean distance metric is a separable metric
space, i.e., RF includes a countable dense subset, and it is therefore a Lindelof
space by [45, Proposition 5.6.22].



Lemma H.11. Let z; > 0 for all ¢ € Z and set

M = (366)

sup le
JCT:|T|<o0 oy

Suppose that M < oo. Then, 7 is finite or countably infinite.

Proof. Forevery ke N, set [y ={ieZ:1/(k+1) <x; <
1/k} and

M, = sup Z T;. (367)

JgIk:|J|<OO =N
Since M < oo and M < M, we must have M; < oo for
all £ € Ny. But for every k£ € Ny, by the definition of Z,
Mj, can only be finite if |Zy| < oco. Thus, |Z;| < oo for all
k € Ny. Since 7 = UkeN T, we conclude that 7 is finite or
countably infinite. [

B. Properties of Locally Lipschitz and Differentiable Map-
pings
Definition H.7. (Locally Lipschitz mapping) [52, Definition
3.118]
i) A mapping f: U — R!, where Y C RF, is Lipschitz if
there exists a constant L > 0 such that

1f(w) = f(v)ll2 < Lllu — |2

for all u,v € U.
(368)

The smallest constant L for (368) to hold is the Lipschitz
constant of f.

ii) A mapping f: R* — R! is locally Lipschitz if every = €
R* admits an open neighborhood U, C R* containing x
such that f|, is Lipschitz.

The following result establishes a necessary and sufficient
condition for a mapping to be locally Lipschitz. Since we
could not find a proof for this statement in the literature, we
present one here for completeness.

Lemma H.12. The mapping f: R* — R' is locally Lipschitz
if and only if f|i is Lipschitz for all compact sets K C R¥.

Proof. ,,=": Suppose that f: R¥ — R’ is locally Lipschitz
and consider a compact set K C R¥. We have to show that f|x
is Lipschitz. For every € /C, by the local Lipschitz property
of f, there exists an open neighborhood 4, containing « such
that fl, is Lipschitz. Since K C |, ¢ Uz is a cover of the
compact set JC by open sets, there must exist Uy, denoted by
U, i =1,...,n, such that X C U U;. Fori =1,...,n,
let L; denote the Lipschitz constant of f|;;,. Now, as shown
below, there exists a § > 0 such that, for every x,y € K with
||z — yll2 < J, we can find a U; in the finite subcover of U
with &,y € U;. With this § we let

L:maX{Ll,...7Ln,25A},

where A := maxgex f(x) (Note that the local Lipschitz
property of f implies its continuity and, therefore, f attains its
maximum on the compact set K.) Consider an arbitrary pair
x,y € K. If |z — yl||2 < 4, then this pair must be in the same
U;, which implies || f(z) — f(y)|| < Lillz -yl < L]z — yl|.
It o — yllo > 6. then | f(x) — f(y)]| < 2A = 2A6/5 <

(369)
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(2A/0) || — yll2 < L||x — y|2. Thus, f|x is Lipschitz
with Lipschitz constant at most L. It remains to establish
the existence of a § with the desired properties. Towards
a contradiction, suppose that such a § does not exist. This
implies that, for every m € N, we can find a pair &, Yy, € K
such that ||z, — Ym|l2 < 1/m, but there is no U; containing
this pair. Since K x K is compact by Tychonoff’s Theorem
[44, Theorem 4.42], there exists a convergent subsequence
{Zm;» Ym, }jen of the sequence {X.,, Ym }men [42, Theorem
2.41]. Let (&,y) denote the limit point of this subsequence.
Note that & and y cannot be in the same Uf;, for if they were
there would be an M & N such that (z,,;,ym,;) € Ui X U;
for all j > M, which is not possible as x,, and y,, are in
different sets U{; for all m € N. But

T —y= lim (mmj - ymj) (370)
j—o0
=0, (371)

where the second equality follows from lim; oo |2, —
Ym, |l2 < limj_,o0 1/m; = 0 and the continuity of ||-||2. Thus,
& = y, which is not possible as there is no {/; containing &
and y.

,»<": Suppose that f|i is Lipschitz for all compact sets
K C R*. It is sufficient to show that f]| By (1) 18 Lipschitz
for every € R*. As By(z,1) is compact, f|m is Lip-
schitz. The Lipschitz property of f|z, (z,1) therefore follows
immediately from By (x,1) C By(x,1). O

Lemma H.13. If f: R™ — R" is locally Lipschitz and K C
R™ is compact, then f(kC) is compact.

Proof. Follows from the continuity of f and [53, Theorem
2-7.2]. O

We will need the following composition property of locally
Lipschitz mappings.

Lemma H.14. Suppose that f: R* — R™ and g: R™ — R”
are both locally Lipschitz. Then, h = go f: RF — R" is
locally Lipschitz.

Proof. To prove that h = go f is locally Lipschitz, by Lemma
H.12, it is sufficient to show that h|g is Lipschitz for all
compact sets K C R¥. Let I C R¥ be an arbitrary but fixed
compact set and note that Q@ = f(K) is compact owing to
Lemma H.13. Thus, by Lemma H.12, f|c and g|g are both
Lipschitz with Lipschitz constants, say, L and M, respectively.
It follows that

[h(w) = h(v)]l2 < M| f(u) = f(v)]|2
< LM|ju — vl|2

(372)
(373)

for all v and v in IC, which implies that h|x is Lipschitz. As K
was arbitrary, we can conclude that h is locally Lipschitz. [

Definition H.8. (Differentiable mapping) [54, Definition 1.2]
Let U be an open set in R™. A function f: U — R is

i) CY if it is continuous.



ii) C” with r € N if, for all possible choices of r1,...,7,, €
No with " r; = r, the partial derivatives
aT
(374)

g oy @)
exist and are continuous on .
iii) C* if it is C” for all » € N.
For r € Ny U {o}, a mapping f: U — R", =z —
(fi(@) ... fo(x))T is C" if every component f;, i =1,...,n,
is C".

It follows from the mean value theorem [55, Theorem
3.4] that C' mappings are locally Lipschitz. Conversely, by
Rademacher’s Theorem [36, Theorem. 5.1.11], every locally
Lipschitz mapping f: R™ — R” has a .Z(R"")-measurable
(but not necessarily continuous) differential D f, which is
defined A\™-almost everywhere.

Theorem H.2. (Sard’s theorem) [56, Theorems 4.1 and 7.2]
Let f: R™ — R", z — (fi(x)...fu(z))" be C" and set
A =A{z : Jf(x) = 0} with Jf(z) as in (1). The following
statements hold.

i) If m < n, then ™ (f(A)) = 0.

ii) f m>nand r >m —n+ 1, then A"(f(A)) =0.

C. Area and Coarea Formula

Next, we state two fundamental results from geometric
measure theory that are used frequently in the paper, namely,
the area and the coarea formula for locally Lipschitz mappings.

Theorem H.3. (Area formula) [36, Theorem 5.1.1]1 If A €
BR™), f: R™ — R" is Lipschitz, and g: A — R is
nonnegative and Lebesgue measurable, and m < n, then

/ Jf (x) A\ (x) :/ card(Aﬂf_l({y})) A2 (y).
A R™
(375)

Corollary H.3. (Area formula) If A € Z(R™), f: R™ — R”
is locally Lipschitz and one-to-one on A, and m < n, then

/,4 Jf(@)dN" (@) = A (F(A).  (376)
Proof. We have
/ JF (@) dA™ () 377)
A
= lm [ 15,00 (@) (@) X" (@) (378)
= }gglo J(f1B,,(0,))(x) dAA™ () (379)
= Jim [ cand (AN 15} 00 {uD) 42 (y)  (380)
= gr&%m(f(AmBm(o,i))) (381)
= %’"(U f(AﬁBm(OJ))) (382)
€N
= (A, (383)

where (378) is by the Lebesgue Monotone Convergence The-
orem [50, Theorem 4.6] upon noting that (1z, (0,i))ien is
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an increasing sequence of nonnegative Lebesgue measurable
functions converging pointwise to the constant function 1, in
(380) we applied Theorem H.3 to f|5,, (0,s), Which is Lipschitz
by Lemma H.12 as B,,(0,i) C B,,(0,i) and B,,(0,%) is
compact for all 7 € N, in (381) we used that f is one-to-one,
by assumption, which implies

1 ifye f(.A N Bm(oa Z))
0 else,

card (A N fIEjL(O,Z-)({y})) = {
(384)
and (382) is by Property ii) in Lemma H.1. O

If m = n, by Property iii) in Lemma H.3, 5™ can be
replaced by A in Theorem H.3 and in Corollary H.3.

Theorem H.4. (Coarea formula) [36, Theorem 5.2.1] If
f+ R™ — R™ is Lipschitz, A € Z(R™), and m > n, then

J @@ = [ e an ) v )

(385)
Corollary H.4. (Coarea formula) If f: R™ — R" is locally
Lipschitz, A € Z(R™), and m > n, then

[ ar@axt@) = [ emenan £ ) v,
A n

(386)
Proof. We have
/ Jf (x) AN (x) (387)
A
= lim J(f1B,,(0,))(x) dA™ () (388)
= Jim [ A (AN Sl (w)) X' () (389
= / %m”<UAmf|g;(o,i)({y})> dA\"(y)  (390)
" ieN

= [ 2" (AN {y)) A\ (v), (391)

R?’L
where (388) follows from (377)—(379), in (389) we applied
Theorem H.4 to f|g, (0,:). Which is Lipschitz by Lemma H.12
as B,,(0,1) C B,,(0,4) and B,,(0, 7) is compact for all i € N,
and (390) is by the Lebesgue Monotone Convergence Theorem
[50, Theorem 4.6] upon noting that, for every i € N, the
function

gi: R" > R
y o (AN fl5E 0 (D)

is Lebesgue measurable [36, Lemma 5.2.5] and, therefore,
(gi)ien is a sequence of nonnegative increasing Lebesgue
measurable functions, with

(392)
(393)

lim g;(y) = 2" (U AN fgim,i)({y})) (394)

1—00 |
€N

for all y € R™ by Property ii) in Lemma H.1. O



D. Properties of Modified Minkowski Dimension

In this section, we state some properties of modified
Minkowski dimension (see Definitions II.1 and II.2).

Lemma H.15. Main properties of modified Minkowski di-
mension:

i) We have

dimy ;5 (U) = inf { sup dimp (U,
€N

ucUu}(wﬁ

1€EN

and

dimys(U) = 1nf{sup dimp (U,
€N

ucUu}mwQ

€N

respectively, where in (395) and (396) the infima are
over all possible coverings {U;};cn of U by nonempty
compact sets U;.

ii) Every s-dimensional C'-submanifold [36, Definition
5.3.11 U of R™ has dimyp(U) = s.

iii) dims(-) and dimyp(-) are monotonically nondecreas-
ing with respect to C.

iv) dimyp(U) < dimg(U) and dimyp(U) < dimg(U) for
all nonempty sets U.

v) If f is Lipschitz, then

dimyp(f(U)) < dimyp (W) (397)
dimyg(f(U)) < dimyg(U) (398)
for all nonempty subsets ¢/ in the domain of f.
vi) dimypg and dim,,p are countably stable, i.e.,
mmMB<LJU>-—bmﬂhmMB( ) (399)
ieN €N
and
dimy;p (U L[) = sup dimyg (U;) (400)
€N i€

for all countable collections of nonempty sets Uf;, i € N.
vii) Let f: R™ — R"™ be locally Lipschitz. Then,

dimyp (f(U)) < dimyg (U)
dimyp (f(U)) < dimyp (U)

(401)
(402)

for all nonempty subsets &/ C R™.

Proof. Property i) is by invariance of dimp and dimp under
set closure [38, Chapter 2.2] and the Heine-Borel theorem [42,
Theorem 2.41].

Properties ii)-iv) follow from Definition II.2 and the prop-
erties of lower and upper Minkowski dimension listed in [38,
Chapter 2.2].

We prove Properties v)-vii) for dimy;z only. The corre-
sponding arguments for dimyp are along the same lines.

To prove Property v) for dimyg, let f: D — R™ be Lip-
schitz with domain D C R™ and consider &/ C R™. By [53,
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Theorem 2], there exists a Lipschitz mapping g: R™ — R"
with g|p = f. We have

dimyp (f(U)) = dimyg(9(U)) (403)
= mf{supde(vn L) < | vz}
ieN ieN
(404)
< inf{supdimB(g(Ui)) UC | U
ieN ieN
(405)
< inf{supdimB(m U C Uuz} (406)
ieN ieN
= @MB (Z/[)a (407)

where (404) is by Property i) with the infimum over all
possible coverings {V;}ien of g(U) by nonempty compact
sets V; C R", in (405) we used that, by Lemma H.13,
Lipschitz images of compact sets are again compact with
the infimum over all possible coverings {U;};en of U by
nonempty compact sets U; C R™, in (406) we used that
dimp (g(U;)) < dimp (U;) for all i € N as g is Lipschitz [38,
Proposition 2.5, Property (a)], and (407) is again by Property
1).

Property vi) is stated in [38, Chapter 2.3] without proof. For
the sake of completeness, we prove (400). Let

u=Ju

€N

(408)

with U; C R™ nonempty for all 7 € N. By the monotonicity
of dimy;p, we have

dimy (U) > sup dimy;p (Z/[z) (409)
ieN
It remains to show that
dimyp (U) < sup dimy;p (Us). (410)

€N

Suppose first that the U/; are all bounded. It follows that

uch} (411)

dimy;p (U) = inf { sup dimg (W,
€N

1€EN
1nf{bup dimyp (Vi) : U C U Vi } 412)
€N 1eN
< SUP@MB(ui)a (413)

ieN

where (411) is by Definition II.2 with the infimum over all
possible coverings {V;};cn of U by nonempty bounded sets
V; € R™, in (412) we applied Lemma H.16 below, and in
(413) we used that, by assumption, {U;};en is a covering
of U consisting of nonempty bounded sets /; C R™, which
establishes (410) for the case where the U{; are all bounded.

Next, suppose that the ; are not necessarily all bounded.

We can write
u=1J ¢,
i,jEN

(414)



with C; j = U; N B, (0, 7) for all i, j € N, so that

dimyp(U) = _Su%@MB(Ci,j) (415)
2, €
< supdimyp (U;), (416)

ieN

where in (415) we rely on Property vi) for nonempty bounded
sets, and (416) follows from C; ; C U; for all 4,57 € N and
the monotonicity of dim,,p; this establishes (410) for the case
where the U/; are not necessarily all bounded.

It remains to establish Property vii). Consider a locally
Lipschitz mapping f: R™ — R” and let f C R™ be
nonempty. We have

dimy (f(U)) = dimys | | FUNB(0,5)) | 417)
jEN
= sgg(@MB(f(U NBn(0,7))) (418)
J
< sup(dimyp (U N Bm (0, 7)) (419)
jEN
= dimyg | (J U N B(0,5) (420)
JjEN
= dimy(U), 21)

where (418) and (420) are by countable stability of dimyg,
and in (419) we applied Property v) to f|m, which is
Lipschitz thanks to Lemma H.12 with ¢ N B,,,(0, j) compact
by the Heine-Borel theorem [42, Theorem 2.41], for all j €

N. O

Lemma H.16. LetZ/ C R™ be nonempty. Then, dimy;5(U) =
F(U) with

FU) = inf {supdimMB(Ui) ucl ui} (422)

€N ieN

and dimyp(U) = F(U) with

ieN )
€N
respectively, where in both cases the infimum is over all
possible coverings {U;};cn of U by nonempty bounded sets
Uu; CR™,

Proof. We present a proof for dim,; only, the arguments
for dimyp are along the same lines. First note that F(U) <
dimy;5(U) as dimyp < dimp by Property iv) in Lemma
H.15. It remains to show that F (i) > dimy;p(U). Suppose,
towards a contradiction, that F'(U) < dimy;p(U/) and set A =
dimyp(U) — E(U) > 0. By definition of F(U), there must
exist a collection {U; };cn of nonempty bounded sets &; C R™
such that

uclJu (424)
1€N
and
. A
sup dimyg (U;) < F(U) + ER (425)
1€EN
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Similarly, by Deﬁnition IL.2, for every ¢ € N, there must exist
a collection {VJ(Z)}J-GN of nonempty bounded sets VJ(»Z) such
that

(4)
u, < |Jv (426)
JjeN
and
. (i) . A
supdimg, (V") < dimyp @) + 5. (427)
jJEN 3
Combining (424) with (426) yields
(i)
uc |J v (428)
i,jEN
Next, note that
dimy(U) < sup dim (V1) (429)
i,jEN
— sup sup dimg (v}“) (430)
ieN jeN
. A
< supdimyp(Us) + — 43D
ieN 3
2A
<FU)+ 3 (432)
< FU)+ A, (433)

where (429) follows from Definition I1.2 and (428), in (431)
we used (427), and (432) is by (425). This is in contradiction
to A = dimy(U) — E(U). O

APPENDIX I
PROPERTIES OF SET-VALUED MAPPINGS

A set-valued mapping ®: 7 — 28" associates to each
x € T a set &(x) C R™. Many properties of ordinary
mappings such as, e.g., measurability, can be extended to set-
valued mappings. In this appendix, we first briefly review
properties of set-valued mappings and then state a result
needed in the existence proof of a measurable decoder in
Section V-A.

Definition I.1. (Closed-valuedness of set-valued mappings)
[57, Chapter 5] A set-valued mapping ®: 7 — 28" is closed-
valued if, for every t € T, the set ®(¢t) is closed.

Definition 1.2. (Inverse image of a set-valued mapping) [57,
Chapter 14] For a set-valued mapping ®: 7 — 28", the
inverse image ®~!(A) of A CR™ is

PN A)={teT: :o(t)NA#0D}.

Definition 1.3. (Measurable set-valued mapping) [57, Chapter
14] Let (7,7(T)) be a measurable space. A set-valued
mapping ®: T — 28" is . (T )-measurable if, for every open
set O C R™, the inverse image ®~1(0) € (7).

Lemma L1. [57, Theorem 14.3] Let (7,.7(T)) be a
measurable space and ®: 7 — 28" closed-valued. Then, ®

is .%(T)-measurable if and only if ®~1(K) € .(T) for all
compact sets JC C R™.

Lemma I2. [57, Corollary 14.6] Let (7,(T)) be a
measurable space and ®: 7 — 28" an .7(T)-measurable

(434)



closed-valued mapping. Then, there exists a . (7T )-measurable
mapping f: ®1(R™) — R™ such that f(t) € ®(¢) for all
te @~ L(R™).

Definition I.4. (Normal integrand) [57, Definition 14.27] Let
(T,#(T)) be a measurable space. An extended real-valued
function f: 7 x R™ — R is a normal integrand with respect
to #(T) if its epigraphical mapping
Sp: T — 2R
t— {(x,a) e R" xR: f(t,z) < a}

(435)
(436)

is closed-valued and . (7T )-measurable.

Lemma 1.3. [57, Example 14.731] Let 7 = R™*™ x R™ and
suppose that f: 7 x R™ — R is continuous. Then, f is a
normal integrand with respect to Z(T).

Lemma I.4. [57, Proposition 14.33] Let (7,.7(7T)) be a
measurable space. An extended real-valued function f: 7 x
R™ — R is a normal integrand with respect to (7) if and
only if, for every a € R, the level-set mapping

Lo: T — 2R
t—{xeR™: f(t,x) < a}

(437)
(438)

is .(T)-measurable and closed-valued.

We can now state the result on set-valued mappings needed
to prove the existence of a measurable decoder in Section V-A.

Lemma L5. Let (7,.7(7)) be a measurable space, a € R,
and f: T x R™ — R. Suppose that f is a normal integrand
with respect to .(7) and K C R™ is compact and nonempty.
Then, the following properties hold.

i) The set-valued mapping

Pic: T — 2R
t—={xek: ft,z) <a}

(439)
(440)

is .(T )-measurable and closed-valued.
i) Pc'(R™) = {t € T : 3z € K with f(t,z) < a} €
L(T).

iii) There exists a .%(7 )-measurable mapping
pr: Pc'(R™) — R™ (441)
t— pic(t) € Pe(t). (442)

Proof. We start with the proof of i). For each ¢ € T, we can
write Px(t) = Lo (t) N K, where L, is the . (T )-measurable
closed-valued level-set mapping from Lemma 1.4. Since L,
is closed-valued and the intersection of a closed set with a
compact set is closed, Px is closed-valued. To prove that Py
is Z(T )-measurable it suffices, thanks to Lemma .1, to show
that Pc'(A) € #(T) for all compact sets A C R™. To this
end, let A C R™ be an arbitrary but fixed compact set. Since
the intersection of two compact sets is compact it follows that
K N A is compact. As L, is . (T)-measurable and K N A
is compact, L' (K N A) € .#(T) by Lemma L1. Therefore,
as L71 (KN A) = Pc'(A), we can conclude that Pc'(A) €
Z(T). Since A was arbitrary, this proves i). Now, . (T)-
measurability of P implies Pc'(R™) € .#(T), and thereby
ii). Finally, the existence of the (7 )-measurable mapping
px in iii) follows from i) and Lemma 1.2. O
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APPENDIX J
PROPERTIES OF SEQUENCES OF FUNCTIONS IN SEVERAL
VARIABLES

In this appendix, we summarize properties of sequences of
functions in several variables needed in the proof of Theorem
III.2. We start with a result that establishes a sufficient
condition for uniform convergence.

Theorem J.1. (Weierstrass M -test) [42, Theorem 7.10] Con-
sider a sequence {f,}nen of functions f,: R¥ — R and
suppose that there exists a sequence {M,, },cn of nonnegative
real numbers such that

|fn(x)] < M, forall xze RF and n € N (443)

and ) M, < oo. Then, the sequence {s, },en of partial
sums

(444)

n
Sp = Z fi
=1

converges uniformly to a function f: R* — R.

Next, we state a result that allows us to interchange the
order of summation and differentiation for certain sequences
of differentiable functions. We start with the corresponding
statement for differentiable functions in one variable.

Theorem J.2. [42, Theorem 7.17] Consider a sequence
{fn}nen of functions f,: R — R, each of which is dif-
ferentiable on the closed interval [a,b] C R, such that
lim,, o fn(xo) exists and is finite for at least one xq € [a, b].
Let f; denote the derivative of f,, n € N. If {f] },en con-
verges uniformly on [a, b], then { f,, },cny converges uniformly
on [a,b] to a function f: R — R satisfying

4@ oy )

dx n—00

for all = € [a, b]. (445)
Corollary J.1. Consider a sequence {f,}nen of functions
fn: RF — R converging uniformly to f: R¥ — R. Suppose
that there exists an ¢ € {1,...,k} such that the partial
derivatives Of,,(z)/0x; exist and are finite for all z € R¥
and n € N and that the sequence {0f,/0%;}nen converges
uniformly. Then,

of (=)
8.%1'

O fn(x)

= lim for all z € R”.

n—oo 1,'7;

(446)

Proof. Let * = (x1...x)" € RF be arbitrary but fixed
and denote by {g,}nen the sequence of functions defined
according to gn(t) = fao((z1... 21 t migr... 2p)7).
Since {f, }nen converges uniformly to f by assumption, and
gn(x;) = fn(x) for all n € N, it follows that

lim g,(z;) = lim f,(x) (447)
n—oo n—oo
= f(=). (448)
Since {0f,/0x;}nen converges uniformly, so does

{dgn/dt}nen. In particular, there exists a closed interval
[a,b] € R containing x; such that {dg,/dt},en converges
uniformly on that interval [a, b]. Theorem J.2 therefore implies



that {g,}nen converges uniformly on [a,b] to a function
g: R — R satisfying
dg(t) .. dgn(t)
A A T
But g(x;) = f(x) and dg,(x;)/dzx; = Ofn(x)/0x; for all
n € N, which implies

for all t € [a, b)]. (449)

of(x)/0x; = le Ofn(x)/0x;. (450)
As x was arbitrary, this finishes the proof. O

APPENDIX K
PROPERTIES OF REAL ANALYTIC MAPPINGS AND
CONSEQUENCES THEREOF

In this appendix, we review material on real analytic map-
pings, on which our strong converse result in Sections IV
and VII relies. We start with the definition of a real analytic
mapping.

Definition K.1. (Real analytic mapping) [58, Definition 2.2.1]
Let U be an open set in R™.

i) A function f: U — R is real analytic on I/ if, for each
x € U, f may be represented by a convergent power
series (see Definition [58, Definition 2.1.4]) in some open
neighborhood of x; if &/ = R™, then f is real analytic.

ii) A mapping f: U — R", x — (fi(x)... fn(x))" is real
analytic on I/ if every component f;, i =1,...,n, is real
analytic on U; if «/ = R™, then f is real analytic.

Lemma K.1. [58, Corollary 1.2.4] If a power series

fl@) =Y aj(z—a) 51)
=0

converges on an open interval Z C R, then f is real analytic
on 7.

Lemma K.2. [58, Proposition 2.2.2] Let ¢/ and V' be open
sets in R™. If f: Y/ — R is real analyticon &/ and g: V — R
is real analytic on V, then f+ g and f - g are both real analytic
on U NV. Furthermore, if g(x) # 0 for all x € U NV, then
f/g is real analytic on U N V.

Corollary K.1. All polynomials on R™ are real analytic.

Lemma K.3. [58, Proposition 2.2.3] Let I/ be an open set
in R™ and suppose that f: U/ — R is real analytic on U.
Then, the partial derivatives—of arbitrary order—of f are real
analytic on U.

Lemma K.4. [58, Proposition 2.2.8] Let I/ be an open set
in R™ and V an open set in R™. Suppose that f: U/ — R”
is real analytic on I/ and g: V — R” is real analytic on V.
Then, for every & € U with f(x) € V, there exists an open
set WW C R™ such that z € W and (go f)|w: W — RF is
real analytic on W.

Corollary K.2. If f: R™ — R" and g: R” — R* are both
real analytic, then g o f: R™ — RF is real analytic.

Lemma K.5. [58, p. 83] A real analytic function f: R™ — R
vanishes either identically or on a set of Lebesgue measure
ZEero.
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The following definition extends the notion of a diffeomor-
phism of class C" [40, Definition 3.1.18] to a real analytic
diffeomorphism.

Definition K.2. (Real analytic diffeomorphism) Let &/ C R"
be an open set and p: Y — R"™ real analytic. The mapping p
is a real analytic diffeomorphism if V = p(Uf) is an open set
and the inverse p~! exists on V and is real analytic on V.

Theorem K.1. [58, Theorem 2.5.1] Let i/ C R™ be open and
f:U — R™ real analytic. If Jf(x) > 0 for some xy € U,
then f~! exists on an open set V C R™ containing f(x) and
is real analytic on V.

Corollary K.3. Let I/ be an open set in R™ and suppose that
f:U — R™ is real analytic on U. If there exists an g € U
such that Jf(xg) > 0, then there exists an 7 > 0 such that
f1B,, (wo,r) is @ real analytic diffeomorphism.

Proof. Suppose that there exists an xy € U such that
Jf(xo) > 0. Theorem K.1 then implies that there exists an
open set V C R™ such that f(xzo) € V, and f~! exists on V
and is real analytic on V. Since V is open and f(xzg) € V,
there must exist an £ > 0 such that B,,(f(zo),e) C V. By
continuity of f, which follows from real analyticity, there must
exist an r > 0 such that f(B,,(xo,7)) C B, (f(xo),e) C V.
We set W = f(B,,,(zo,)). Summarizing, f is real analytic on
B (xo,7) and f~! exists on W = f(B,,(xo,7)) and is real
analytic on W. It remains to show that W is open. This follows
by noting that W = (f =)~ (B, (o, 7)) is the inverse image
of an open set under a real analytic (and therefore continuous)
mapping, and is hence open. We conclude that f|g (z,,r) i
a real analytic diffeomorphism.

Corollary K.4. Let I/ be an open set in R™ and suppose that
f:U — R™ with n > m is real analytic on U. If there exists
an xy € U such that Jf(xg) > 0, then there exists an r > 0
such that f is one-to-one on B,,(x, ).

Proof. Suppose that there exists an g € U such that
Jf(xg) > 0. Then, n > m implies rank(Df(xg)) = m.
Thus, the n x m matrix D f(xg) has m linearly independent
row vectors. Denote the indices of m such linearly independent
row vectors by {i1,...,%n}, and consider the mapping

g: U —>R™
= (fi (@) fi, (@)

Since f is real analytic on U, so is g¢. Furthermore,
rank(Dg(xo)) = m and hence Jg(xy) > 0. Corollary K.3
therefore implies the existence of an 7 > 0 such that g, (.,
is a real analytic diffeomorphism. In particular, g is one-to-one
on B,,(xg,r), which in turn implies that f is one-to-one on
Bm (:130, 7’). L]

(452)
(453)

Next, we show that the square root is a real analytic
diffeomorphism on the set of positive real numbers.

Lemma K.6. The function / : R, — Ry, x — /x, where
Ry ={z € R:z > 0}, is a real analytic diffeomorphism.

Proof. The function ()?: Ry — R, o + 22 is real analytic
by Corollary K.1. Let y € R be arbitrary but fixed and set



x = ,/y. Since dy/dz = 2z > 0, Theorem K.1 implies that
there exists an r > 0 such that the inverse of (-)2, given by
/-, exists on (y—r, y—+r) and is real analytic on (y—r,y+7).
As y was arbitrary, it follows that /- is real analytic on R,.
Finally, since (-)° is the inverse of 1/~ and VRy =Ry s
open, /- is a real analytic diffeomorphism. O

Lemma K.7. If f: R™ — R” is real analytic, so is Jf.
In particular, Jf vanishes either identically or on a set of
Lebesgue measure zero.

Proof. Suppose that f: R™ — R" is real analytic. Recall that

Jf(x) = \/g(x), where g: R — R,

(@) = det(Df(x)(Df(x))T)
det((Df(z))TDf(x))

Lemmata K.2 and K.3 imply that g is real analytic. As /-
is real analytic on R, by Lemma K.6, real analyticity of
Jf follows from Lemma K.4. Finally, as Jf is real analytic,
it vanishes by Lemma K.5 either identically or on a set of
Lebesgue measure zero. O

if
ifn<m 454)
else.

We have the following important properties of real analytic
mappings.

Lemma K.8. Let h: R® — R™ be a real analytic mapping
of s-dimensional Jacobian Jh # 0. Then, the following
properties hold.

i) The set O = {z € R® : Jh(z) > 0} is open and satisfies
A (R*\O) = 0.

ii) For every set A € #(R®) of positive Lebesgue measure,
there exists a set B € Z(R®) of positive Lebesgue
measure such that B C A and the mapping h|g is an
embedding, i.e., Jh(z) > 0 for all z € B and h is one-
to-one on B.

Proof. Openness of O follows from continuity of Jh, and
Lemma K.7 together with Jh Z 0 implies A\*(R*\O) = 0. To
prove ii), consider A € Z(R?) of positive Lebesgue measure.
As A3(R5\O) = 0, with O from i), it follows that A*(ANO) >
0. Thus, by Lemma H.9, there must exist a zg € AN O such
that

A (Bs(zo,r)NANO) >0 forall r>0. (455)

Since Jh(zp) > 0, which follows from zy € O, Corollary K.4
implies that there must exist an 7o > 0 such that A is one-to-
one on B, (zg,rg). Setting B = Bs(zo,r0) N.ANO concludes
the proof. O

Definition K.3. (Real analytic submanifold) [58, Definition
2.7.1] A subset M C R" is an m-dimensional real analytic
submanifold of R™ if, for each y € M, there exist an open set
U C R™ and a real analytic immersion f: 4 — R™ such that
y € f(U) and open subsets of U are mapped onto relatively
open subsets in M. Here, a subset YW C M is called relatively
open in M if there exists an open set VV C R"™ such that
W=yYnmMm.

Equivalent definitions of real analytic submanifolds are
listed in [58, Proposition 2.7.3].
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Lemma K.9. Let M C R® be a t-dimensional real analytic
submanifold of R® and zy € M. Then, there exist a real
analytic embedding ¢: R* —+ M C R® and an n > 0 such
that

¢(0) = 2o,
BS(Z0777) N M g C(Rt)7

and ¢ (Rt) is relatively open in M.

(456)
(457)

Proof. Since M C R? is a t-dimensional real analytic sub-
manifold of R?®, Definition K.3 implies the existence of an
open set I/ C R? and a real analytic immersion &: U — R®
that maps open subsets of I/ onto relatively open subsets in M
and satisfies zg = {(ug) with ug € U. As £ is an immersion,

rank(DE(v)) =t forall v € U. (458)

Since U is open and ug € U, there exists a p > 0 such that
Bi(ug, p) C U, which implies in turn that

&(Bt(uo, p)) S EWU).

Using Corollary K.4 and J&(ug) > 0 (recall that £ is an
immersion) we may choose p sufficiently small for £ to be
one-to-one on B;(ug, p). As £(Bi(uo, p)) is relatively open in
M, there must exist an open set V C R® such that

£(Bi(uo,p)) = VN M.

(459)

(460)

Now, as V is open and zg = {(ug) € V, we can find ann > 0
such that B;s(zg,7) C V, which, together with (460), yields

BS(ZQ,T]) n ./\/l Q f(Bt(uO,p)).

Let k: R — B;(0,p) be the real analytic diffeomorphism
constructed in Lemma K.10 below and set

(461)

C:R' SR
v = &(k(v) + up).

(462)
(463)

The mapping ¢ is a real analytic mapping by Lemmata K.2
and K.4. Clearly, ¢ is one-to-one on R! as x is a diffeo-
morphism and ¢ is one-to-one on By(ug, p). Since ((R?) =
&(Bi(ug, p)), (461) establishes (457) and (460) proves that
¢(R?) is relatively open in M. Finally, (456) follows from
€(0) = &(k(0) + ug) = &(ug) = 2z, where in the second
equality we used (467) in Lemma K.10 below. It remains to
show that ( is an immersion, which is effected by proving that
rank(D((v)) = t for all v € R. The chain rule implies

D¢(v) = (DE)(k(v) + uo) Dr(v)

It now follows

i) from (469) in Lemma K.10 below that rank(Dx(v)) = ¢
for all v € R, and
ii) from (458) and k(v) + up € Bi(ug,p) C U that
rank((D¢)(k(v) + ug)) =t for all v € RY.
Applying Lemma K.12 to (D¢)(k(v) + ug) € Rs*!
and Dk(v) € R™! and using i) and ii) above yields
rank(D¢(v)) > t for all v € R’ which in turn implies
J¢(v) > 0 for all v € R, thereby concluding the proof. [

for all v € RY. (464)



Lemma K.10. For p > 0, the mapping

r: RF = B(0, p) (465)
S (466)
L+l
is a real analytic diffeomorphism on R” satisfying
x(0) =0, (467)
w(RF) = B (0, p), (468)
rank(Dk(z)) =k for all € R¥. (469)

Proof. 1t follows from the definition of x that x(0) = 0. The
mapping ~ is real analytic thanks to Lemmata K.2, K.4, and
K.6. Now, consider the mapping

o: B(0,p) — R* (470)

L4 471)

Yy ——
V= llyl3

Again, o is real analytic thanks to Lemmata K.2, K.4, and
K.6. Since (ko o)(y) = y for all y € B(0, p), it follows
that x(R¥) = B(0, p). Moreover, as (o o k)(x) = x for all
x € R*, 5 is the inverse of x, which establishes that  is a real
analytic diffeomorphism on R¥. Finally, since (0o k)(x) = =
for all x € R*, the chain rule implies I}, = D(o o k)(x) =
(Do) (k(x))Dr(z) for all x € R¥, which yields (469). [

Proposition K.1. [58, Proposition 2.7.3] Let M C R”. The
following statements are equivalent:

i) M is a m-dimensional real analytic submanifold of R".

ii) For each z € M there exist an open set &/ C R" with
z € U, a real analytic diffeomorphism p: &/ — R", and
a m-dimensional linear subspace £ C R", such that

pMNU)=pU)NL. (472)

Proposition K.1 allows us to state the following sufficient

condition on the inverse image of a point under a real analytic
function to result in a real analytic submanifold.

Lemma K.11. Let ¢/: R® — R be a real analytic function,
yo € Y(R®), and set M,, = ¥ 1({yo}). Suppose that
JY(z) > 0 for all z € M,,. Then, M, is a (s — 1)-
dimensional real analytic submanifold of R®.

Proof. We may assume, w.l.o.g., that yo = 0 (if yo # 0, we
set ¢(z) = ¥(z) —yo and prove the lemma with 1) in place of
1, noting that M, = 11 ({0}) and Jo)(z) = Jy(z) for all
z € R?.) The proof is effected by verifying that M, satisfies
Statement ii) of Proposition K.1. Let zg € M be arbitrary
but fixed and set a] = Dt(zg). Since Jip(zg) > 0 by
assumption, we must have a; # 0. Choose as,...,as € R®
such that A = (a; ... a,)" is a regular matrix and consider
the mapping

p: R® — R®

ze (Y(2) ajz... aSTz)T

473)
(474)

Note that Dp(zo) = A. Since rank(A) = s by construction,
Jp(zo) > 0. It therefore follows from Corollary K.3 that
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there exists an r > 0 such that p|g_(;, ) is a real analytic
diffeomorphism. Finally, we can write

p(Mo N By(zo,7)) = p({z € Bs(20,7) : ¥(2) = 0}) (475)
— ({z € By(z0,7) : el p(2) = 0})

476)

= ,O(BS(Z(),T)) ncL, 477)

where (475) follows from Mo = 1 ~1({0}), (476) is by (474),
and in (477) we set £ = {(wy ... w,)T € R® 1wy =0}. O

Lemma K.12. (Sylvester’s inequality) [59, Chapter 0.4.5,
Property (c)] If A € R™** and B € R**", then

rank(A) + rank(B) — k < rank(AB) (478)
< min{rank(A), rank(B)}.
(479)
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