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1. Introduction

The Mumford-Shah functional was introduced in [33] and [34] within the context of
a variational approach to image segmentation problems (cf. [34] and [29], Chapter
4). In dimension n it can be written as follows

F (u) :=

∫

Ω\Su

|∇u|2 dx + α
� n−1(Su) + β

∫

Ω

(u − g)2 dx , (1.1)

where Ω is a bounded regular domain in R
n, g : Ω → [0, 1] is a given function

(input grey level), α and β are positive (tuning) parameters,
�

n−1 is the (n− 1)-
dimensional Hausdorff measure—namely the usual (n−1)-dimensional area in case
of subsets of regular hypersurfaces. The unknown function u : Ω → R is regular
out of a closed singular set Su, whose shape and location are not prescribed; thus
minimizing F means optimizing the function u and the singular set Su.

The existence of minimizers of F in dimension n = 2 was proved directly by
considering the closed set Su as the main independent variable ([34], see also [17],
and [29], Chapter 15), while in general dimension it was obtained by first defining
F on the space SBV (Ω) of special functions with bounded variation (see Sect. 2),
where the existence of (weak) minimizers could be proved by semicontinuity and
compactness (see [3] and [7], Chapter 5), and then recovering a solution of the
original problem by a suitable regularity result ([19], see also [7], Chapter 6).
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Moreover the existence result in [3] applies to a large class of functionals which
occur in the modeling of a wide range of phenomena, from image segmentation,
to fractures in brittle materials, to nematic liquid crystals (see [7], Sect. 4.6, for
a survey), and therefore the Mumford-Shah functional should be regarded as the
prototypical example of functional coupling bulk and surface contributions.

On a mathematical level, one of the most relevant features of F is a deep lack
of convexity. Hence, not only minimizers may be not unique, but “identifying”
them is by no means an easy task, also in terms of efficient algorithms. Clearly,
every minimizer u satisfies certain equilibrium conditions which can be obtained
by considering different types of infinitesimal variations (see [34] or [7], Sect. 7.4):
for instance u must satisfy ∆u = β(u − g) in the complement of the singular set
Su, the normal derivative of u on Su vanishes (where Su is a regular surface),
while the mean curvature of Su multiplied by α is equal to the difference of the
energy densities |∇u|2 + β(u − g)2 on the two sides of Su. However, due to the
lack of convexity of F , these conditions do not imply minimality—not even local
minimality.

In this paper we propose a sufficient condition for minimality, and describe some
applications. To explain the idea behind this principle, we restrict our attention
to the homogeneous Mumford-Shah functional, which is obtained by setting α = 1
and β = 0 in (1.1), namely

F0(u) :=

∫

Ω\Su

|∇u|2 dx +
� n−1(Su) . (1.2)

We assume now that u and Su are sufficiently regular, and denote by u+ and u−

the traces of u at the two sides of Su (so that u+ > u−) and by νu the unit normal
to Su which points from the side of u− to that of u+. The complete graph of
u, denoted by Γu, is the boundary of the subgraph of u, and is oriented by the
inner normal ν

Γu. Thus Γu consists of the union of the usual graph of u, where

ν
Γu = (|∇u|2 + 1)−1/2(∇u,−1), and an additional “vertical part” given by the

union of all segments with endpoints (x, u−(x)) and (x, u+(x)) with x ∈ Su, where
ν

Γu
= (νu, 0).

Now we look for vectorfields φ = (φx, φt) on Ω × R such that F0(u) is larger
than or equal to the flux of φ through Γu for every u, that is

F0(u) ≥
∫

Γu

φ · ν
Γu d

� n . (1.3)

Since the right-hand side of (1.3) can be re-written as

∫

Ω

[

φx(x, u) · ∇u − φt(x, u)
]

dx +

∫

Su

[

∫ u+

u−

φx(x, t) dt
]

· νu d
� n−1 , (1.4)

the term
∫

|∇u|2 is larger than the first integral in (1.4) when φ satisfies |ξ|2 ≥
φx(x, t) · ξ − φt(x, t) for every (x, t) ∈ Ω × R and ξ ∈ R

n, or, equivalently, when

(a) |φx(x, t)|2 ≤ 4φt(x, t) for x ∈ Ω, t ∈ R.

On the other hand
�

n−1(Su) is larger than the second integral in (1.4) when

(b)
∣

∣

∣

∫ t2

t1

φx(x, t) dt
∣

∣

∣
≤ 1 for x ∈ Ω, t1, t2 ∈ R.

Moreover equality holds in (1.3) for a particular u if

(a’) φx(x, u(x)) = 2∇u(x) and φt(x, u(x)) = |∇u(x)|2 for x ∈ Ω \ Su,

(b’)

∫ u+(x)

u−(x)

φx(x, t) dt = νu(x) for x ∈ Su.

Let now be given a function u, and assume that there exists a vectorfield φ
which is divergence-free and satisfies assumptions (a), (b), (a’), and (b’) above.
Then for every function v which agrees with u on the boundary of Ω there holds

F0(v) ≥
∫

Γv

φ · ν
Γv d

� n =

∫

Γu

φ · ν
Γu d

� n = F0(u) , (1.5)

where the first equality follows from the divergence theorem, since φ is divergence-
free and Γu and Γv have the same boundary. Hence the minimality of a given
function u can be proved by constructing such a φ.

We call the vectorfield φ a calibration for u, and indeed our minimality criterion
closely resembles the classical principle of calibrations for minimal hypersurfaces
(see the survey [30] for further references). However, functionals of Mumford-Shah
type are not included in the general theory of calibrations (see [22]) because they
cannot be written as integrals over the complete graph of u: the novelty of our
approach consists in introducing suitable non-local constraints (namely, condition
(b)) to define the class of admissible vectorfields.

In Sect. 3 we expand the idea outlined above and develop the principle of cali-
brations for minimizers of F and more general functionals (Theorems 3.3 and 3.8)
with or without prescribed boundary values. In particular we recover the principle
of paired calibrations for minimal partitions introduced in [10] and [31] (in fact, a
slight generalization of it—cf. Theorem 3.9 and Remark 3.11).

However, even though the principle is relatively simple to understand, to con-
struct a calibration for a given u may be very difficult. As a matter of fact, we do
not know of any general method of construction, not even for minimal surfaces.
Instead, we have collected in Sects. 4 and 5 many examples of calibrations for F0

and F , and gathered some helpful remarks and observations. Despite the lack of
a general recipe, we can give short and easy proofs of several minimality results,
among which we recall the following:

(1) every harmonic function minimizes F0 when the gradient is sufficiently small
(Paragraph 4.6);

(2) a function which is constant on each element of a minimal partition of the
domain is a minimizer of F0 when the values are sufficiently far apart from each
other; in particular this applies to the so-called triple junction (Paragraphs
4.8 and 4.9);

(3) every solution of the equation −∆u + β(u − g) = 0 with Neumann boundary
conditions is a minimizer of F for large β (Paragraph 5.3);
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(4) if g is the characteristic function of a regular set, then u := g minimizes F for
large β (Paragraph 5.4).

Notice that (3) and (4) give a strong indication that for initial data with smooth
singular sets the gradient flow associated with F0 in the L2-metric (defined via time
discretization, cf. [14], [25]) leaves the singular set still, at least for small times,
and agrees with the heat flow elsewhere. Partial results in this direction are given
in Remark 5.7 and Paragraph 5.10; see [24] for a proof in the one-dimensional case
(although with a slightly different definition of the gradient flow).

Finally, we wish to recall the so-called “cracktip” conjecture: the function u on
the plane given in polar coordinates by u :=

√

2ρ/π sin(θ/2), with −π < θ ≤ π,
minimizes the homogeneous Mumford-Shah functional F0 among all functions on
the plane which agree with u outside a bounded set. This conjecture has been
recently proved in [8], but so far no calibration has been found.

The rest of the paper is organized as follows: in Sect. 2 we recall the basic
notation about finite perimeter sets and the space SBV , which is indeed the natural
setting for our theory. However, under most regards the unfamiliar reader can just
replace the word SBV with “smooth out of a piecewise smooth singular set”, and
“finite perimeter” with “piecewise smooth boundary”. We conclude the section
with a rather general form of the divergence theorem, which allows our theory
to include also discontinuous calibrations. The proof of this and other technical
results is postponed to the Appendix.

Some of the results included here were announced in [2] and [15]. An extended
version of this paper, containing a few other examples, can be downloaded from
http://cvgmt.sns.it/papers. Further applications of the calibration method
can be found in [16], [28], [32], [9].

Acknowledgements. The first and third authors have been partially supported by MURST
through the projects “Equazioni Differenziali e Calcolo delle Variazioni (1997)” and “Calcolo delle
Variazioni (2000)”. This research was initiated while the first author was visiting the University
of Toulon, and subsequently developed during a stay at the Max Planck Institute for Mathemat-
ics in the Sciences in Leipzig. Several people contributed, with discussions and remarks, to the
final shape of this paper; among them, we would like to thank in particular Antonin Chambolle
and Massimo Gobbino.

2. Notation and preliminary results

Throughout this paper, sets and functions are always assumed to be Borel measur-
able, and we do not identify functions which agree almost everywhere. A vectorfield
on a subset E of R

n is a map from E into R
n, and its divergence is always intended

in the sense of distributions (relative to the interior of its domain). Ω is a (possibly
unbounded) open subset of R

n, S
n−1 is the unit sphere in R

n,
�

k stands for the
k-dimensional Hausdorff measure and � n for the n-dimensional Lebesgue measure
(but in integrals we write dx instead of d� n). The characteristic function of a set
E is the function 1E which takes value 1 in E and 0 outside. The restriction of any
Borel measure µ to a set E is denoted by µ E, while g · µ is the (vector) mea-
sure canonically associated with any µ-summable (vector) function g. A (vector)

function f on R
n has approximate limit a at x, and we write ap lim

y→x
f(y) = a, if

lim
r→0

1

rn

∫

B(x,r)

|f(y) − a| dy = 0 (2.1)

(when f is defined on E ⊂ R
n, B(x, r) must be replaced by B(x, r) ∩ E). Note

that this definition slightly differs from the usual one, given in terms of the density
at x of the pre-images of neighbourhoods of a.

We recall now some notation and basic facts about finite perimeter sets, BV
and SBV functions; for more precise definitions and a detailed account of the
results we refer to [7], Chapters 3 and 4.

The space BV (Ω) consists of all real functions u ∈ L1(Ω) whose distributional
gradient Du is (represented by) a bounded vector measure on Ω; to simplify the
notation we denote the integral of an R

n-valued function f with respect to Du by
∫

Ω
f · Du. We recall that when Ω has Lipschitz boundary, then u admits a trace

on the boundary (in the approximate sense), still denoted by u.
The singular set Su consists of all points where u has no approximate limit;

if u is a BV function then Su is an (n − 1)-dimensional rectifiable set, which
means that it can be covered, up to an

�
n−1-negligible subset, by countably

many hypersurfaces of class C1. Thus, for
�

n−1-almost every x ∈ Su, there exist
the approximate normal νu(x) ∈ S

n−1 and the traces u+(x) and u−(x) of u on
the two sides of Su, namely the approximate limits of the restrictions of u to the
two half-spaces defined by the (approximate) tangent hyperplane of Su at x. We
arrange so that u+(x) > u−(x), and νu(x) is pointing from the side of u−(x) to
that of u+(x).

The measure Du can be canonically decomposed as the sum of three mutually
orthogonal measures: the Lebesgue part ∇u · � n, where ∇u is the approximate
gradient of u, the jump part (u+ − u−) νu · � n−1 Su, and a remainder, called
Cantor part , which is singular but does not charge any

�
n−1-finite set; the space

SBV (Ω) consists of all functions u ∈ BV (Ω) whose distributional gradient has
no Cantor part. A subset E of Ω has finite perimeter (in Ω) if the distributional
derivative of its characteristic function 1E is a bounded vector measure on Ω; the
measure theoretic boundary ∂∗E is the singular set of 1E , while the inner normal
ν

∂∗E
is the associated normal vectorfield ν1E

. The distributional gradient of 1E

has no Lebesgue and no Cantor part, that is

D1E = ν
∂∗E

·� n−1 ∂∗E . (2.2)

A general form of the divergence theorem

When looking for calibrations for a given function, it is often convenient to
consider also vectorfields which are not regular. In doing so, however, we face
some technical difficulties.

First of all, the first identity in (1.5) depends on the divergence theorem, and
may not hold when φ is divergence-free (in the sense of distributions) but not
continuous, because the flux of such a vectorfield through a given surface is not
well-defined. To solve this problem, we must assume a certain regularity in φ.
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Definition 2.1. A vectorfield φ on a subset E of R
n is approximately regular if

it is bounded, and for every Lipschitz hypersurface M in R
n there holds

ap lim
y→x

[

φ(y) · ν
M

(x)
]

= φ(x) · ν
M

(x) for
�

n−1-a.e. x ∈ M ∩ E, (2.3)

where ν
M

(x) is the normal to M at x.

Remark 2.2. If φ is approximately regular, then (2.3) can be extended to every
rectifiable set M , νM being now understood in the approximate sense. If φ admits
traces φ+ and φ− on the two sides of M (in the approximate sense), then (2.3) is
equivalent to the compatibility condition

φ · νM = φ+ · νM = φ− · νM

�
n−1-a.e. in M ∩ E, (2.4)

which links the pointwise values of φ on M with the values of the traces. In
particular, if φ is (approximately) continuous

�
n−1-almost everywhere on E,

then it is approximately regular. Similarly, if φ is (approximately) continuous on
the complement of a rectifiable set S, then φ is approximately regular if and only
if (2.3) holds for M := S.

Remark 2.3. If φ has the special form φ := (0, . . . , 0, ψ) where ψ = ψ(x1, . . . , xn) is
a bounded real function which is continuous in the variable xn, then φ is approx-
imately regular. Take indeed a Lipschitz surface M , and let M0 be the subset of
all points x ∈ M such that the n-th component of ν

M
(x) vanishes. Then equality

(2.3) obviously holds for all x ∈ M0. To prove that it also holds for
�

n−1-a.e.
point in M \ M0 it suffices to notice that ψ is approximately continuous in the
complement of a set of type N ×R, where N is a � n−1-negligible subset of R

n−1.
Thus φ is approximately continuous at all points except those in N × R, which
form an

�
n−1-negligible subset of M \M0 by the area formula (see [21], Theorem

3.2.22).

We can now state a refined version of the classical divergence theorem (the proof
is postponed to the Appendix).

Lemma 2.4. Let Ω be an open set in R
n with Lipschitz boundary and inner

normal ν
∂Ω

, φ an approximately regular vectorfield on Ω, and u a function in
BV (Ω). Assume moreover that divφ ∈ L∞(Ω) and uφ ∈ L1(∂Ω,

�
n−1). Then

∫

Ω

φ · Du = −
∫

Ω

u divφ dx −
∫

∂Ω

u φ · ν∂Ω
d
� n−1 , (2.5)

Notice that uφ always belongs to L1(∂Ω,
�

n−1) when ∂Ω is bounded, because
in this case the trace of u on ∂Ω belongs to L1(∂Ω,

�
n−1).

Going back to the first identity in (1.5), we remark that verifying that a vec-
torfield φ is divergence-free is relatively easy when φ is of class C1 because the
distributional divergence agrees with the classical one, which can be explicitly
computed. If φ is piecewise C1, the task is slightly more difficult, and can be
carried out in many concrete cases with the help of the following lemma (the proof
is postponed to the Appendix).

Lemma 2.5. Let φ be a bounded vectorfield on an open set Ω ⊂ R
n, and assume

that there exist a closed set S and a function f ∈ L1
loc(Ω) such that divφ = f in

the sense of distributions on Ω \ S. Then the identity divφ = f holds also on Ω if
S can be written as S := S0 ∪ S1, with S0 an

�
n−1-negligible closed set and S1

a (possibly disconnected) Lipschitz hypersurface, and φ satisfies (2.3) for M := S1

and E := Ω.

The point of this lemma is roughly the following: since the divergence is a first
order differential operator, divφ cannot “charge” any set of codimension larger
than 1, and therefore S0 can be safely removed. On the other hand, the part
of divφ supported on the hypersurface M is given by the difference of the traces
(whenever defined) of the normal components of φ on the two sides of M , which
happens to vanish if (2.3) holds, and then we are allowed to neglect S1, too.

Remark 2.6. Lemma 2.5 will be often applied in one of the following forms.
(a) Suppose that φ is a bounded vectorfield on Ω, continuous on Ω \ (S0 ∪ S1),

and divergence-free on Ω \ (S0 ∪ S1), with S0 and S1 given as above. If φ satisfies
(2.3) with M = S1, then φ is approximately regular on Ω and divergence-free on
Ω (cf. Remark 2.2).

(b) Let be given finitely many pairwise disjoint Lipschitz open sets Ωj whose
closures cover Ω, and approximately regular, divergence-free vectorfields φj on
Ωj . Let φ be any vectorfield on Ω which agrees at any point with one of the
φi (hence φ is uniquely determined at least on the union of all Ωi). Then φ is
approximately regular and divergence-free provided that the vectorfields φi satisfy
the compatibility conditions

φi · ν∂Ωi
= φj · ν∂Ωj

�
n−1-a.e. on ∂Ωi ∩ ∂Ωj ,

which are equivalent to condition (2.4) for φ.

The complete graph of an SBV function

We fix now some notation and state some results which are more specific to this
paper. In the following Ω is a bounded open subset of R

n with Lipschitz boundary
and inner unit normal ν∂Ω

; U is an open subset of Ω×R with Lipschitz boundary
whose closure can be written as

U :=
{

(x, t) ∈ Ω × R : τ1(x) ≤ t ≤ τ2(x)
}

, (2.6)

where the functions τ1, τ2 : Ω → [−∞, +∞] satisfy τ1 < τ2. The letters x and t
denote the variables in Ω (or R

n) and R, respectively; φ is a bounded vectorfield
defined on a subset of R

n × R, with components φx ∈ R
n and φt ∈ R. Thus

divφ = divxφx + ∂tφ
t, where divx is the (distributional) divergence with respect

to x and ∂t the (distributional) derivative with respect to t.

Definition 2.7. Given u ∈ BV (Ω), 1u is the characteristic function of the sub-
graph of u in Ω × R, namely 1u(x, t) := 1 for t ≤ u(x) and 1u(x, t) := 0 for
t > u(x), while the complete graph of u, denoted by Γu, is the measure theoretic
boundary of the subgraph of u, i.e., the singular set of 1u.
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Since the subgraph of u has finite perimeter in Ω×R (see, e.g., [27], Proposition
1.4), the definition of Γu is well-posed. Moreover D1u = ν

Γu
·� n Γu (cf. (2.2)),

where ν
Γu

is the inner normal of the subgraph of u, and the flux through Γu of a
vectorfield φ on Ω × R is

∫

Γu

φ · ν
Γu d

� n =

∫

Ω×R

φ · D1u . (2.7)

An alternative way to compute this flux is given in the following lemma (the proof
is postponed to the Appendix).

Lemma 2.8. Let u be a function in SBV (Ω) and let φ be a vectorfield defined at
least on Γu. Then

∫

Γu

φ · ν
Γu d

� n =

∫

Ω

[

φx(x, u) · ∇u − φt(x, u)
]

dx

+

∫

Su

[

∫ u+

u−

φx(x, t) dt
]

· νu d
� n−1 , (2.8)

where u, u±, ∇u, and νu are computed at x.

Formula (2.8) corresponds to a decomposition of the derivative of 1u, or, better,
to a decomposition of the complete graph Γu as union (up to

�
n-negligible sets)

of a “regular” part which consists of all
(

x, u(x)
)

such that u is approximately
continuous at x and has approximate gradient ∇u(x), and a “vertical” part which
consists of all (x, t) with x ∈ Su and t ∈ (u−(x), u+(x)). Note that for a general
BV function there would be an additional subset of Γu, corresponding to the
Cantor part of Du.

The following version of the divergence theorem (cf. Lemma 2.4) yields the first
equality in (1.5) (the proof is postponed to the Appendix).

Lemma 2.9. Let be given functions u and v in BV (Ω) whose complete graphs lie
in U , and an approximately regular vectorfield φ on U which is divergence-free in
U . Then

∫

Γu

φ · ν
Γu d

� n −
∫

Γv

φ · ν
Γv d

� n =

=

∫

∂Ω

[

∫ v

u

φx(x, t)dt
]

· ν
∂Ω

d
� n−1 . (2.9)

3. Calibrations for free-discontinuity problems

In this section we expand the idea explained in the introduction and state the
calibration principle for a large class of free-discontinuity problems. We begin
with the Mumford-Shah functional, with or without lower order term, and then
consider more general functionals, possibly with discontinuous integrands, which
also include minimal partition problems.

Throughout this section Ω is a bounded open subset of R
n with Lipschitz bound-

ary, U is an open subset of Ω×R with Lipschitz boundary which satisfies (2.6), u
is a function in SBV (Ω). The functionals F (u) and F0(u) are given in (1.1) and
(1.2), respectively, with Su and ∇u now defined as in Sect. 2, α > 0 and β ≥ 0 are
fixed constants, and g belongs to L∞(Ω). In the following definition we fix some
terminology about minimizers of F , or any other functional on SBV .

Definition 3.1. A function u is an (absolute) minimizer of F if F (u) ≤ F (v) for
all v ∈ SBV (Ω), and is a Dirichlet minimizer if F (u) ≤ F (v) for all v ∈ SBV (Ω)
with the same trace on ∂Ω as u; u is a U -minimizer if Γu ⊂ U and F (u) ≤ F (v)
for all v ∈ SBV (Ω) with Γv ⊂ U , and is a U -Dirichlet minimizer if we add the
restriction that the competing functions v have the same trace on ∂Ω as u.

Calibrations for the Mumford-Shah functional

Lemma 3.2. Let φ be a vectorfield on U which satisfies

(a) φt(x, t) ≥ 1
4 |φx(x, t)|2 − β(t − g)2 for � n-a.e. x ∈ Ω and every t ∈ [τ1, τ2],

(b)
∣

∣

∣

∫ t2

t1

φx(x, t) dt
∣

∣

∣
≤ α for

�
n−1-a.e. x ∈ Ω and every t1, t2 ∈ [τ1, τ2],

where the functions τ1 and τ2 are defined by (2.6) and, like g, are computed at x.
Then for every u such that Γu ⊂ U we have

F (u) ≥
∫

Γu

φ · ν
Γu d

� n . (3.1)

Moreover, equality holds in (3.1) for a given u if and only if

(a’) φx(x, u) = 2∇u and φt(x, u) = |∇u|2 − β(u − g)2 for � n-a.e. x ∈ Ω,

(b’)

∫ u+

u−

φx(x, t) dt = α νu for
�

n−1-a.e. x ∈ Su,

where u, u±, ∇u, νu, and g are computed at x.

Proof. Take u such that Γu ⊂ U . We recall that by Lemma 2.8

∫

Γu

φ · ν
Γu

d
� n =

∫

Ω

[

φx(x, u) · ∇u − φt(x, u)
]

dx

+

∫

Su

[

∫ u+

u−

φx(x, t) dt
]

· νu d
� n−1 . (3.2)

It is an elementary fact that for every ξ, η ∈ R
n we have ξ · η − 1

4 |ξ|2 ≤ |η|2, and
equality holds if and only if ξ = 2η. Hence, setting ξ := φx(x, u) and η := ∇u, and
taking (a) into account, we obtain that

φx(x, u) · ∇u − φt(x, u) ≤ φx(x, u) · ∇u − 1

4
|φx(x, u)|2 + β(u − g)2

≤ |∇u|2 + β(u − g)2 � n-a.e. on Ω,
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and consequently

∫

Ω

[

φx(x, u) · ∇u − φt(x, u)
]

dx ≤
∫

Ω

[

|∇u|2 + β(u − g)2
]

dx . (3.3)

Moreover, equality holds in (3.3) if and only if φx(x, u) = 2∇u and φt(x, u) =
1
4 |φx(x, u)|2 − β(u − g)2 = |∇u|2 − β(u − g)2 for a.e. x ∈ Ω, which is (a’).

As for the second integral in the right-hand side of (3.2), condition (b) above
implies

[

∫ u+

u−

φx(x, t) dt
]

· νu ≤
∣

∣

∣

∫ u+

u−

φx(x, t) dt
∣

∣

∣
≤ α

�
n−1-a.e. on Su,

and then
∫

Su

[

∫ u+

u−

φx(x, t) dt
]

· νu d
� n−1 ≤ α

� n−1(Su) . (3.4)

Moreover it is clear that equality holds in (3.4) if and only if (b’) is satisfied.
Inequality (3.1) follows now from (3.2), (3.3), and (3.4), as well as the rest of the
statement.

Theorem 3.3. Let u be a function with complete graph contained in U , and assume
that there exists an approximately regular vectorfield φ on U which is divergence-
free on U and satisfies assumptions (a), (b), (a’), and (b’) of Lemma 3.2. Then u
is a Dirichlet U -minimizer of F . If in addition the normal component of φ at the
boundary of Ω × R vanishes, that is

φx · ν∂Ω
= 0

�
n-a.e. on (∂Ω × R) ∩ ∂U , (3.5)

then u is also an absolute U -minimizer of F .

Proof. Let v be a function in SBV (Ω) such that v = u on ∂Ω and Γv ⊂ U . Then

F (v) ≥
∫

Γv

φ · ν
Γv

d
� n =

∫

Γu

φ · ν
Γu

d
� n = F (u) . (3.6)

Here, the first inequality and the last equality follow from Lemma 3.2, while the
first equality follows from Lemma 2.9. We have thus proved that u is a Dirichlet
U -minimizer of F . Moreover, assuming (3.5) we obtain that the first equality in
(3.6) holds even if the traces of v and u on ∂Ω differ, which proves that u is an
absolute U -minimizer of F .

Definition 3.4. The vectorfield φ in the first part of Theorem 3.3 is called a
Dirichlet calibration for u on U (with respect to F ). If φ satisfies the additional
assumption (3.5), then it is an absolute calibration.

When U := Ω × R we omit to write it. When it is clear from the context, we
may also omit to specify the functional, the set U , and whether the calibration
is Dirichlet or absolute, and simply say that φ is a calibration for u, or that φ
calibrates u.

Remark 3.5. If φ is an absolute calibration for u, then it is also an absolute calibra-
tion for every other minimizer. Indeed, if F (v) = F (u), the first inequality in (3.6)
must be an equality, and by Lemma 3.2 this means that φ satisfies assumptions
(a’) and (b’) for v too. Similarly, if φ is a Dirichlet calibration for u, then it is also
a Dirichlet calibration for any other Dirichlet minimizer with the same boundary
values as u.

This fact can be sometimes used to prove that the minimizer is unique: for in-
stance, if φ calibrates a function u with a negligible singular set (i.e.,

�
n−1(Su) =

0), and the inequality in assumption (b) is always strict, then we deduce that as-
sumption (b’) can only be satisfied by functions with negligible singular sets, and
therefore all minimizers should have this property. But on this class of functions
F is strictly convex (for β > 0, and even for β = 0 in case of Dirichlet minimiz-
ers), and therefore the minimizer must be unique (see Remarks 4.7 and 5.2, and
Paragraphs 5.3 and 5.4).

Remark 3.6. For α = 1 and β = 0, i.e., for the homogeneous Mumford-Shah
functional F0 in (1.2), assumptions (a), (b), (a’), and (b’) in Lemma 3.2 become

(a) φt(x, t) ≥ 1
4 |φx(x, t)|2 for � n-a.e. x ∈ Ω and every t ∈ [τ1, τ2],

(b)
∣

∣

∣

∫ t2

t1

φx(x, t) dt
∣

∣

∣
≤ 1 for

�
n−1-a.e. x ∈ Ω and every t1, t2 ∈ [τ1, τ2],

(a’) φx(x, u) = 2∇u and φt(x, u) = |∇u|2 for � n-a.e. x ∈ Ω,

(b’)

∫ u+

u−

φx(x, t) dt = νu for
�

n−1-a.e. x ∈ Su.

Calibrations for general functionals

We consider now the functional

Ψ(u) :=

∫

Ω

f(x, u,∇u) dx +

∫

Su

ψ(x, u−, u+, νu) d
� n−1 , (3.7)

where f : Ω × R × R
n → [0,+∞] and ψ : Ω × R × R × S

n−1 → [0,+∞]. We refer
to [3] for general conditions on f and ψ which imply the lower semicontinuity of
Ψ and guarantee the existence of minimizers (however, it should be clear by now
that lower semicontinuity is irrelevant for the calibration method).

Let f∗ and ∂ξf denote the convex conjugate and the subdifferential of f with
respect to the last variable. We recall that the subdifferential of g : R

n → [0,+∞]
at ξ ∈ R

n is the set of vectors η ∈ R
n such that g(ξ) + η · (ζ − ξ) ≤ g(ζ) for

every ζ ∈ R
n; then we have ξ · η − g∗(η) ≤ g(ξ) for every ξ, η ∈ R

n, and equality
holds if and only if η ∈ ∂g(ξ). Using these properties we obtain the following
generalizations of Lemma 3.2 and Theorem 3.3 (we omit the proofs).

Lemma 3.7. Let φ be a vectorfield on U which satisfies

(a) φt(x, t) ≥ f∗(x, t, φx(x, t)) for � n-a.e. x ∈ Ω and every t ∈ [τ1, τ2],

(b)
[

∫ t2

t1

φx(x, t) dt
]

· ν ≤ ψ(x, t1, t2, ν) for
�

n−1-a.e. x ∈ Ω, every ν ∈ S
n−1

and t1 < t2 in [τ1, τ2].
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Then for every u with complete graph contained in U we have

Ψ(u) ≥
∫

Γu

φ · ν
Γu d

� n . (3.8)

Moreover, equality holds in (3.8) for a given u if and only if

(a’) φx(x, u) ∈ ∂ξf(x, u,∇u) and φt(x, u) = f∗(x, u, φx(x, u)) for � n-a.e. x ∈ Ω,

(b’)
[

∫ u+

u−

φx(x, t) dt
]

· νu = ψ(x, u−, u+, νu) for
�

n−1-a.e. x ∈ Su,

where u, u±, ∇u, and νu are computed at x.

Theorem 3.8. Let u be a function with complete graph contained in U , and assume
that there exists an approximately regular, divergence-free vectorfield φ on U which
satisfies assumptions (a), (b), (a’), and (b’) of Lemma 3.7. Then u is a Dirichlet
U -minimizer of Ψ. If, in addition, the normal component of φ on the boundary of
Ω × R vanishes, i.e., if (3.5) holds, then u is also an absolute U -minimizer of Ψ.

Calibrations for minimal partitions

Through this subsection we fix an integer m ≥ 2. A partition of Ω is an
ordered sequence (A1, . . . , Am) of pairwise disjoint finite perimeter sets, called
phases, which cover Ω; for i 6= j the interface Sij between the phases Ai and Aj is
the intersection of the corresponding measure theoretic boundaries, and is oriented
(
�

n−1-a.e.) by the (approximate) normal νij pointing from Ai to Aj . Now we
consider functionals of the form

�
(A1, . . . , Am) =

∑

i<j

∫

Sij

ψij(x, νij) d
� n−1 , (3.9)

where ψij : Ω × S
n−1 → [0,+∞] (see [6]). A partition (A1, . . . , Am) is a Dirichlet

minimizer of
�

if it minimizes
�

among all partitions (B1, . . . , Bm) such that the
characteristic functions of Ai and Bi have the same trace on ∂Ω for every i.

Theorem 3.9. Let (A1, . . . , Am) be a partition of Ω, and assume that there ex-
ist approximately regular vectorfields φ1, . . . , φm on Ω with divergences in L∞(Ω)
which satisfy

(c) divφi ≥ divφj � n-a.e. in Ai for every i 6= j,

(d)
(

φj(x) − φi(x)
)

· ν ≤ ψij(x, ν) for
�

n−1-a.e. x ∈ Ω and every ν ∈ S
n−1 and

i < j,

(d’)
(

φj(x)−φi(x)
)

·νij(x) = ψij(x, νij(x)) for
�

n−1-a.e. x ∈ Sij and every i < j.

Then (A1, . . . , Am) is a Dirichlet minimizer of
�

.

Proof. We choose real numbers a1 < · · · < am and associate to every partition
(A1, . . . , Am) the function u which agrees with ai on each Ai. Thus u belongs to

SBV (Ω), Su is the union of the interfaces Sij , and νu = νij
�

n−1-a.e. on Sij

for every i < j. Now we define a functional Ψ of type (3.7) by setting

f(x, t, ξ) :=

{

0 if ξ = 0 and t ∈ {a1, . . . , am},
+ ∞ otherwise,

ψ(x, t1, t2, ν) :=

{

ψij(x, ν) if t1 = ai and t2 = aj for some i < j,

+ ∞ otherwise.

(3.10)

One easily checks that Ψ(u) is finite only if u is the function associated to some par-
tition (A1, . . . , Am), and in this case Ψ(u) =

�
(A1, . . . , Am). Hence (A1, . . . , Am)

is a Dirichlet minimizer for
�

if (and only if) the associated function u is a Dirich-
let minimizer for Ψ, therefore it suffices to construct a calibration φ for u in the
sense of Theorem 3.8.

We define φ on Ω×R as follows: we take smooth non-negative functions σi with
support included in (ai, ai+1) and integral equal to 1, and set

φx(x, t) := σi(t)
(

φi+1(x) − φi(x)
)

for x ∈ Ω, ai ≤ t ≤ ai+1,

then we choose φt so that φ is divergence free, that is,
{

φt(x, ai) := 0 for x ∈ Ai,

∂tφ
t(x, t) := σi(t)

(

divφi(x) − divφi+1(x)
)

for x ∈ Ω, ai ≤ t ≤ ai+1;

the definition is completed by setting φ(x, t) := φ(x, a1) for t < a1 and φ(x, t) :=
φ(x, am) for t > am.

Thus φ is divergence-free in Ω × R by construction, and one can easily check
that it satisfies assumptions (a), (a’), (b), (b’) of Lemma 3.7, and precisely

(a) φt(x, ai) ≥ 0 for � n-a.e. x ∈ Ω and every i,

(b)
[

∫ aj

ai

φx(x, t) dt
]

· ν ≤ ψij(x, ν) for
�

n−1-a.e. x ∈ Ω and every ν ∈ S
n−1 and

i < j,

(a’) φt(x, ai) = 0 for � n-a.e. x ∈ Ai and every i,

(b’)
[

∫ aj

ai

φx(x, t) dt
]

· νij(x) = ψij(x, νij(x)) for
�

n−1-a.e. x ∈ Sij and every

i < j.

Moreover, since each φi is approximately regular on Ω, (φx, 0) is approximately
regular on Ω × R, and the same holds for (0, φt) by Remark 2.3. Hence φ is
approximately regular, too.

Remark 3.10. In the proof of Theorem 3.9, to every m-uple φ1, . . . , φm satisfying
assumptions (c), (d), (d’) we have associated a calibration φ for the functional Ψ
defined by (3.10). We remark that this connection works in both ways, and to every
calibration φ for Ψ we can associate φ1, . . . , φm as in the statement of Theorem
3.9 by taking φi(x) :=

∫ ai

a1
φx(x, t) dt. Thus the existence of such a familiy of

vectorfields not only implies, but is equivalent to the existence of a calibration for
Ψ.
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Remark 3.11. A particularly relevant example of functional of type (3.9) is the
“interface size”, which is obtained by taking ψij ≡ 1 for all i < j. In this case
assumptions (d) and (d’) above reduce to

(d) |φj(x) − φi(x)| ≤ 1 for every x ∈ Ω and every i < j,

(d’) φj(x) − φi(x) = νij(x) for
�

n−1-a.e. x ∈ Sij and every i < j.

Calibrations of this type have already been introduced in [10] and [31] as “paired
calibrations” (see also [11], [12]). More precisely, a paired calibration for a partition
(A1, . . . , Am) is an ordered m-uple of divergence-free vectorfields φ1, . . . , φm on Ω
which satisfy assumptions (d) and (d’) above. Notice that the assumption that
the vectorfields φi are divergence-free is stronger than (c), and in fact Theorem 3.9
allows in principle for a larger class of calibrations.

Additional remarks

We conclude this section with some sparse remarks about the calibration meth-
ods; we refer for simplicity to the functional F0 in (1.2), and calibrations are defined
as in Remark 3.6 for Dirichlet minimizers.

3.12. The SBV compactness theorem. Let � be the class of all vectorfields
φ on Ω × R, not necessarily bounded, which satisfy assumptions (a) and (b) of
Remark 3.6. One can easily verify that for every u in SBV (Ω) there exists φ ∈ �
which satisfies assumptions (a’) and (b’) for u, so that equality holds in (3.1), that
is, F0(u) =

∫

Γu
φ · ν

Γu d
�

n. Starting from this one, it is possible to construct
vectorfields φ ∈ � of class C1

c such that the value of the right-hand side is arbitrarily
close to F0(u), and therefore (cf.(2.7))

F0(u) = sup
φ∈� ∩C1

c

∫

Γu

φ · ν
Γu

d
� n = sup

φ∈� ∩C1
c

∫

Ω×R

φ · D1u . (3.11)

Moreover, for any function u which is in BV (Ω) but not in SBV (Ω), the last two
terms in (3.11) are equal to +∞. Since every integral of the form

∫

φ · D1u, with
φ of class C1

c on Ω × R, is continuous in u with respect to the weak* topology of
BV (Ω), formula (3.11) shows that the Mumford-Shah functional F0, extended to
+∞ in BV \ SBV , is weak* lower semicontinuous.

Under suitable hypotheses on f and ψ, a similar argument applies to the general
functionals in (3.7) too, providing an alternative proof of the well-known compact-
ness and semicontinuity results in SBV due to L. Ambrosio (see [3], or [7], Sects. 4.1
and 5.4).

3.13. Existence of calibrations. We briefly discuss here the following basic
question: does every minimizer admit a calibration? In fact, in this section we
have given different versions of a sufficient condition for minimality, but we do not
know if it is actually fulfilled by any minimizer, and, what is even more relevant
to applications, how to verify it, that is, how to construct a calibration.

Now let X be the class of all real functions v ∈ L1
loc(Ω × R) whose gradient is

a bounded measure, � the class of vectorfields defined in Paragraph 3.13, and for

every v ∈ X

G(v) := sup
φ∈� ∩C1

c

∫

Ω×R

φ · Dv . (3.12)

Thus F0(u) = G(1u) by (3.11), and G, being the supremum of a family of linear
functionals, is convex. Therefore, given u ∈ SBV (Ω), and denoting by Xu the
affine space of all v ∈ X which agree with 1u on the boundary of Ω×R, the function
1u minimizes G on Xu if and only if the subdifferential of G at 1u contains the zero
element. Now, since the family of vectorfields � ∩C1

c is convex, the subdifferentials
of G at 1u correspond to the class of all linear functionals v 7→

∫

φ · Dv (with φ
in the closure of � ∩ C1

c in a suitable abstract space) which agree with G(1u) at
1u, that is, to the class of all φ which satisfy assumptions (a’) and (b’) of Remark
3.6 for u, while the zero element corresponds to functionals v 7→

∫

φ · Dv which
vanish whenever v vanishes at the boundary, that is, to vectorfields φ which are
divergence-free.

In other words we have shown that u admits a generalized Dirichlet calibration
(in a suitable abstract space, larger than the space of approximately regular vec-
torfields considered in this paper) if and only if 1u is a Dirichlet minimizer of G.
However, the point we want to make clear is that the fact that u is a Dirichlet
minimizer of F implies that 1u is a Dirichlet minimizer of G if and only if the
infima of F and G (under the corresponding boundary constraints) agree; this has
been proved in [13] for the one-dimensional case n = 1, but is not known in higher
dimension.

4. Applications to minimizers of F0

In this section we give some examples of Dirichlet minimizers of the homogeneous
Mumford-Shah functional F0. We begin with a few remarks which may be useful
when constructing calibrations.

Remark 4.1. By a simple truncation argument, to prove that a function u : Ω →
[m, M ] is a (Dirichlet) minimizer for F0 it suffices to show that F0(u) ≤ F0(v) for
all competitors v such that m ≤ v ≤ M . Thus it is enough to show that u is a
Dirichlet U -minimizer, with U := Ω × (m, M). In the following we often tacitly
assume this principle, and construct calibrations in Ω × [m, M ] instead of Ω × R.
The same conclusion holds for F if g satisfies m ≤ g ≤ M , too, but may fail for a
functional of the general form (3.7), due to lack of suitable truncations.

Remark 4.2. We can construct divergence-free vectorfields on an open set U ⊂
Ω × R using fibrations of U by graphs of harmonic functions. This construction
is a particular case of a classical result about extremal fields of scalar functionals
(see, e.g., [1], Sect. 4). Given harmonic functions {uλ} whose graphs are pairwise
disjoint and cover U , for all (x, t) ∈ U we set

φ(x, t) :=
(

2∇uλ(x), |∇uλ(x)|2
)

, (4.1)

where λ = λ(x, t) is taken so that t = uλ(x). Thus φ is a vectorfield on U which,
by construction, satisfies assumption (a) of Remark 3.6, and assumption (a’) for
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every uλ. We prove that φ is divergence-free under the additional assumption that
the function u(x, λ) := uλ(x) is of class C1 and ∂λu(x, λ) 6= 0 for every (x, λ),
which implies that the parameter λ can be (locally) chosen so to depend on x and
t in a C1 fashion. Then we get

divφ = 2∆xu + 2∂λ∇xu · ∇xλ + 2∇xu · ∂λ∇xu ∂tλ

= 2∂λ∇xu · (∇xλ + ∇xu ∂tλ) . (4.2)

On the other hand, deriving the identity u(x, λ(x, t)) = t with respect to x and t
we get ∇xu + ∂λu∇xλ = 0 and ∂λu ∂tλ = 1, respectively. This implies that the
last factor in (4.2) vanishes, and thus φ is divergence-free (to make this argument
work, we need that ∇xu is of class C1 in (x, λ), which can be derived by the fact
that each function uλ is harmonic).

In Paragraphs 4.3 and 4.6 below we apply this idea by embedding a harmonic
function that we intend to calibrate into a family of harmonic functions whose
graphs fibrate U := Ω × (m, M), and taking φ as in (4.2). To show that φ is a
calibration we will have only to verify assumption (b) of Remark 3.6 (because (b’)
amounts to nothing).

For the rest of this section, calibrations are always intended as Dirichlet cali-
brations for F0, in the sense of Remark 3.6. We begin with a discussion of some
one-dimensional examples. Of course, in these examples minimality can be easily
checked by direct computations, and there is no need for calibrations. Neverthe-
less, it is instructive to see what happens, and moreover some one-dimensional
constructions can be carried over to higher dimensions.

4.3. Affine function in one dimension. Let Ω be the open interval (0, a) and
let u be the linear function u(x) := λx, with λ > 0. It is easy to see that u is a
Dirichlet minimizer of F0 if and only if

aλ2 ≤ 1 . (4.3)

In this case a calibration is given by the piecewise constant vectorfield:

φ(x, t) :=







(2λ, λ2) if
λ

2
x ≤ t ≤ λ

2
(x + a),

(0, 0) otherwise.

(4.4)

Thus φ satisfies assumptions (a) and (a’) of Remark 3.6, and vanishes outside a
stripe of constant height (in grey in Fig. 1 below, on the left) which is arranged
so that (b) holds and divφ vanishes (cf. Remark 2.6(b)), while (b’) is trivially
satisfied.

 x

 aλ
 u

φ =(2λ,λ2)

 a

 aλ/2

 x

 t

 0

 aλ

 a 0

 t

Fig. 1

Another calibration is obtained by fibrating the rectangle U = (0, a)× (0, λa) with
affine functions as shown in Fig. 1, on the right, and applying the construction of
Remark 4.2:

φ(x, t) :=















(

2
t

x
,
( t

x

)2)

if 0 ≤ t ≤ λx,

(

2
λa − t

a − x
,
(λa − t

a − x

)2)

if λx ≤ t ≤ λa.

(4.5)

Finally, assumption (b) is satisfied if and only if (4.3) holds.

4.4. Step function in one dimension. In Paragraph 4.3, in the limit case
aλ2 = 1 the linear function u(x) = λx and any step function of the form u(x) := 0
for 0 < x < c and u(x) := λa =

√
a for c < x < a (with 0 < c < a) are

both Dirichlet minimizers with the same boundary values. Hence, by Remark 3.5
both vectorfields (4.4) and (4.5) calibrate these step functions when λ := 1/

√
a.

Furthermore, it is easy to check that they also calibrate any step function u given
by u(x) := 0 for 0 < x < c, and u(x) := h for c < x < a with h ≥ √

a.

Remark 4.5. When aλ2 > 1 the linear function u(x) := λx is not a Dirichlet mini-
mizer of F0 (a step function is preferable), but it is still a Dirichlet U -minimizer,
when U is the stripe of all points (x, t) between the graph of λx− 1

4λ and λx+ 1
4λ .

A calibration is given by φ(x, t) := (2λ, λ2).
Conversely, when h <

√
a, the step function u in Paragraph 4.4 is no longer a

Dirichlet minimizer, but it is Dirichlet U -minimizer when U is an ε-neighbourhood
of the complete graph of u (in grey in Fig. 2) and ε satisfies 3

2

√
ε + 2ε ≤ h. A

calibration is given by the piecewise constant vectorfield which vanishes outside
the white parallelogram in Fig. 2, and is equal to

(

1√
ε
, 1

4ε

)

inside.

 x

 t

 0

 h
 u

 a

ε-neighborhood of Γu

heigth=√ε

 c slope=(4√ε)−1

φ=(  1  ,   1 ) 4ε√ε

Fig. 2

4.6. Harmonic functions in dimension n. Let u be a harmonic function on Ω.
Since u is a Dirichlet minimizer of

∫

Ω
|∇u|2, it is natural to ask whether it is also

a Dirichlet minimizer of F0. As pointed out by A. Chambolle, this happens when

osc u · sup |∇u| ≤ 1 , (4.6)

where osc u is the oscillation of u, namely the difference between the supremum
M and infimum m of u (over Ω). In the one-dimensional case n = 1 this condition
reduces to (4.3).
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A calibration can be constructed by analogy with (4.4); see Fig. 3, on the left:

φ(x, t) :=







(

2∇u(x), |∇u(x)|2
)

if
1

2
(u(x) + m) ≤ t ≤ 1

2
(u(x) + M),

(0, 0) otherwise.

(4.7)

Another calibration can be obtained, as the one in (4.5), by embedding u in a
family of harmonic functions whose graphs fibrate the cylinder Ω × [m, M ]. More
precisely we take the functions m + λ(u − m) and M + λ(u − M) with λ ranging
in [0, 1] (see Fig. 3, on the right), and then the construction of Remark 4.2 gives

φ(x, t) :=



















(

2
t − m

u(x) − m
∇u(x),

( t − m

u(x) − m

)2

|∇u(x)|2
)

if m ≤ t ≤ u(x),

(

2
M − t

M − u(x)
∇u(x),

( M − t

M − u(x)

)2

|∇u(x)|2
)

if u(x) ≤ t ≤ M .

(4.8)

 x

 t

 M

 u

 m

Ω Ω  x

 M

 m

 t

Fig. 3

One easily checks that both vectorfields are divergence-free (see Remarks 2.6(b)
and 4.2), and that assumptions (a) and (a’) of Remark 3.6 are satisfied; assumption
(b’) is always trivially satisfied, while assumption (b) holds if an only if (4.6) holds.

When (4.6) is not satisfied, u is still a Dirichlet U -minimizer of F0, where U is
the set of all points (x, t) ∈ Ω×R which lie between the graph of u(x)−(4|∇u(x)|)−1

and u(x) + (4|∇u(x)|)−1; a calibration is given by φ(x, t) :=
(

2∇u(x), |∇u(x)|2
)

.

Remark 4.7. If inequality (4.6) holds and u is not affine, then the maximum
principle implies that oscu · |∇u(x)| < 1 for every x ∈ Ω, and therefore both
calibrations constructed in the previous paragraph satisfy the strict inequality in
assumption (b) of Remark 3.6. By Remark 3.5, this proves that the harmonic
function u is the only Dirichlet minimizer of F0 with the same boundary values as
u.

4.8. Triple junction in the plane. Let Ω := B(0, r) be the open disk in the
plane with radius r and centred at the origin, and let (A1, A2, A3) be the partition
of Ω defined as follows: Ai is the set of all x ∈ Ω of the form x = (ρ cos θ, ρ sin θ),
with 2

3π(i − 1) ≤ θ < 2
3πi. Finally define u := ai in each Ai, where a1 < a2 < a3

are distinct constants.
Thus the singular set of u is given by three line segments S1,2, S2,3, and S3,1

meeting at the origin with equal angles (see Fig. 4, on the left), and it is well-
known that this is a minimal network, in the sense that the corresponding partition

(A1, A2, A3) is a Dirichlet minimizer of the “interface size” functional (see Remark
3.11). Therefore one would expect that when the values of the constants ai are
sufficiently far apart u is a Dirichlet minimizer of F0 too, that is, there is no
convenience in removing part of the jump and taking a function with non-vanishing
gradient.

 x1

Ω=B(0,r)

u=a2

 e−

 S1,2

 x1

 t=a3 x2

 S2,3

u=a1

u=a3

 e+

 S3,1

second slab
φ=(2λe−,λ2)

first slab
φ=(2λe+,λ2)

 t=a2

 t=a1

Fig. 4

We prove this statement by calibration. Inspired by the construction described in
Paragraphs 4.4 we take e± := (±

√
3/2,−1/2), λ > 0, and set

φ(x, t) :=































(2λe−, λ2) if
∣

∣

∣
t − 1

2
(a1 + a2) −

λ

2
x · e−

∣

∣

∣
<

1

4λ
,

(2λe+, λ2) if
∣

∣

∣
t − 1

2
(a2 + a3) −

λ

2
x · e+

∣

∣

∣
<

1

4λ
,

(0, 0) otherwise.

(4.9)

Thus φ is piecewise constant, satisfies assumption (a) of Remark 3.6 by construc-
tion, and vanishes out of two slabs of constant height 1

2λ (see Fig. 4, on the right).
These slabs have been arranged in order to fulfill the following requirements:

(i) one slab is contained in Ω × [a1, a2] and the other one in Ω × [a2, a3], so that
assumption (a’) of Remark 3.6 is satisfied; it is possible to construct such slabs
if we can choose λ so that ai+1 − ai ≥ λr + 1

2λ , that is, if

ai+1 − ai ≥
√

2r ; (4.10)

(ii) the compatibility condition (2.4) is satisfied on the boundary of the slabs, so
that φ is approximately regular and divergence-free (cf. Remark 2.6(b));

(iii) assumption (b’) is satisfied for all points x in S1,2 and S2,3, where νu coincides
with e− and e+ respectively.

Moreover (b’) holds also for x in S3,1, because e−+e+ = νu. One also checks that

the integral
∫ t2

t1
φx(x, t) dt can be always written as a linear combination µ−e− +

µ+e+ with µ± in [0, 1] (depending on x, t1, t2), and since e+ and e− span an angle
equal to 2π/3, this implies that the integral has modulus not larger than 1. Thus
(b) holds, too.
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4.9. Minimal partitions in dimension n. One can generalize the example of
the triple junction, and conjecture the following: if a partition (A1, . . . , Am) of Ω is
a Dirichlet minimizer of the “interface size” (see Remark 3.11) and u is a function
which takes a constant value ai on each Ai (with a1 < a2 < . . . < am), then u
is a Dirichlet minimizer of F0 when the values ai are sufficiently far apart from
each other. Unfortunately we can only prove this statement under two additional
assumptions:

(i) the partition (A1, . . . , Am) is not only minimal, but admits a paired calibra-
tion in the sense of [31] and [10], namely there exist approximately regular,
divergence-free vectorfields φ1, . . . , φm on Ω which satisfy assumptions (d) and
(d’) in Remark 3.11;

(ii) for i = 1, . . . , m − 1 there exist Lipschitz functions ψi : Ω → R which satisfy
almost everywhere the first order equation

∇ψi · (φi+1 − φi) =
1

2
|φi+1 − φi|2 . (4.11)

Adding, if needed, a constant to ψi, we may also assume that

osc ψi = 2‖ψi‖∞ . (4.12)

For i = 1, . . . , m − 1 we take slabs Ui, included in Ω × (ai, ai+1), of the form

Ui =
{

(x, t) :
∣

∣

∣
t − 1

2
(ai + ai+1) − λiψi(x)

∣

∣

∣
<

1

4λi

}

, (4.13)

where the constants λi will be chosen below. Then we set (cf. (4.9))

φ(x, t) :=















(

2λi(φi+1(x) − φi(x)), λ2
i |φi+1(x) − φi(x)|2

)

if (x, t) ∈ Ui for some i,

(0, 0) otherwise.

Taking into account assumption (d’) in Remark 3.11 and the definition of the slabs
Ui, one can easily check that assumptions (a), (a’), and (b’) of Remark 3.6 are
satisfied.

Let us check assumption (b). Taken t1 ∈ [ai, ai+1] and t2 ∈ [aj , aj+1] for some

i, j, the integral
∫ t2

t1
φx(x, t) dt can be decomposed as the sum of the integrals on

the (oriented) intervals [t1, ai+1], [ai+1, aj ], and [aj , t2], and hence it can be written
as

µ1(φi+1(x) − φi(x)) + (φj(x) − φi+1(x)) + µ2(φj+1(x) − φj(x))

for suitable µ1, µ2 ∈ [0, 1]. But this sum can be reorganized as the difference
between µ2φj+1(x) + (1 − µ2)φj(x) and µ1φi(x) + (1 − µ1)φi+1(x). Therefore
its modulus is the distance between two points in the convex hull of the vectors
φ1(x), . . . , φm(x), which has diameter 1 because of assumption (d) in Remark 3.11,
and (b) is proved.

Since the vectorfields φi are divergence-free and approximately regular by as-
sumption, φ is divergence-free and approximately regular within each slab (the
approximate regularity of (φx, 0) is immediate, that of (0, φt) follows from Remark
2.3), as well as in the interior of the complement of the union of all slabs. Thus φ
is divergence-free and approximately regular in Ω×R if (and only if) compatibility
condition (2.4) is satisfied on the boundary of each slab (cf. Remark 2.6(b)), which
reduces to equation (4.11).

Therefore we have constructed a calibration for u, provided that we can choose
λi so that the slabs Ui are contained in Ω × (ai, ai+1), that is,

ai+1 − ai

2
≥ λi‖ψi‖∞ +

1

4λi
=

λi

2
osc ψi +

1

4λi
,

and this can be done as long as

ai+1 − ai ≥
√

2 osc ψi for i = 1, . . . , m − 1. (4.14)

Remark 4.10. As noticed in [31], a paired calibration for the partition (A1, A2, A3)
described in Paragraph 4.8 is given by the constant vectorfields φ1 := 1

6 (
√

3, 3),

φ2 := 1
6 (−2

√
3, 0), φ3 := 1

6 (
√

3,−3), and the linear functions ψ1 and ψ2 with

gradients 1
4 (−

√
3,−1) and 1

4 (
√

3,−1) satisfy equation (4.11). Now the construction
of Paragraph 4.9 gives exactly the calibration (4.9).

Remark 4.11. The first order equation (4.11) does not always admit solutions.
For instance, since the derivative of ψi along the integral curves of the vectorfield
φi+1 − φi (i.e., the maximal solutions of the differential equation γ̇ = φi+1(γ) −
φi(γ)) is always positive, when there exists a nontrivial closed integral curve within
Ω, (4.11) admits no solution. On the other hand, if φi+1 − φi is C1 and nowhere
vanishing, and all integral curves start and end at the boundary of Ω and intersect
a fixed (n − 1)-dimensional closed manifold M in Ω which is transversal to the
vectorfield φi+1 − φi, i.e., a cross-section of the associated flow, then the method
of characteristics provides a solution ψi to (4.11) of class C1.

However, such a strong requirement on φi+1−φi is far from being necessary: not
only there may exist Lipschitz functions ψi which satisfy (4.11) almost everywhere
even if φi+1 − φi vanishes somewhere, but for our purposes we can even allow ψi

to be discontinuous along some integral curve γ: in this case the boundary of the
slab Ui in (4.13) is not just the union of the graphs of λiψi + 1

2 (a1 + a2) + 1
4λi

and λiψi + 1
2 (a1 + a2) − 1

4λi
, but there is an additional vertical piece contained in

γ × R. Yet the compatibility condition (2.4) is satisfied there, and then φ is still
divergence-free and approximately regular by Remark 2.6(b).

4.12. Step function in the plane. Let Ω be the rectangle (−a, a) × (−b, b) in
R

2, and let A1 and A2 be the sets of all points x = (x1, x2) such that x1 < 0 and
x1 ≥ 0, respectively. The partition (A1, A2) is obviously minimal, and a paired
calibration is given by the constant vectorfields φ1 := (0, 0), φ2 := (1, 0). Thus
the linear function ψ1 with gradient (1

4 , 0) satisfies (4.11), and the construction in
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Paragraph 4.9 gives a calibration for the step function u which takes the value a1

on A1 and a2 on A2 provided that a2 − a1 ≥ √
a.

Yet for large values of a this condition is far from optimal, and a better result
can be obtained if we consider a different paired calibration for (A1, A2). Let
p+ := (0, b) and p− := (0,−b), and take φ1 := (0, 0),

φ2(x) :=











(− sin θ+, cos θ+) for x ∈ B(p+, b),

(sin θ−,− cos θ−) for x ∈ B(p−, b),

(0, 0) otherwise,

(4.15)

where ρ±, θ± are the polar coordinates around the points p±; see Fig. 5. A function
ψ1 which satisfies (4.11) almost everywhere is

ψ1(x) :=



















1

2
(θ+ + π/2)ρ+ for x ∈ B(p+, b),

1

2
(θ− − π/2)ρ− for x ∈ B(p−, b),

0 otherwise,

and the construction in Paragraph 4.9, performed with some care because of the
discontinuity of ψ1 along the circles ∂B(p±, b) (cf. Remark 4.11), yields a calibra-
tion for u provided that a2 − a1 ≥

√
πb. Note that this calibration is defined on

the whole stripe R × (−b, b) and does not depend on a.

Ω

 x2

φ2 null

φ2 tangential

 x1

b

Fig. 5

5. Applications to minimizers of F

In this section we focus on absolute minimizers of the complete Mumford-Shah
functional F in (1.1), with α, β > 0, and calibrations will always be intended in
the sense of Theorem 3.3 and Definition 3.4. All examples are in dimension n.

5.1. Solutions of the Neumann problem. If we restrict F to functions of class
W 1,2, we obtain the strictly convex and coercive functional

∫

Ω
[|∇u|2+β(u−g)2] dx,

and its unique minimizer u is the solution of the Neumann problem

{

∆u = β(u − g) on Ω,

∂νu = 0 on ∂Ω,
(5.1)

where ∂ν denotes the normal derivative. Thus it is natural to ask under which
assumptions (on g and β) u is also a minimizer of F on SBV (Ω). This question
is akin to the minimality of harmonic functions for F0 discussed in Paragraph
4.6, and following the same ideas we can construct an absolute calibration for u
provided that u satisfy condition (5.3) below.

More precisely, we assume that u is of class C1 up to the boundary (this is
always satisfied if ∂Ω is of class C1,ε for some ε > 0), we denote the infimum and
the supremum of g by m and M respectively, and set

A :=
{

(x, t) ∈ Ω × R :
u(x) + m

2
≤ t ≤ u(x) + M

2

}

,

and (cf. (4.7))

φx(x, t) :=

{

2∇u(x) if (x, t) ∈ A,

0 otherwise.
(5.2)

By the maximum principle m ≤ u ≤ M on Ω, so that Γu is contained in A, and,
independently of the choice of φt, we can already see that assumption (b) of Lemma
3.2 is satisfied if (cf. (4.6))

osc g · sup |∇u| ≤ α , (5.3)

while assumption (b’) is trivially satisfied, and φ has vanishing normal component
on ∂Ω × R because of the second equation in (5.1). Thus it remains to choose φt

so that (a) and (a’) hold, and φ is approximately regular and divergence-free.
Assumption (a’) sets φt equal to |∇u|2 − β(u − g)2 on the graph of u., while

requiring that φ is divergence-free in the interior of A yields

∂tφ
t = −divxφx = −2∆u = −2β(u − g) .

Integrating in t we obtain that φt is given in A by

φt = |∇u|2 − β(u − g)2 − 2β(u − g)(t − u)

= |∇u|2 − β(t − g)2 + β(t − u)2 .

Therefore assumption (a) of Lemma 3.2, namely φt ≥ |∇u|2 − β(t− g)2, is clearly
satisfied in A. Note that φ is approximately continuous in A (this is trivial for the
vectorfield (φx, 0), which is continuous, and follows from Remark 2.3 for (0, φt)).

Moreover, φ is divergence-free in the complement of A if we impose that ∂tφ
t =

0, that is, φt depends only on x, while the compatibility condition (2.4) on the
graphs of 1

2 (u + m) and 1
2 (u + M), required in order to have divφ = 0 on Ω × R

(cf. Remark 2.6(b)), yields

φt =















−β
(u + M

2
− g

)2

+ β
(u − M

2

)2

for t >
u + M

2
,

−β
(u + m

2
− g

)2

+ β
(u − m

2

)2

for t <
u + m

2
.

Finally one can easily check that φ is approximately regular also outside A (cf.
Remark 2.3) and satisfies condition (a) of Lemma 3.2 as well. Therefore φ is an
absolute calibration for u, provided that u satisfies (5.3).
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Remark 5.2. If inequality (5.3) is strict, the calibration constructed in the previous
paragraph satisfies the strict inequality in assumption (b) of Lemma 3.2, and by
Remark 3.5 this proves that the solution u of (5.1) is the unique absolute minimizer
of F . This is always the case when β is small enough, provided that ∂Ω is of class
C1,ε for some ε > 0. Indeed, by the maximum principle we have ‖u − g‖∞ ≤
osc g, and the standard regularity theory for Neumann problems yields ‖∇u‖∞ ≤
C ‖∆u‖∞ = C β ‖u − g‖∞ ≤ C osc g, where C = C(Ω) is a constant depending
only on Ω. Therefore (5.3) is satisfied with strict inequality if

β <
α

C(Ω) (osc g)2
.

5.3. Solution of the Neumann problem for large β. The construction in
Paragraph 5.1 shows that the solution of the Neumann problem (5.1) is an absolute
minimizer of F provided that (5.3) holds. However, this condition is far from
being necessary. In particular, for large values of the penalization parameter β, the
absolute minimizer u of F is close to g, and therefore we expect that discontinuities
should not be energetically convenient, at least for sufficiently regular g, and the
solution u of (5.1) should be the unique absolute minimizer of F .

We prove this fact by calibration under the assumption that Ω has boundary
of class C2, g is of class W 2,p for some p > n, and β is larger than a certain β0,
specified in (5.15). Under these assumptions, g belongs to C1,γ(Ω) for γ := 1−n/p,
and u belongs to C3,γ(Ω)∩C1,δ(Ω)∩W 2,p(Ω) for every δ ∈ (0, 1) by the standard
regularity theory for Neumann problems (see, e.g., [35], Theorems 3.5, 3.16, and
3.17).

Fix a positive constant δ (to be properly chosen later), and take a smooth
function σ : R → [0, 1], with support included in [−2δ, 2δ] and identically equal to
1 in [−δ, δ], so that |σ̇| ≤ 2/δ (and then ‖σ‖1 ≤ 4δ and ‖σ̇‖∞ ≤ 2/δ). Set

φx(x, t) := 2σ(t − u(x))∇u(x) . (5.4)

To simplify the notation, in the following we simply write σ and ∇u instead of
σ(t − u(x)) and ∇u(x) (this must be kept into account when deriving), so that
(5.4) becomes simply φx = 2σ∇u.

It follows from (5.1) and (5.4) that φ has vanishing normal component at the
boundary of Ω × R, and φx = 2∇u on the graph of u. Assumption (a’) in Lemma
3.2 prescribes the value of φt on the graph of u, and precisely

φt(x, u) := |∇u|2 − β(u − g)2 for all x ∈ Ω. (5.5)

We impose now that φ is divergence-free, which reduces to

∂tφ
t = −divxφx = −2σ ∆u + 2σ̇ |∇u|2

= −2βσ (u − g) + 2σ̇ |∇u|2 . (5.6)

Identities (5.6) and (5.5) together determine φt everywhere.

Note that φ is approximately regular: this is trivial for the vectorfield (φx, 0),
which is continuous, and follows from Remark 2.3 for (0, φt) (even though φt is
discontinuous if so is g).

Now we want to verify that assumption (a) of Lemma 3.2 holds, that is,

φt ≥ 1

4
|φx|2 − β(t − g)2 . (5.7)

Since the equality holds by construction on the graph of u, the full inequality is
implied by the following inequalities on the derivatives with respect to t of both
sides of (5.7):















∂tφ
t ≥ 1

2
φx∂tφ

x − 2β(t − g) for t > u,

∂tφ
t ≤ 1

2
φx∂tφ

x − 2β(t − g) for t < u.

(5.8)

Let us consider the first inequality: by (5.4) and (5.6) it becomes

−2βσ (u − g) + 2σ̇ |∇u|2 ≥ 2σσ̇ |∇u|2 − 2β(t − g) ,

which is equivalent to

β[(t − g) − σ(u − g)] ≥ σ̇(σ − 1)|∇u|2 . (5.9)

When u < t ≤ u + δ we have σ = 1, and then (5.9) becomes t − u ≥ 0, which is
obviously true. When t > u + δ, we have (t − g) − σ(u − g) ≥ δ − ‖u − g‖∞ and
|σ̇(σ − 1)| ≤ 2/δ, and then (5.9) is implied by β(δ − ‖u − g‖∞) ≥ 2

δ ‖∇u‖2
∞. This

inequality can be rewritten as

δ2 − δ ‖u − g‖∞ − 2

β
‖∇u‖2

∞ ≥ 0 ,

and is satisfied for

δ ≥ ‖u − g‖∞ +

√

2

β
‖∇u‖∞ . (5.10)

One checks in the same way that (5.10) implies the second inequality in (5.8) too.
In other words, assumption (a) of Lemma 3.2 holds if (5.10) holds.

Assumption (b’) of Lemma 3.2 is trivially satisfied because Su is empty, while
(5.4) and the estimate ‖σ‖1 ≤ 4δ imply that assumption (b) of Lemma 3.2 is
satisfied with strict inequality if 8δ‖∇u‖∞ < α, that is,

δ <
α

8‖∇u‖∞
. (5.11)

Finally, we can find δ that satisfies both (5.10) and (5.11) if

‖∇u‖∞
(
√

β ‖u − g‖∞ +
√

2‖∇u‖∞
)

<
α

8

√

β , (5.12)
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and by Theorem 3.3 and Remark 3.5 we conclude that, if (5.12) is satisfied, then
u is the unique absolute minimizer of F .

Thus it remains to show that (5.12) holds for β large enough. Note that u,
being a solution of (5.1), depends on β, and there exist positive constants K and
β̄ (depending on Ω, but not on g and β) such that for every β ≥ β̄ there holds

√

β ‖u − g‖∞ + ‖∇u‖∞ ≤ K‖∇g‖W 1,p . (5.13)

This estimate can be derived, for instance, from the interpolation inequality
(3.1.59) of Theorem 3.1.22 in [26] (one has to replace λ, u, A, and B with β,
u − g, ∆, and ∂ν respectively, and recall that ∆u = β(u − g)).

Estimate (5.13) shows that (5.12) holds for

β > β0 := max
{

β̄, 27α−2K4‖∇g‖4
W 1,p

}

. (5.14)

5.4. Characteristic functions of regular sets. If g := 1E is the characteristic
function of a sufficiently regular compact subset E of Ω, then it is natural to
conjecture that for large values of β the minimizer of F is g itself. We prove this
statement by calibration under the assumption that the boundary of E is of class
C1,1 and β > β0, where β0 is defined in (5.22). Under these assumptions we also
prove that the minimizer is unique.

As in the previous paragraph, we first construct φx. To this end, we take a
Lipschitz vectorfield ψ on Ω which agrees on ∂E with the inner normal of ∂E,
is supported on a neighbourhood of ∂E which is relatively compact in Ω, and
satisfies |ψ| ≤ 1 everywhere. For instance, we can use that ∂E is locally a graph,
which yields a trivial extension of the normal vectorfield on a small neighbourhood
of each point, and then use a partition of unity to paste together these different
extensions. Now we set

φx(x, t) := σ(t)ψ(x) for all x ∈ Ω, t ∈ R, (5.15)

where σ : R → [0, 2α] is a function of class C1, supported in [0, 1], with integral
equal to α, and such that |σ̇(t)| ≤ 16α for t ∈ [0, 1], σ(t) := t2 for t ∈ [0, 1/8],
σ(t) := (1 − t)2 for t ∈ [7/8, 1].

We see that, independently of the choice of φt, the vectorfield φ has vanishing
normal component at the boundary of Ω, and satisfies assumptions (b) and (b’) of
Lemma 3.2. Since φx vanishes for t = 0 and for t = 1, and therefore on the graph
of g, requiring that φ satisfies assumption (a’) yields

φt(x, g(x)) := 0 for � n-a.e. x ∈ Ω, (5.16)

while requiring that φ is divergence-free yields (cf. (5.15))

∂tφ
t = −divxφx = −σ divxψ . (5.17)

Conditions (5.16) and (5.17) together determine φt.

Note that φ is approximately regular: this is trivial for the vectorfield (φx, 0),
which is continuous, and follows from Remark 2.3 for (0, φt) (even though φt is
discontinuous on ∂E × R, and where divxψ is discontinuous).

To show that φ is an absolute calibration it remains thus to verify assumption
(a) of Lemma 3.2, namely

φt ≥ 1

4
|φx|2 − β(t − g)2 =

1

4
σ2|ψ|2 − β(t − g)2 . (5.18)

Since the equality holds by construction on the graph of g (cf. (5.16)), it is enough
that ∂tφ

t satisfies the inequality

∂tφ
t := −σ divxψ >

1

2
σσ̇|ψ|2 − 2β(t − g) for t > g(x), (5.19)

and the opposite inequality for t < g(x). Inequality (5.19) is clearly satisfied for
t > 1, since σ(t) = 0. If g(x) = 0 and 0 < t ≤ 1, (5.19) is implied by

−σ‖divxψ‖∞ >
1

2
σ|σ̇| − 2βt . (5.20)

In turn, (5.20) reduces for 0 < t < 1
8 to

−t2‖divxψ‖∞ > t3 − 2βt ,

which is satisfied for β > 1
16‖divxψ‖∞ + 1

128 , while, for 1
8 ≤ t ≤ 1, (5.20) follows

from

−2α‖divxψ‖∞ > 16α2 − 1

4
β ,

which is satisfied for β > 8α‖divxψ‖∞ + 64α2. Therefore (5.19) holds for

β > β0 := max
{ 1

16
‖divxψ‖∞ +

1

128
, 16α‖divxψ‖∞ + 64α2

}

. (5.21)

The same condition implies also the opposite inequality for t < g(x). This con-
cludes the proof that φ calibrates g.

To prove that g is the unique minimizer of F , we first notice that the strict
inequality in (5.19) implies the strict inequality in (5.18) for t > g(x), and of course
we have the strict inequality for t < g(x), too. In other words, the inequality in
assumption (a) of Lemma 3.2 is strict for all t 6= g(x). Now, if u is another
minimizer, φ must calibrate u, too (cf. Remark 3.5), and in particular it must
satisfy assumption (a’) of Lemma 3.2 for u, which means that the inequality in
assumption (a) is an equality for t = u(x). Therefore we conclude that u(x) = g(x)
for � n-a.e. x in Ω.

Remark 5.5. If g := 1E is the characteristic function of a set E relatively compact
in Ω and u := g minimizes F , then the set E minimizes in particular

�
(A) :=

F (1A) = α
�

n−1(∂∗A) + β|A4E| among all sets A with finite perimeter in Ω.
Hence the regularity theory for minimal perimeters yields that, in dimension n ≤ 7,
E must be of class C1,γ for every γ < 1, while in dimension two it must be of
class C1,1 (see, e.g., [5], Theorem 4.7.4). Thus the regularity on g required in the
previous paragraph is optimal in dimension two, and close to optimal for 3 ≤ n ≤ 7.

We conclude this section with some remarks on the gradient flow associated
with the (homogeneous) Mumford-Shah functional.
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5.6. Gradient flow for the Mumford-Shah functional. A gradient flow for
F0 with respect to the L2-metric can be defined in a variational way by time
discretization, following the minimizing movements approach developed in [18],
[4], [14], [25]. Given an initial datum u0 ∈ L2(Ω) and a discretization step δ > 0,
we set uδ,0 := u0 and define inductively uδ,j for j = 1, 2, . . . as any minimizer of

F0(u) +
1

δ

∫

Ω

(u − uδ,j−1)
2 dx (5.22)

among all functions u in SBV (Ω)—with or without prescribed boundary values,
according to the boundary condition (Dirichlet or Neumann) imposed on the flow.
Then we define uδ : Ω × [0, +∞) → R by uδ(x, t) := uδ,j for t := jδ, and by
linear interpolation for t ∈

(

jδ, (j + 1)δ
)

, and call gradient flow with initial datum
u(x, 0) = u0(x) any possible limit of uδ as δ → 0 along any sequence. Note that
the flow may be not unique, as even uδ is not uniquely defined.

Remark 5.7. When the initial datum u0 := 1E is the characteristic function of a
compact subset of Ω with boundary of class C1,1, the gradient flow for F0 with
Neumann (or Dirichlet) boundary conditions is unique, and agrees with u0 for all t,
that is, u(x, t) := u0(x) on Ω× [0,+∞). This follows immediately from Paragraph
5.4.

Remark 5.8. If u0 belongs to W 1,2(Ω), and the minimization of (5.22) is restricted a
priori to the functions u in W 1,2(Ω), then F0(u) is just the usual Dirichlet integral,
and it can be proved (cf. [4], Example 2.1) that the gradient flow is unique and
agrees with the solution of the heat equation

∂tu = ∆u on Ω × (0,+∞)

with initial datum u(x, 0) = u0(x) and boundary conditions—Neumann or
Dirichlet—according to the boundary conditions imposed in the minimization of
(5.22).

The previous remark and the result of Paragraph 5.3 suggest that for a smooth
initial datum u0, the gradient flow associated with F0 is just the solution of the
heat equation. To prove this, however, we need some additional information on
the minima of F for large β.

5.9. Improved estimates on the solution of (5.1). Under the regularity
assumptions on Ω and g given in Paragraph 5.3, if ∆g ∈ L∞(Ω) and ∂νg = 0 on
∂Ω, then the solution u to the Neumann problem (5.1) satisfies

‖∆u‖∞ ≤ ‖∆g‖∞ (5.23)

and an improved version of estimate (5.13)

β‖u − g‖∞ + ‖∇u‖∞ ≤ K‖∆g‖∞ , (5.24)

with K depending on Ω, but not on g and β. In particular condition (5.12) of
Paragraph 5.3 holds for

β > β0 := max
{

1, 27α−2K4‖∆g‖4
∞

}

, (5.25)

and in that case u is the unique absolute minimizer of F .

To prove (5.23) and (5.24), we first notice that the function v := g + ε is a
super-solution of (5.1) as long as ε ≥ β−1‖∆g‖∞, in the sense that

{

∆v ≤ β(v − g) on Ω,

∂νv ≤ 0 on ∂Ω.

Thus u is (a.e.) smaller than g + ε on Ω. Similarly, g − ε is a sub-solution, and
then

‖u − g‖∞ ≤ 1

β
‖∆g‖∞ , (5.26)

which, in view of (5.1), implies (5.23).

Now, u solves the equation ∆u = f with Neumann boundary conditions and
f := β(u − g), and well-known estimates (cf. [35], Theorem 3.16) give ‖∇u‖∞ ≤
K‖f‖∞ for a suitable constant K depending on Ω, but not on f . Together with
(5.26), this implies (5.24).

5.10. Gradient flow with smooth initial datum. Assume that Ω has boundary
of class C2, u0 ∈ W 2,p(Ω) for some p > n, ∆u0 ∈ L∞(Ω), and ∂νu0 = 0 on ∂Ω.
Then the gradient flow for F0 with Neumann boundary conditions and initial
datum u(x, 0) = u0(x) constructed in Paragraph 5.6 is unique, and agrees with the
solution of the heat equation.

In virtue of Remark 5.8, this claim is an immediate consequence of the following
fact: when

δ < δ0 :=
[

max
{

1, 27α−2K4‖∆u0‖4
∞

}

]−1

,

then, for every integer j, every minimizer of (5.22) belongs to W 1,2(Ω). In other
words, the solution of the Neumann problem (5.1) with β := 1/δ and g := uδ,j−1

is the unique minimizer of (5.22).

To prove this fact, it suffices to verify that the assumptions of Paragraph 5.9
are satisfied for every j, and precisely: uδ,j−1 ∈ W 2,p(Ω), ∆uδ,j−1 ∈ L∞(Ω),
∂νuδ,j−1 = 0 on ∂Ω, and inequality (5.25) holds with β := 1/δ and g := uδ,j−1.
The last requirement follows from the choice of δ and the chain of inequalities

‖∆u0‖∞ := ‖∆uδ,0‖∞ ≥ ‖∆uδ,1‖∞ ≥ ‖∆uδ,2‖∞ ≥ . . . ,

which are implied by (5.23). The W 2,p regularity of uδ,j follows from the corre-
sponding regularity of uδ,j−1, as remarked at the beginning of Paragraph 5.3.
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Remark 5.11. The conclusion of the previous paragraph also holds for the gradient
flow with Dirichlet boundary conditions. More precisely, if Ω has boundary of
class C2 and u0 is of class W 2,p(Ω), with ∆u0 ∈ L∞(Ω), then the gradient flow
for F0 with initial datum u(x, 0) = u0(x) on Ω and Dirichlet boundary condition
u(x, t) = u0(x) on ∂Ω× [0,+∞) constructed in Paragraph 5.6 is unique, and agrees
with the solution of the heat equation (with same initial datum and boundary
conditions). The proof is essentially the same as in the Neumann case, and relies
on suitable estimates for the Dirichlet problem.

6. Appendix

In this section we prove some technical lemmas stated in Sect. 2. We follow the
notation of that section.

Lemma 6.1. Let Ω be an open subset of R
n whose boundary is the graph of a

Lipschitz function f : R
n−1 → R, and let φ be a bounded vectorfield on Ω which

has bounded support and satisfies condition (2.3) with M := ∂Ω. Then there exists
a sequence of vectors yj such that yj → 0, ∂Ω + yj ⊂ Ω for every j, and

lim
j→∞

φ(x + yj) · ν∂Ω
(x) = φ(x) · ν∂Ω

(x) for
�

n−1-a.e. x ∈ ∂Ω. (6.1)

Proof. Let S be the set of all vectors y ∈ R
n such that ∂Ω + y ⊂ Ω. For every

r > 0, let Sr := S ∩ B(0, r), and consider the double integral

∫

Sr

[

∫

∂Ω

∣

∣(φ(x + y) − φ(x)) · ν∂Ω
(x)

∣

∣ d
� n−1(x)

] dy

rn
. (6.2)

If we invert the order of integration, condition (2.3) means that the inner integral
(over Sr) tends to 0 as r → 0 for

�
n−1-a.e. x ∈ ∂Ω. Then (6.2) converges to 0

by the dominated convergence theorem (recall that φ is bounded and has bounded
support).

Since ∂Ω is the graph of a Lipschitz function, the set S contains an open cone
with vertex in 0. Then the measure of Sr is larger than arn for some fixed a > 0,
and therefore we can choose yr ∈ Sr so that the value of the inner integral in (6.2)
is smaller than the double integral divided by a, and then converges to 0 as r → 0.

In other words, φ(x + yr) · ν∂Ω
(x) converge to φ(x) · ν∂Ω

(x) in the space
L1(∂Ω,

�
n−1), and then it suffices to choose a subsequence yj which yields point-

wise convergence for
�

n−1-a.e. x ∈ ∂Ω.

Proof of Lemma 2.4. (Sketch) We divide the proof in several steps.

Step 1. Assume that φ belong to C1
c (Rn, Rn). In this case formula (2.5) is

well-known—see, e.g., [23], Theorem 2.10, or [7], formula (3.87) in Theorem 3.87.

Step 2. Assume that φ is an approximately regular vectorfield on R
n with

compact support and that divφ ∈ L∞(Rn). Let ψε(x) := ε−nψ(x/ε) be a standard,
radially symmetric, regularizing kernel of class C∞

c , and take φε := φ ∗ ψε. Thus
formula (2.5) holds for each φε by Step 1, and it only remains to check that we

can pass to the limit as ε → 0. The convergence of the first integral in the right-
hand side of (2.5) follows from the fact that the functions divφε are bounded in
L∞ and converge to divφ a.e. in Ω. Since φ is approximately regular, the maps
φε · νM converge to φ · ν

M

�
n−1-a.e. on any Lipschitz surface M , and then also

on any rectifiable set M . In particular this implies the convergence of the second
integral in the right-hand side of (2.5). The same argument also applies to the
left-hand side, provided that we use the coarea formula (cf. [7], Theorem 3.40, or
[21], Theorem 4.5.9(13)) to re-write that integral as

∫

Ω

φε · Du =

∫

R

[

∫

Mt

φ · ν
Mt

d
� n−1

]

dt ,

where Mt is the measure theoretic boundary in Ω of the sublevel {u < t}.
Step 3. If φ is a compactly supported, approximately regular vectorfield on a

neighbourhood of Ω with divφ in L∞, we reduce to Step 2 using a suitable cut-off
function.

Step 4. Assume that Ω is the subgraph of a Lipschitz function f : R
n−1 →

R, and φ is a compactly supported, approximately regular vectorfield on Ω with
divφ ∈ L∞(Ω). We take a sequence of vectors yj as in Lemma 6.1, and set
φj(x) := φ(x + yj), uj(x) := u(x + yj). By Step 3, formula (2.5) holds with φ and
u replaced by φj and uj , and it remains to check that we can pass to the limit as
j → +∞. The convergence is immediate for all integrals in (2.5) but the last one.
In this case, it suffices to notice that the functions φj · ν∂Ω

are uniformly bounded
and converge to φ · ν∂Ω

�
n−1-a.e. on ∂Ω (by the choice of the vectors yj), while

the traces of uj on ∂Ω converge to the trace of u in L1(∂Ω,
�

n−1) (because the
functions uj converge to u in variation, or, alternatively, because the L1-norm of
the difference of the traces is controlled, up to a constant which does not depend
on j, by |Du|(Ω \ (Ω − yj)), which clearly tends to zero).

Step 5. To prove the general case, we use a locally finite partition of unity
consisting of compactly supported smooth functions to reduce to Step 4.

Proof of Lemma 2.5. We first prove that divφ = f on Ω\S0. Since the problem
is local, it is enough to show that divφ = f on every bounded open set U with
U ⊂ Ω \ S0 and such that U \ S1 has two connected components U+ and U− with
Lipschitz boundary. As φ is approximately regular on U±, we can apply formula
(2.5) with Ω replaced by U± and u ∈ C∞

c (U): as the integrals on U ∩ S1 cancel
out, we are left with

∫

U
φ · ∇u dx = −

∫

U
fu dx. Since u is arbitrary, we deduce

that divφ = f on U .
We prove now that divφ = f on Ω. Since

�
n−1(S0) = 0, the (1, 1)-capacity of

S0 is zero (see [20], Sect. 5.6.3), and therefore there exists a sequence of functions
σj in C∞(Ω) such that 0 ≤ σj ≤ 1 in Ω, and σj = 0 in a neighbourhood of S0, and
σj → 1 strongly in W 1,1(Ω).

Take now an arbitrary function u ∈ C∞
c (Ω). Then the functions σju belong

to C∞
c (Ω \ S0) and, since divφ = f on Ω \ S0, we have

∫

Ω
φ · ∇(σju) dx =

−
∫

Ω
f · (σju) dx. Moreover the functions σju converge to u strongly in W 1,1(Ω),

and therefore
∫

Ω
φ · ∇u dx = −

∫

Ω
fu dx, which concludes the proof.
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Proof of Lemma 2.8. By a monotone class argument it is enough to prove (2.8)
for φ of the form φ(x, t) := ρ(t) ψ(x), with ρ : R → R and ψ = (ψx, ψt) : Ω →
R

n × R of class C∞
c . Let σ be the primitive of ρ vanishing at −∞. Then we have

∫

Ω×R

φ · D1u = −
∫

Ω×R

divφ 1u dx

= −
∫

Ω

[

∫ u

−∞
(ρ divxψx + ρ̇ψt) dt

]

dx

= −
∫

Ω

[

σ(u) divxψx + ρ(u)ψt
]

dx . (6.3)

As u belongs to SBV (Ω), the chain-rule for BV -functions (see, e.g., [7], Theorem
3.96) gives

D[σ(u)] = ρ(u)∇u · � n +
[

σ(u+) − σ(u−)
]

νu ·� n−1 Su .

Therefore (6.3) implies

∫

Ω×R

φ · D1u =

∫

Ω

[

ρ(u)ψx · ∇u − ρ(u)ψt
]

dx

+

∫

Su

[

σ(u+) − σ(u−)
]

ψx · νu d
� n−1 ,

which, together with (2.7), gives (2.8) in the case φ(x, t) := ρ(t) ψ(x).

Proof of Lemma 2.9. We set w := 1u − 1v on Ω × R. Then w belongs to
BV (Ω × R) and Dw = ν

Γu ·� n Γu − ν
Γv ·
�

n Γv.
Let us consider the inner trace of w on ∂U . First of all we decompose ∂U as

the disjoint union of (Ω × R) ∩ ∂U and (∂Ω × R) ∩ ∂U . For every C∞ vectorfield
ψ on Ω × R with compact support we apply formula (2.5) of Lemma 2.4 with Ω
and φ replaced by U and ψ, respectively, and we obtain

−
∫

U

w divψ dx =

∫

U

ψ · Dw +

∫

∂U

w ψ · ν∂U d
� n

=

∫

Γu∩U

ψ · ν
Γu d

� n −
∫

Γv∩U

ψ · ν
Γv d

� n

+

∫

∂U

w ψ · ν∂U d
� n . (6.4)

On the other hand, by the definition of distributional derivative we have also

−
∫

Ω×R

w divψ dx =

∫

Ω×R

ψ · Dw

=

∫

Γu

ψ · ν
Γu d

� n −
∫

Γv

ψ · ν
Γv d

� n . (6.5)

Due to the particular structure of U and the assumption on the complete graphs
of u and v, the function w vanishes a.e. on (Ω × R) \ U . This fact, together with
(6.4) and (6.5), implies that the inner trace of w on (Ω × R) ∩ ∂U satisfies

w ν∂U = 1Γu ν
Γu − 1Γv ν

Γv

� n-a.e. on (Ω × R) ∩ ∂U .

Therefore w belongs to L1((Ω × R) ∩ ∂U,
�

n) and

∫

(Ω×R)∩∂U

w φ · ν
∂U

d
� n =

∫

Γu∩∂U

φ · ν
Γu

d
� n −

∫

Γv∩∂U

φ · ν
Γv

d
� n . (6.6)

Now, the trace of w on ∂Ω×R is the difference of the characteristic functions of the
traces of u and v on ∂Ω, and therefore it belongs to L1(∂Ω×R,

�
n) and vanishes

�
n-a.e. on (∂Ω × R) \ ∂U . As ν∂U = (ν∂Ω, 0) on (∂Ω × R) ∩ ∂U , this implies

∫

(∂Ω×R)∩∂U

w φ · ν∂U d
� n =

∫

∂Ω×R

w φx · ν∂Ω
d
� n

=

∫

∂Ω

[

∫ u

v

φx(x, t)dt
]

· ν∂Ω
d
� n−1 . (6.7)

Since the inner trace of w on ∂U belongs to L1(∂U,
�

n), we apply formula (2.5)
of Lemma 2.4 with Ω and u replaced by U and w, respectively, and get

∫

Γu∩U

φ · ν
Γu d

� n −
∫

Γv∩U

φ · ν
Γv d

� n = −
∫

∂U

w φ · ν∂U d
� n . (6.8)

Identity (2.9) follows now from (6.6), (6.7), and (6.8).
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