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On the singularities of convex functions*

G. Alberti, L. Ambrosio, P. Cannarsa

Abstract. Given a (semi)-convex function u : Q@ C R™ — R and an
integer k € [0,n], we show that the set ¥* defined by

¥ = {2 € Q: dim(du(z)) > k}

is countably H" F-rectifiable, i.e., it is contained (up to a H™ k-
negligible set) in a countable union of C* hypersurfaces of dimension
(n — k). Moreover, if u is convex in 2, we show that

| o Eu) an @) < o
Q'NTk
for any open set Q' CC Q.
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1. Introduction

This paper originated from our interest in the following question
about the singularities of a convex functions:
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Problem: given a convex function u : R™ — R, and an integer
k € [0,n], how to estimate the size of the k-th singular set of u, i.e.,
of the set
SF(u) := {z € R" : dim(Qu(x)) > k}?

Of course, the problem has a trivial answer if kK = 0 or k = n, as
¥0(u) = R™, whereas ¥"(u) is at most countable.

Moreover, if k& = 1, a solution to our problem could be given
noting that Vu has locally bounded first variation in R™ (see e.g.
[13] and [18]). Indeed, the jump set of such a function is known
to be countably " 1-rectifiable (see [9] and [20]), where J#™ de-
notes the m-dimensional Hausdorff measure in R"™. Equivalently,
H"1almost all of ¥!(u) can be covered with a sequence of C*
hypersurfaces.

In this paper we show that, for any k& € {0,1,...,n}, ¥*(u)
is countably #"~*-rectifiable (Theorem 4.1). Consequently, 3F(u)
is o-finite with respect to "% and, in particular, its Hausdorff
dimension does not exceed (n — k). Very simple examples show that
¥*(u) may well be a (n — k)-dimensional set, for instance, a plane.

Another result contained in Theorem 4.1 of this paper is the
estimate

/ A (Du(z)) dH(z) < C(n) ([u] Loy T diam(Q))" ,
Sk (u)NQ

that holds true for any integer k£ € [0,n]. Such bound provides a
quantitative information on the “measure” of the set ¥ (u).

At this point, a brief description of our techniques is in order.
The main idea of our approach is to connect the J#™-rectifiability
of a set S with an upper bound on the dimension of the contingent
cone T(S,z) to S at any point x € S (Theorem 3.1). Then, the
rectifiability of ¥*(u) follows by splitting ¥*(u) as a countable union
of sets ¥ (u) for which we are able to prove an upper bound on the
dimension of the contingent cone. Such a bound is obtained showing
T(XE(u),z) is orthogonal to du(x) (Proposition 2.2), and recalling
that dim(du(z)) > k.
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Although we have stated the problem for a convex function, the
method we propose in this work also applies to semi-convex functions
(see §2 for notation). Therefore our results are stated in this more
general setup.

Semi-convexity — or, better, semi-concavity — properties are well
known for solutions of nonlinear partial differential equations such
as Hamilton-Jacobi-Bellmann equations of first or second order, see
e.g. [16], [15].

Hence, the results of this paper provide upper bounds on the sin-
gular sets of solutions to these equations, and somehow complement
the singularity propagation results of [6].

Finally, an interesting problem in this research is to provide
lower bounds on the singular set of a solution in the neighborhood
of a fixed singular point. Bounds of this kind are false for a general
semi concave (or even concave) function, see Remark 2.4. However,
they will be obtained in a forthcoming paper [3], using additional
information derived from the equation.

2. Properties of semi-convex functions

We fix a bounded, convex, open set 2 C R", and we denote by
B,(z) the open ball in R™ centered at = with radius p.
For any S C R™ we denote by S+ the plane

{p € R": ¢ — (q,p) is constant on S}.

For any integer m = 0,...,n we denote by J#™ the Hausdorff
m-~dimensional measure in R™, defined by

w
J™(B) := — sup inf diam™(B;) : B C| |B;,
(2.1) ST {Z ! U

diam(B;) < 5},
where w,, is the Lebesgue measure of the unit ball in R™ if m > 1

and w,, = 1 if m = 0. In particular, ##° is the so-called counting
measure.



G. ALBERTT et. al.

If w is a Lipschitz function in §2, we set

[u]Lip(Q) = sup{% cx,y e, v # y}

Definition. We say that w is semi-convex in ), and we write
u € SC (Q), if we can find a non decreasing upper semicontinuous
function w : [0, +o00[— [0, 4+o00[ such that w(0) = 0 and
(2.2)
tu(zr)+(1 —t)u(xo) —u(xy) > —t(1 —t) |21 — xo| w(|z1 — 20])
for all zg,z1 € Q, t € [0,1] and x¢ := tz1 + (1 — t)xo.

If uw e SC (Q), we denote by w, o the least function w satisfying
(2.2).

For any z € Q and any u : Q — R, the subdifferential du(zx) of
u at x is defined by

du(x) = {p e R": hﬂgf u(y) — U(;)__xip’ y — )

> 0}.

The subdifferential is a closed convex set, possibly empty.

If u is a convex function, the above set coincides with the well-
known subdifferential of convex analysis, which captures all the rel-
evant differential properties of convex functions. In particular, the
subdifferential of a convex function is non-empty at every point (see
for instance [8]). In the following proposition we list analogous prop-
erties of subdifferentials of semi-convex functions (see also [4] and
[6]). We give a fairly detailed proof for the reader’s convenience.

Proposition 2.1. Let u € SC(Q). Then, w is locally Lipschitz
continuous in 2, the sets Ou(x) are non-empty, compact, and p €
ou(x), if and only if

(2.3) u(y) —u(z) = (p,y —2) =2 —ly —zlwuolly—2z|)  Vye
Finally, the map x — Ou(x) is upper semi-continuous, i.e.,

(24)  an—w, pu—p pr€dulzn) — pe€ dul).
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Proof. Let xg, 1, 2, x3 be an ordered set of points lying on the
same line contained in . By using (2.2), it is not difficult to see
that

u(rs) —u(r1)  u(rz) —u(z1)

(2.5) s = Jos— ] > —wy0(lzs — 21]).
Similarly,

u(ze) —u(zy)  wu(xy) —u(zo)
(2.6) e R A > —wu,0(|z2 — 20]).
Hence

u(wz) — u(w1)
|zo — 21

u(z1) — u(wo)

|21 — 0|

u(ws) — u(r1)
|23 — 21

—wu,0(|r2 — xo|) + <

< +wya(lzs — 21).
This shows that wu is locally Lipschitz continuous on lines. More-
over, if z1 and x5 belong to ' CC , the above provides a uniform
estimate of the Lipschitz constant, and therefore shows that u is a
Lipschitz function in €V'.

Since w is locally Lipschitz continuous, du(z) is compact.

Any vector p € R™ satisfying (2.3) trivially belongs to du(x).
Conversely, let p € Qu(x), and let z1 = x, x5 =y, 2 = 1 +t(y — x)
in (2.5) with 0 <t < 1:

u(z +t(y — x)) — u(x)
tly — |

u(y) — u(z)
ly — |

> —wua(ly — ).

By letting ¢ — 07 we obtain that p fulfils (2.3).
By using (2.2), (2.5) and (2.6) it can be seen that the function

o u(r +ty) —u(x)
vly) = t£%1+ t
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is well defined, and convex. Therefore Ju(z) is not empty because it
coincides, by (2.3), with dv(0).

Finally, the upper semicontinuity of x — du(x) is a straightfor-
ward consequence of (2.3). ®

In this paper we are interested in the properties of the singular
sets of semi-convex functions.

Definition. For any integer k € [0,n] we define
YF(u) = {z € Q: dim(du(z)) >k},

and for any o > 0 we denote by X (u) the set of points z € ¥ (u)
such that du(z) contains some k-dimensional ball BX of diameter
2a, i.e.,

(2.7) EE(u) = {z € £¥(u) : IBE C Qu(z) with diam(BF) = 2a}.
We define now the contingent cone T(S,z) to a set S C R™ at

a point x (see [4], [8], and [11], 3.1.21).

Definition. Let x € S. We define

T(S,z) := {7“9: r>0,0 = lim Th T
h—+o00 \xh — ac]

with z, € S\ {z}, 2, — a:}

We denote by Tan(S,z) the vector space generated by T(S, ).

In the following lemma we investigate the properties of X% (u).
Proposition 2.2. For any u € SC(), the set £E(u) is closed in
Q and
(2.8) Tan (X (u),z) C [8u(:v)]l

for any x € XE(u) \ X1 (u). In particular, the dimension of
Tan(Xk (u), z) is not greater than (n — k) for any x € Y (u) \
YEHL(y).
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Proof. Let us prove that ¥ (u) is closed. Let {z;} C Xk (u) be con-
verging to z € €, and let B¥(p;) C du(z;) be k-dimensional balls
centered at p; with radius a. Possibly passing to subsequences, we
can assume with no loss of generality that there is a k-dimensional
ball B¥ with radius a such that each point p € B¥ can be approx-
imated by points in B¥(p;). By the upper semicontinuity of the
differential (see (2.4)) we get B* C du(z), hence x € ¥ (u).
In order to show (2.8), we only need to prove that the map
p — (0, p) is constant on du(x) for any n € T(ZE (u), z) with |n| = 1.
Let {x,} € Xk (u)\ {z} be a sequence converging to = such that
Th — T

lim

h—+o0 ‘:Uh — x] =

Possibly extracting a subsequence, we can assume with no loss of
generality that there is a k-dimensional ball B¥ with radius a such
that each p € B can be approximated by vectors in du(xy). By
(2.4), B* C du(x). Since du(x) is a k-dimensional set, we only need
to know that p — (n,p) is constant on B%. Let p, p’ € BE, and let
pr € Qu(xy) be converging to p’; by adding the inequalities

u(zp) —u(z) — (p,zn — x)

> —wya(lzn — )

lzp —

u(x) —ulxpy) — (Ph, T — T,

() — u(wn) — ¢ L > —wwallon - al),
|z), — x|

and passing to the limit as h — 400, we get

(n,p") < (n,p).

Since p and p’ are arbitrary, (2.8) follows. B

Remark 2.3. Proposition 2.2 yields Tan(E”( ), z) =
x € X7 (u). Hence, X7 (u) is a discrete set in  and X" (u
countable.

{0} for any
) is at most

Remark 2.4. One may wonder whether the inclusion in (2.8) is
indeed an equality. This fact could be regarded as a “singularity
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propagation” phenomenon. Now, Theorem 3.1 below shows that the
set of points S C ¥¥ (u) at which the inclusion is strict is countably
H7 k=1 rectifiable, hence o-finite with respect to ™ %~1. Indeed,
since Tan(S, x) C Tan(Xk (u), z), by the definition of S it follows that

dim(Tan(S,z)) <n—k—1

for any x € S. However, the following example shows that equality
(2.8) may fail at some point. Let n = 2, kK = 1, and let u(x,y) :=
/x2 +y* It is easy to check that u is continuously differentiable
in R?\ {0}, and convex in R%. Moreover, du(0) = [-1,1] x {0}, so
that dim[é?u(())]l = 1. On the other hand, T(X'(u)) = 0. Based
on the above, it is not hard to construct an example of function
u : R? — [0, 4+o00[ such that the exceptional set S is countable.

3. A rectifiability criterion
Let us first give a definition.

Definition. We say that S C RP is countably " -rectifiable if there
is a countable family of C'' hypersurfaces I, C R? of dimension m
such that

o0
(3.1) A (S\ U Fh> =0.
h=1
If D R™and f : D — RP is a Lipschitz function, then a
Lusin-type argument shows that f(D) is countably " -rectifiable
(see [19], Lemma 11.1).
We can now state a sufficient condition for rectifiability.

Theorem 3.1. Let S C R", and let us assume that Tan(S,x) has
dimension not greater than m for any x € S. Then, S is countably

FC -rectifiable.

Proof. Let us denote by ¢(z) the function z/|z|, defined for all z €
R™ \ {0}. Then, the following two properties are satisfied for any
xz € S and any € > 0:
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(i) there exists r > 0 such that
(3.2) Yye SNB.(x)\{z}, Jve T(S, x)st. |ply—x)—v|<e
(ii) for any r > 0 there exists p < r/2 such that
(33)1) € T(S,z), Iy € SN B, )o(x) \ By(x) s.t. |o(y —x) —v| <e.

Both these properties can be proved arguing by contradiction.
Let us fix € < 1/7, and for 0 < p < r/2 define

Spp={x€S: (3.2) and (3.3) hold}
We claim that S,. , is locally contained in the graph of a Lipschitz
function. More precisely, let z € S, ,, let M be the set Tan(S, ) and
let us denote by 7 : R® — M the orthogonal projection on M. We
will show that there is a set D C M such that 7 : S, ,N Be,(x) — D
is one to one and f = 7w~ ! is Lipschitz continuous.

Possibly replacing S, , by S, , —x, it is not restrictive to assume
that x = 0. Let y, z € S, , N B,(0) with y # 2. Since |y — 2| <
2ep < r/2, by (3.2) we get
(3.4) Jv € T(S,y) such that |p(y — z) — v| <.
Similarly, (3.3) yields
(3.5) 3z € SN B, 2(y) \ B,(y) such that |p(y — 2) —v| <e.
By using the inequality |V (z)(y)| < 2|y|/|x|, and

F—tyl >z —yl— (1=l = p—ep=p/2  Vie 1],

we have

1
(36) oz —y) - p(2)] < / |w<z—ty>uy|dts% < e

9
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Moreover, since z € B, /5(y), we get by (3.2) w € T(S,0) such that
(3.7) lp(2) —w| < e.
Putting together (3.3), (3.4), (3.5) and (3.6) we obtain

lp(z —y) —w| <p(z —y) —v[+[v—p(z-y)|+

(3:8) +lp(z = y) = 9(2)] + |p(2) —w| < Te.

By (3.8) we infer

lp(z —y) —m(e(z — )| < |p(z —y) —w| < Te < 1.

This shows that w(z —y) # 0 if z # y, hence 7 is one to one in
Sy.p N Be,(0). Moreover,

1T (p(z—y))| > V1 —(7€)?,

and

(3.9) [m(z) = 7m(y)| = V1= (Te)*|ly — 2.

Let D = 7(Sy,NBe,(0)), and let f : D — R™ be the inverse function
of m. By (3.9), f is a Lipschitz function, and f(D) = S, , N B, (0).

This shows that S, , is countably J#™-rectifiable. Since any
point z € S belongs to Sy, 1/, for sufficiently large natural numbers
n, p with p > 2n, also S is countably J#""-rectifiable. B

4. Estimates on singularities and rectifiability

Let u be a semi-convex function, and let us denote by I'(u) the graph
of the subdifferential, i.e.

D(u) = {(z,p) € R" xR" : p € Qu(z)}.

In the following we apply the rectifiability criterion of §3 to the prob-
lem described in the introduction.

10
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Theorem 4.1. Let u: Q — R be semi-convexr and Lipschitz con-
tinuous. Then, for any integer k € [0,n], the set

¥ (u) := {z € Q: dim(du(z)) > k}

is countably "~ *-rectifiable. Moreover, if w, o(t) < Ct for some
C >0, then I'(u) is countably F™-rectifiable in R™ x R™ and

n/2

(4.1) A" (T(uw) < C(n) (1 +(C + 1)2> [u] Zip(m.

Moreover,

(4.2) / A (Du(z)) dA"H(z) < A (D(w).

Tk (u)

Proof. By Theorem 3.1 and Proposition 2.2, the sets ¥ (u) are count-
ably J#" *_rectifiable. Since

£ u) = ([ = (w),

peN

also XF(u) is countably £~ *-rectifiable.
Let us assume now that w, o(t) < Ct for some C' > 0. Given
any xg € {1 we define

C
v(z) = u(z) + E!x — x0]%.
It is not hard to see that v is convex and
(4.3) (p—qx—y)>|r—y|> Va,yecQ, pcdulx),qc duly).

In addition, we have
['(u) = ®c(T'(v))

11
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where ®¢ : R?" — R2" is defined by
(I)C(x7p) = ({Eap - (C + 1)($ - 1‘0))

Since the Lipschitz constant of ®¢ equals /1 + (C + 1)2, by well-
known properties of Hausdorff measures (see for instance [11], para-
graph 2.10.11) we infer the inequality

n/2
(4.4) A" (T(u) < <1 +(C + 1)2> A" (T(v))

Let D C R™ be the projection of I'(v) on the second factor, (a similar
idea is also used in [13]) and let ¢ : D — R™ be the function which
assigns to each p € D the unique (by (4.3)) x € Q such that p €
Ov(x). By (4.3) we get

lo(p) — 0(q)? leq(p — q,0(p) — (q)) < |p— gl le(p) — (q)],

so that ¢ is a contraction. Since I'(v) coincides with the graph of ¢,
by the area formula for Lipschitz functions (see [11], 3.2.1) we obtain

A" (T (v)) =/ ¥(Ve(p)) dp,

D

where

H(A) = \/1+ S det?(B)

BCA

for any n x n matrix A. In particular,

(4.5) A" (T(v)) < C(n) #"™ (D) <w,C(n)[v] Zip(m.

Hence, (4.1) follows by (4.4) and (4.5). Finally, (4.2) follows by
general properties of products of Hausdorff measures ([11], 2.10,.27)
and of Lipschitz mappings between rectifiable sets. In fact, denoting
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by 7 : R?™ — R™ the projection on the first factor, by [11], 3.2.22 we
infer

A () > / A (7M@) N T(w) dA™(a) .
Q

Since 7~ (z) NT'(u) = {(z,p) : p € Ou(x)}, (4.6) is equivalent to
(4.2). m

Remark 4.2. Let M C RP be a countably 4#™-rectifiable set, and
let 7 : M — R™ be a Lipschitz function. In [11], 3.2.31 Federer shows
that the set

{zeR": %k(ﬂ_l(z)) >0}

is countably #™ *-rectifiable. Hence, the rectifiability of X*(u)
follows by the rectifiability of I'(u) by applying Federer’s proposition
with M =T'(u), p = 2n, m = n and 7 equal to the projection on the
first variable.

A similar approach is followed by Baldo and Ossanna in [5].
However, this method does not apply to a general semi-convex func-
tion, like a function with Holder continuous gradient. Therefore, us-
ing Theorem 3.1 to derive the rectifiability of ¥ (u) is more powerful.
Moreover, we believe it is more direct as well, because it minimizes
the application of sophisticated techniques from Geometric Measure
Theory.

Acknowledgement. The authors are very grateful to G. Anzellotti
for attracting their attention to Theorem 3.2.31 of Federer’s book
[11].

References

[1] G. Alberti, L. Ambrosio: paper in preparation.

[2] L. Ambrosio: Su alcune proprieta delle funzioni convesse. Atti
Accad. Naz. Lincei, to appear.

[3] L. Ambrosio, P. Cannarsa, H.M. Soner: On the propagation of
singularities of semi-convex functions, paper in preparation.

13



[4]

ENET

[16]
[17]

[18]

G. ALBERTT et. al.

J.P. Aubin, H. Frankowska: Set-Valued Analysis. Birkh&user,
Boston 1990.

S. Baldo, E. Ossanna: paper in preparation.

P. Cannarsa, H.M. Soner: On the singularities of the viscosity
solutions to Hamilton-Jacobi-Bellman equations. Indiana Univ.
Math. J. 36 (1987), 501-524.

P. Cannarsa, H. Frankowska: Some characterizations of opti-
mal trajectories in control theory. SIAM J. Control Optim. 29
(1991).

F.H. Clarke: Optimization and Nonsmooth Analysis. John Wi-
ley & Sons, New York 1983.

E. De Giorgi: Nuovi teoremi relativi alle misure (r — 1)-dimen-
sionali in uno spazio ad r dimensioni. Ricerche Mat. 4 (1955),
95-113.

I. Ekeland, R. Temam: Convex Analysis and Variational Prob-
lems. North-Holland, Amsterdam 1976.

H. Federer: Geometric Measure Theory. Springer-Verlag, Berlin
1969.

W.H. Fleming: The Cauchy problem for a nonlinear first order
partial differential equations. J. Differential Equations 5 (1969),
515-530.

J.H.G. Fu: Monge Ampere functions. I. Preprint of the Cen-
tre for Mathematical Analysis, Australian National University,
1988.

J.H.G. Fu: Monge Ampere functions. II. Preprint of the Cen-
tre for Mathematical Analysis, Australian National University,
1988.

H. Ishii, P-L. Lions: Viscosity solutions of fully nonlinear
second-order elliptic partial differential equations. J. Differen-
tial Equations 83 (1990), 26-78.

P.-L. Lions: Generalized Solutions of Hamilton-Jacobi Equa-
tions. Pitman, Boston 1982.

F. Morgan: Geometric Measure Theory — A beginner’s guide.
Academic Press, Boston 1988.

Yu.G. Reshetnyak: Generalized derivative and differentiability

14

G. ALBERTI et. al.

almost everywhere. Math. USSR Sbornik 4 (1968), 293-302.
[19] L. Simon: Lectures on Geometric Measure Theory. Proceedings
of the Centre for Mathematical Analysis, Australian National
University, Canberra 1983.
[20] A.L Vol'pert, S.I. Hudjaev: Analysis in Classes of Discontinuous
Functions and Equations of Mathematical Physics. Martinus
Nijhoff, Dodrecht 1980.

G. Alberti L. Ambrosio and P. Cannarsa
Scuola Normale Superiore Dipartimento di Matematica
P.za Cavalieri 7 II Universita di Roma

56126 Pisa, Italy Tor Vergata, 00173 Roma, Italy

15



