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ABSTRACT

We give a characterization of certain interpolation spaces
between D{A) and CO(E), where D{A) is the domain of a second-
~ordexr stfongly elliptic operator having continuous cocefficients,
with a regular obligue derivative boundary condition; Co(ﬁ) is
the space of continucus functions defined in.the closure of a

bounded connected open set with smooth boundary.
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0. INTRODUCTION

In this paper we are concerned with the characterization
of certain interpolation spaces between the domain of a se-
cond-order strongly elliptic operator, with a regular obli-
que derivative boundary conditien, and the space of continuous
functions in which the domain is embedded.

The interpolation spaces considered here can be abstra-
ctly defined as followé: let E be a Banach space, and let
A:D(A}CE~E be a closed linear opérator which generates a
bounded semi-group etA in E; for each 8€]0,1[ set

DA(E,an {=€E:sup 278 1e5%% —xﬁE<m},
>0
D, (8) = {xeD, (0,=); lim+ £% 1™ x-xﬁE =0}.
t+0
Although this definition seems +to depend on the semi-group
etA, it can be shown that in fact the spaces DA(S,=) and
DA(B) depend only on E and the domain D(A); actually DA(G,'N)

coineides with Lions' interpelation space {D(A),E) {see

=g
Licns 1106], Tions-Pestre { 111}, whereas DA(SJ isa t;eg;owcag
led Tcontinuous interpolation space” (D(A)’E)1~e introduced
by Da Prato=CGrisvard [ 8].

The spaces DA(G,w) and DA(S) have been recently studied
by several authors in comnection with the theory of abstract
evolution sguations: see Da. Prato~Grisvard [8], Ardito-Ric-
eiardi [ 5], Da Prato~Sinestrari 191, Sinestrari [16], [17],
Lunardi [12], [13], 1141, [15], Acguistapace~Tarreni [ 4] ,f2],
[31. An important featurs of these spaces is their "maximal
regularity® propexty. Mazimal regularity means the following:

if £ is continucus with values in a Bapach space ¥, then



the evolutiorn probliem

'l =Aye=f
ufd}=g

has a wmique ¢? scluticn u such that u' and Au are continuous
with values in Y. Thig Property is not true for every Banach

Space ¥ (see Baillon [6], Travis £221),but it holds when

Y=DA(8), where A ig the infinitesimal generator of an analytic

semi-group in some other Banach space E; note that we cannot

replace here D (8) by D {8,*) (see Da Prato-Grisvard {8} ).

However a sxmilar property is true for D (8,2) (with A ag

before); namely, if §f ig continuous with values in E and

bounded with values in DA(e,m), then the same is true for u’

and Au. For a proof of thess facts see Sinestrari [17].

Our charecterization of the spaces D (8,2) and D [é) CoOn
cerns the case in which E= C {R), where ﬂan

nected open set with smooth

is a boundﬁd con
boundary, and A is a second-order
strongly elliptic operator with a regular first=order dif-

feremtial condition at the boundary. In this situation, a

is the infinitesimal generator of an analytic semi
E (see Stewart [20]).

=group in
Under Stewart®s assumptions we prove

that DA(B,m) {resp. DA(SJ) coincides with the space of 26-
-H8lder (resp. 20-"little H&lder")continucus functions if

8€10,1/2[ ; and with the space of differentiable functions

which satisfy the bowndary condition and whose gradient is
(28-1}~H&51der (resp. (28-1)="little H8lder") continuous if

BE11/2,10 . We recall that a fonetion f is a-HSlder (resp.
a=-"1little HElder®) continuous, a€]0,1], if

[£(2) ~E(y) |=0 (fxmy | {resp. [f(x)—f(y)I*O(lx—yla)J

as [x-y|+0+,

! go=called
When B=1/2, we cbtain as DA(E'm) {zesp. D )] the zo-ca .
o 1 clagsses, L.e. the spacesof contxnuoLs functions verifying
Zycunnand L8828 . .e. LI
) il zhy
- piord . S gy . Filx +f(y) zfr_..t.) [_
[Eixyre(y) =287 v =m0 (r-y]) (vesp. |£(x)

{lx=y]|} as [X“Yl+0

i SPRTEY ¢ wndary
and satisfving an additional propsrty along the boun Ve
oL - - .
hich is in some sense a weak form of the boundary differen
whi, s in som
tizal condition.
i i not
We prove in addition that the interpolation spa;es do
. is] S 1 ace C_{(Q} of
change i1if we replace DA} by the (smaller) sp B
" . s
twice continuously differentiabls functlons which satisfy
Wi tily L
the boundary condition: in other words, we show that
G - Z - 0 -
( = e’ (wy) w(cd (@, (W), ,
D (8,2)={DWA},C { a 7 1-8,
A( ‘ fel, o)

b (@=mm @, =k, @,
A

The results.which we prove hersz axe already known (except

for the case B=1/2) in dimension n=1, with fQ=]a,bl (sea ﬁcqu%
stapace-Tarreni [ 3], Da Prato-Grisvard [ 8]);in this cass (0.1)
is cbvious sinca D(A)=02(5).

The characteridzation of u (2, ) and D (8) in the oass of i:tmn;arv
conditiens of Dirichlet type-has hﬂen glven by Lunazﬁi 131, she cbieins
the HSlder and litile ~ HElder spaces Lf 9¥1/2, and the )
Zygmund classes 1f 9=1/2, with the additiocnal regquirement t?
the functlons, in either case, to vanish along 30. Lunardl's
regsult can be found agsin by our method, which alsc allows
slightly weaker assumptions about the smoothness of 3R and
of the coefficients of the differential operator A,

Let us describe now the subject of the next sections. In
Section 1 we list our definitions and assumptions, and stz
ée some praliminary results to be used later on; among thase

k i which
ones, we mantlon some propertles of the Zygmund spaces i

i
[
ke
{

i



do not seem to be completaly straightforward. Section 2,3,4
are concernad with the proof of the inclusions

2% (@ Cg(cg(ﬁi,ceﬁa))1“agw C @ el @, @, .
where Xe(ﬁ}, Ye(ﬁ) symbolize here the concrete function spa=—
ces which we will characterize as DA{H,w),DA(e} respectively.
More precisely, in Section 2 we consider the case of the
half-space EQBf:, with a boundaxry condition Nu=0 whose prin
cipal part is the derivative with respect to the normal to
9; Section 3 still concerns the case 5=E£ , with & boundary
condition Bu=0 with general principal part (i.e. a derivative
along a non=~tangential direction with respect to 28} ; final-
ly in Section 4 we treat the general case in a2 bounded con-—
nected open set with C3 boundary. In Section 5 we consider

the reverse inclusions, i.e. the inclusions
D, (8,%) <X (@) , D_(0) ¥’ (@
A " A '

8 — —_—
where X (@) and Ye(ﬂ) have the same meaning as before. Final-
ly, in Section 6§ we draw the conclusions, stating our main

thecorems .

1. PRELIMINARTES

Iet us list some notations and definitions. Let Q be a{pos
sibly unbounded) conmected open set of J", n>1; further as-
sunptions on @ will be specified when negessary. We denote by

@ the elosure of Q and by 30 its boundary.

1.1. For sach k€l szet:

Ly 0= = -
(1) ¢ (Q)=1{£:0+C vniformly continuous and bounded in al,

i
:
i
H

When‘K=ﬂ.ﬁe‘§imply write [ f]

I £t = sup {£{x}|,
e -
xeq

(i1) F@ =1£ec® (B): pPeec® @) woen" , |o|<k},
el = apCs .
c™(R) lal<k . . c(@

We will also denote the norm f-f 0 = by -8 | _ - or simply
{§2) @,

t-1_ when no confusion cam arisae.

For each xceﬁ and r>{ define Q(xo,r)={xEQ;}x-x0]<r}; if KSE

is any set, define alsc for each B€]0,1]:

[£] _ = sup (LHE=EWIL | o oyl (1.1

g
9,K Ead

instéad of [f] _. &
’ 9,8

8

DEFINITION 1.2. For-each 8€]0,1) and k€N set:

17 M @=teect (@ T h g<m b,

I £l - o=t o+ £l ;
@ @ °
8 — 0,6 =
i1y 20 @=teec® 0 B Lim sup_ [ 1] = 0};
. ot ¢ e Brilx, . x)
o 0
(11115 (Fy=reect @ : p%ec® (@ voem® ¢y lelzxi,
5 £ = & p%m ;
8 — — i
CRANE) fa|=k co’e(m
(1v) n°® @y=12ed™ % @) 0%’ O (@) veaN" ., |alskl.

Again, let xgﬁ be any set; define for each 6&]0,2]



| £ )48 (y) -2 (L (e
[£] _ = sup { R
* 8,k

> —
) :erl'}EEXEKrX#Y}
Eg
(1.2}

when K={ we write If]* g for [ £] i)
r

*6,0 °
DEFINITION 1.3. Por each 0€]0,2] set:
r

R 0=
(1Y ¢ {(Q)={fec (Qrslf] 8¢ %}

b £l 9 — =] £F 0 - +H £]

c ¢ (@ g

H

. *8 = % g —
{ii) |k (Ry={feC ""(Q): Lim sup [£] = 0}. m
0t XDEQ *'e’ﬂ(xalr)

BEE%B% ;-4 ti) It is clear that for 6€]¢,1} and k=0,1,2,.
NP
I

(%) is a closed subspace of Ck's{ﬁ). Similarly h*’e(a)

. _ —

is a c¢losed subspace of € ’e(n) for each 8£)0,2].
. L *.8 = * _

{1i) The spaces C * ), h ’G(n} have been first studied by

Zygmund [ 24], [25], in the one-dimensional casae (see also

Butzer-Berens [7}}° A wide descriptiocn in the case Q=T can

be found in Stfin [181; see also Taibleson [21]. It is well-
known that ’
*8.= 0,8 — * - - :
Clm=CT' @) L, b ’a(ﬂ) = ho’e(n} ¥6el 0,1(,

1,6-1

%* - - .
¢ T@m=c' G L 270 Gyent 80

(o) weel1,2[,

with eguivalence of norms; on the other hand we have the proper
{continuous) inclusions

0,1 — -
c'@Wacd @ a n n’ @,
S 8] 0, 11
o @ en @,
1,1 ,= #,2 —
clmadtma o atilE,
0e31,21 ‘
- 12 *,2 =
_whereas b ' (@)={constants}, b ’z(ﬂ)= {affine functions} (for
beurded Q). For all these Tesults see Fygmund [ 24}, [25] in the

case n=1, and Triebel ([ 23], Section 4.5) in the case of a
bounded GG with C  boundary; a proof for more general O
fi,e. when 29 is of class C1} can alsoc be given by a direct
method which makes use of Zygmund's one-dimensional argument
([ 25] , chapter II, Theorsm 3.4), but we omit it for brevity.
More proparties of the spaces C*'1(§),h*'1(5) will be proved
in Lemmatar1.28 and 1.19 below.

(1ii) Obviously in the ssmi-norxms (1.1) and {1.2) it suffices
to consider points x,y with 1x-y|i§,6 being any fixed positi

ve nuwber. O

REMAEX 1.5. Let ¥ be a Banach space and let X be any of the
L3 £
symbols Ck, Ck's, hk'e, c ’e, h '8

1.3 can be obviously adapted to the case of functicns 0oy s

. Definitions 1.1, 1.2 and

in this case we dencte the corresponding space by X(E,Y).
However Lif Y=€m or Y=E¥n we will still write X(ﬁ) instead
of X(E,Y}, provided no confusion can arise.

In particular, suppose ﬁECk(ﬁ)F k>1, and denote by Dsf(x)

G-
the s~th order gradient of £ at x, i.e. the (n : 1)ﬂvector
=)

whose components are (0% (=) } ; them we have
eEW ,|a|=s
n+s=1

kes = {73 )

pree S (G, ) or simply DS2eck S (@), =

DEFINITION 1.6, Let ¥ be a Banach space. For each X&[9,1[ set

(i) CA(]0;11,Y)={u=JO,1]*Y:t+tku(t) is continuous and

beunded in 16,111},

fu sup Etku(tﬂv ;

] =
c,00,11,% ~ 2

(ii) CA([0,1I,Y}={ueC}(]D,1],Y):t+tlu(t)ECD{[0,1],Y)}. o

. Clearly CA([0,11,Y} is a closed subspace of Cl(]0,11,Y);

note that co([0,11,Y)=CD([D.1],Y}.



How we regall the definitlon of Lions’ interpolation spaces.

DEFINITION 1.7. Let ¥,E be Banach spaces with ¥eE (continucus
inclusiond, and: let 6€10,1[.

{1} Wé'séy that ¥E(Y’E)e?m if there exists ueco{[G,il,EJ such
that u(0}=x andmoreover,

usCo (10,11,%) , w'ec, (10,1],8);

(¥, e is 2 Banach space with norm !xi =
Blg,e i B * (¥,E),
f

=bxl o |x] ; where

E,

IXI(Y,E} =inf{iul

. +E2 H
oo c 0,110 e _o,11,m)

: uGCO([0,1I.E),u(D)=x}

(ii) We say that XE{Y,E)B if there exists uECO([O,T],E) such

that 2 (9)=x and moreover

uECE{EO,1I,Y) . u'ece(iG,TI,E). o

REMARK 1.8. Clearly (Y,E)e is a closéd subspacs of (Y,E)Sym
and in fact it coincides with the closure of ¥ in the norm

of (Y,E)arm; a proof is im Sinestrayi [16]. More details about
the gpaces (Y’E)g,m can be found in Lions~Peelre [ 11], Butzer—
Berens [ 73, Triegbel [23]; for the spaces (Y,E}e see Da Prato-
Grisvard [8]. @

RE&A$K 1.9. Let A be the infinitesimal generator of an analytic
semi-group etA (pessibly not strongly continuous at t=0) on

the Banach space E. Thus, in particular, the resolvent set of
A conbuins a séopor S={260:240, |arg zl<n} with nel %/2,%] ;and
the¥e exligts M>0 such that

M
—T Wzes (1.3)
BR(Z'A)HL(E} 3 !zl zZ€8,

where R(z,A)z(z—A)_1 is the resolvent of A and L{E) is the
Banach space of bounded linear cperators T:E-H, with the
usual norm ITI = sup{ﬂTxﬂE:ﬁxﬂE =1}, Choose ¥=D(a},

L(E)
endowed with the graph norm: then f£or each 0€]49,1[ the spaces

(D(A),E}1ne’ and (I.‘.'(;L\),E)1__B are dencoted by DA(B,N} and DA(S)

respectively. In addition the following characterizatiens

hold:
-8, tA
D(&M=kﬂqx@”=s@1:ue rﬂEm}
A +>0 ’
={xEE:ix“2)= sup eV ne®ur < @} (1.4}
) E
t>0
(3) 8
={er:ix[e = sup t© lAR{.t,A)xIIE< @},
>0
and the norms
(1) _ (i) -
ixﬂa =ixly + |x[e i=1,2,3

introduced in
1=0,e
pefinition 1.7. Hence in what follows we will denote simply

are all equivalent tc the norm HXHQD{A),E)

1) (2} {3}
by[]xii9 any of the norms ﬂxﬂe . Wxﬂe . ﬂxﬂe ’ﬂxB(D(A),E)

in DA(S,m) {and by |x!|_ any of the corresponding semi-norms).

8
Similarly we have

- A
D _(8)={x=E:lim ¢ eﬂe x~xﬂE =0}
& £+07t
={xE:lim ti-aﬂAetAxﬁE =0} (1.5
t=0t

={%eE :1lim tEEAR(t,A)xEE =0}
forden :

Moraover 1f 0<0<9<1 the following continuous inclusions are
true:

D(a) <= DA(E\) c.,DA(G,m} f—mDA(U) <»D{A}.

18 20
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All these properties are proved in Sinestrari [17i. O

How we list a series of auxiliary results which will be needed

in the follewing sections.

LEMMA 1.10. Suppose £ is bounded with 30 of class,c1 (o,

alternatively, suppose Q=E{1 or 5=H{i={x€ﬂ{l:xn30}. There

exists M0>0 such that

toul o <mfiul o+ i*w 1 weec? @)
c” (0} c (R ¢ ()

2roof. By considering separately Re u and Im u, and veplag
ing MO by ZMO, we can assume that u is real-valued. Suppose
first o=m" or F=H¥1, andg fix XOC” such that Du(x 130 (if

Du=0 in Q the result is chbvious). By Taylor s formula we have,
denoting by (-I-)n the scalar product in ﬂl or in ¢"

_ 1.2 -
u(x}—u(xOH{Du(xo){x xohﬁ 2(D all) (xuxo)ix—xg)n VRER
where £ is a suitable point in the segment joining x and xG.
We can assume (possibly replacing u by -u) that

Du(xﬂ} _ Du(XO)
X +E T————= € 0 V>0, B if ! = T
Duix 3] > ence if we chcose x_x0+t{Dw{xo}} '

we easily get

2 t 2
Du {z < = tual =
] u({o)f gt + S ipfal ye>0,
The expression on the right-hand side attains its minimum value
when t=21D uf1/2 ul 1/2. Hence
1/2 -
[pufx_ ) |< 4 luat /2 1t 1/2 ¥ &0
- O — fanl @

and the reswult fellows with MG=2'
Suppose now 1 boundad with 38 of class C1 and fix x &R with
Du(xo};-’_('}wa cam select a finite mmber.of open balls Wj, 1<i<k,

centered in points of 30, with the following properties:
k
{al 30 C U Vv, where V. = W_n7,
j=1 1 3 3

g

kL]

(b) » for j=1...k there.exists a diffecmorphism
”J¢j;yj»gio,1)=g£énfl;ix|£1}_of class C1fsuch +that
.(ﬁl)=é$fa 1y={xeB (0, 1j:§ £
wjtvjnan)ﬁz(o 1= {xEE(0‘1J = —0}
Define now, for e>0 ) -
QE={xEQ:distIx;ﬁﬂ)Se} R ié#{k—cﬁ(xﬁ?xéaﬂ}ue[O,EI}}

where u(x) ‘is the unlt exterlor normal vector at xeaﬂ

Obvicusly in general A ‘ls not contained in ﬁ but thls is
true for small’ e in " this case AE a-a é: Hence we can choose

£>0 such that

k
P2 TP T e S s e
Du(xo) .
NOﬁfA%fxxDEQE, %Et xm%d+ E-TEETEE?T ;Hby iaylor‘s foxmgla, as .
beforé;IWe.éét' ;
|Du x )I =hut +'§‘ib2dﬁ" onen'; ‘ LU

On the other hand, suppose x eﬂ-ﬂ . Take a point 3 €38 such
0 € zg- ¥ 0

that Ix -2 |= dist (xo,aﬂ), then v{z ) EZ = and we can
D

assume (posslbly replac1ng u by —u) that (Du(x )iv(z ))<O
Define SRR A

j Du(xo)a ) U};x{u

§ foutx g ) 0!

; R N

iDulxy) - vizg)

‘we- have:
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Du(x,)
0 > ;E
V2

JDu(x )!)n - (-8
Set x=x0+€q; then the segment joining x

—(qiv(zo)}n = {q]

o and x lies in 5'

(lndeed, for each o0€]0,e] the point x0+aq belongs to the

0

ball with center x mov(z J and radlus d). Hence by Taylor's
formula and (1 8) we eas;ly get ' 7

o 2
e ) -

— |Du(xo)| =2 2llul00 + & ﬂbzuﬁ VX _€0-0 ,
vz S 2 - S0

which, together with (1,7), yields the result. =

LEyMa 1. 11 Let ¥ be a Banach space and 1et AS[ 0,1 . For

each uEC ([0,1].%) such that u EC (0.1} Y) we haves:

fal o< batnye +_1_ iu'

I -
Cao 1,y T O NI

Proof. We have for each te] 0,1]

: 1 1
Iu(t)ﬂyf_ﬂu(‘i)ﬂy-l- St (s)l ds <da{i)l +5 25 pu

= =
. ¥ Yo A0 6 U0,41,1n

et us define now some suitable subspaces of the spaces
x k a _k,a 1 1
- c, AT 0T vhien we introduced in Definitions

1.1, 1.2 and 1.3,

DEFINITION 1.12. Denote by X any of the sywbois cf, cX/%

kK,o. ®,1 =1
h7 e ' ,h 7 with ae]0,1] and k=0,1,2, and set

r

xo{ﬁ) = {feX{R): £{x)=0 wxedil. n

DEFINITION 1.13%. Suppose 802 is of class 01 and consider the
boundary differential operator

Bulx) = u(xau(x3+(8(x)|Du(x3)n ,  XS3Q,

{3

where aECO(aQ,C),BECO(Bﬁ,Cn). If X 1is any of the symbols
&, %R % Gith wel0;1] and k=1,2, set’

. X (Me{feX(R) :BE=0}. O
DHFINITION 1.14. Suppose 39 is of class ', and dencte by
v(x):ﬁhe“ﬁﬁif extericr normal véctor at x=30Q; then vecotaﬂ =),

Let B be as in Definition 1 13 and suppose in addition that
axec (32, ry,8ec’ (30,8 ) ana. (B(x)Iv(x}] >0 ¥x=3Q, Define

| £ (x=oB (x))}-£(x) ]

(1, , = supl xE30, 050, x<08 (%) €5} (1.9)
.B o
Set
) ' @=itec” T @, <o),
_ 8 1,8
%] _ =kzi _ H# :
'cZ” 2 t:*."1 () 1e8

fix—dB{x)}~f (x)
a

t11) n " @)= {fec TEm* '@ i
a0t

-;'u(xjf(x) v;‘:easz‘}.’ o

Obviously h o1 (9) is a closed subspace of C (5); moreover

B
we have
R U o
"Wac  @ec @
Tomy i Bt 1= e g
Cp(@rainy’ (@) @b T @ne,’ ).

Concerning Def;nition 1.14, the fcllow1ng lemma 1s useful:

;LEMMA 1. 15 Let ] be bornded, with 38 of class C1Jl let

BGC {32, ®Y) satlsig (S(K)Iv(x))n>0 ¥x=30. Then there exists
>0 suchithat

x~0B (x}€Q Vosl 0,71, VX390,

Consequently in the semi-norm (1.9) we can take dE]O,dD],
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where %, is any sufficiently small fizxed positive number

{(independent of x€2).

procf. As 30 is of class ¢! and compact, we havej{s(x)|v(x))n3

> 60>0 WREDQ; in'addition 34 can be covered by é finite
numher of open balls WJ, 1<3<k, with the followlng praperty-
thers ex;st functions 9 e’ (W' JR) with |Dg (x}|>5 >0

VxEWj, such that

W no={xeW, g, (x)>0}, W, rag={xeW,:qg, (x}=03.
J B I | J J 73

We can zlsc suppose that the coverlng is minimal, i.e.

k.

=3 W_uWS does not contain 32 for each s=1...k. Choose ¢ so
; 3

i=1

small that:
(a) xe3on{wW_~ U W] = lx-cB(x):oel 0,01 )CH_,
s

L) xeannwsnwj = {x-UB(x):GE[O,g]}EWS or C Wj-

This is clearly possible. Now take x€3Q: then, by (a) and
{(r), for some j=1...K we have xewj and also x—aﬁ(x]ewj

Yol 0,0 1. In additiom, by Taylor's formula,

. . +
gj(x*Uﬁ(X)) = gj(XJﬂc(ng(x}|B(x)}n+o(d) as o+0 ,

’ ' Dy (%)
and, since v(x} = - TBEIT;TT and g,(x)=0r we get

(x"GB(x))>cIDq ) ] () |8(x) ) +0(0)206,8 +o(c) cas ov0".
Hence, possibly replacing_g by a smaller number, we gat
9y (x-0f (x))>0  woel0,dl,
which implies XwUB(X)EWjDREQHGE]O,ET. a

We will need later another gecmetric property of O, which we

15

express in the fellowing lemma.

LEMMA 1.16. Suppose 2 is bounded with 32 of class C1. Theare

exist a1>0, M131 satisfying the follcwing property: if x,yeﬁ

there exists a continuously differentiable path

EEQ EX‘Y[591

Fi00,1190 such that

rie) = x, {1)=y, i(F)5M1iX*y|.

1 .
whera &(M)= [ "' {t)|at is the length of [.

4l
Procf, As in the procofs of Lemmata 1.10 and 1.15 we have
Tk

nc v Vj' where Vj=Wjﬂ T and Wj is an open ball, centered
i=1

in a point of 3R, having the following property: there exists
a diffeomorphism wj:ﬁj+B(0,1)={xEEfl:jx{j!} of class C1, such
that |Dy, |30 in W, o lect B0, 1) ang p, (vhy=8¥ (0,1},
3 J ! 31
AV Naay=L (0, 1).
Wj( 3 } ’
We can also suppose that U V, does not contain 30 for each
jFs
s=1...k. Define again, for €>0,%_ ={xen:dist (x,3R)>el},
A€={x-cu(x): ®=32,06] 0y €]l and take £>0 such that (1.6) helds.

Next, choose 01630,5{ small enocugh, in order that the follow-

ing properties are satisfied:

(a) xe[{Vvz- U v_]n[ﬁ--g ] =a(_}!_:l?-r_)EV ’
S s | 2e 1 s

ey 7 N G- =
(b) €V MW, A o-a, ] G{x,0,05V  or S V..

where Q(x,01)={yeﬂ:]y-x|<51}. Clearly this choice is possible.

Take now x,yEﬁ with |x—yiiﬁ1: three cases ¢an OcCcur:
Case 1: x,yeggp Then the ball B{x,s} is contained in &, and

yeB{x,U1)gB{x,e). Thus we can take as T the segment jolning x

and y.
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Case 2: x,yeﬁ—ﬂe. By (a) and (b} we deduce that there exists
s, 12s<k, such that x,yevs; hencse ws(x), ] (y)EB+{O,1). Set
s
= £ ] - +
Y{t) t¢s(xi+(1 t}ws(y], then the segment vy lies in B (0,1). We
take ws o vy as I', cbtaining
' 1

-1 -
'Ji!{¢s o ¥} (£)]dt= fl‘EWST)O'Y(t)'T’(t)Idt <
0 =

2(T)

{1.10}
-1 -1 -
2 1oy T2 {y)=iDy_ iuftbs(x)—zps(y) iiﬂD"’sIEJB‘PS“mIX"YI-

Case 3: xe8-2 , yE@_. As 9,<e, we have *,y€-2,  and, by (1.6,

‘the argument of Case 2 is applicable, so that (1.10} holds. Heance

the lemmz is proved with

M, = max ump:ﬁwnmpsuw. o

T<s<k-

REMARK T1.17. Lemma 1.16 is obvious when O is convex; howewver in
the non-convex case this lemma will be useful is Section 5 in

dealing with the spaces C CQ) '1( 2). @

Now we need to study some properties of the sSpaces ¢ ’1{9),
h 1 (2} in more detail.

2,1 - * 4

1 = :
LEMMA 1.18. If £,95C ' (R) {(zesp. h ' (%)) then £-geC

8,7 = (@)
{resp. h-%"[Q)) ang

[ £l <[£f] fgl + 1f}
R e TR R L R £ PP £/ Y
Procf. Let x,yeﬁ be such that §§X EE} Then
E(x)g(x)+£{y}g(y)-2 f(i‘,:“x)g((ﬁztx}=

- : E+ .
—[f(x)+f(Y)"2£(“§x)!g(x)+f(x}{g{x)+g(y)_2q(Z§§ﬂ -
- A £@ 25D g (r)~gEY)

and taking into account Remark 1.4 {ii}, the result follgws..o

17

4
LEMMA 1.19. Suppose 0 is bounded with 9822 of class C (or, zl-

1_
ternstlvely, suppose £ is bounded and convex}. Let £€C *r (2}
# 0

(resp. B ' (W) and gec YR, ®) (zesp. v ‘“(K,R’)) where

A= ox K= _+—{x€I1 K >U} and suppose that g(K]CE If asi1,2,

then fogec o1 &) (zesp. b i (A)) and there exists C>0 such that

1/a
{ foyl =c{izt ,  _ fdl £ - _lald | gt
=1,% gy 1R 1/0,8 Oy

Proof. Suppose that @ is convex. If x,yez:then—% [g(x)+g(y)]eﬁ:

hence we can write

[ £oq (x) +Eog () ~2 fog (L1 1= £(g (%)) +£(gly) ) -2£( G aledy

vap (BT (g 2Ly ),

and by Remark 1.4 (ii}

| £og () +fog (v} ~2fog (L) df) , g (x)-gly) [+

L1
+2 1] I%Ig(x)-l-g(y)-Zg(%x]_] (e (1.11)

1/u

<, o, 270

1/a _
) (£ ,, 1914 Hxyl,

which implies the result.

Suppose now that 2 is not necessarily convex, but 30 is of

class C1, Then we have, as in the proofs of Lemmata 1.10 and

T1.16,30 < E v,, where V.zw‘ﬂﬁ and W, is an open ball centered
T g 33 3

in a point of 8% and such that thers exists a diffeomorphism

W ~B(0,1) which satisfies 0, (V.)=B¥(0,1}, ¥, (V. N3a)=t (0,1).
3 3 3 2 J 3

Let >0 be such that (1.6) holds. By Remark 1.4 {iii) we can
consider only points x,y€XA such that |[x-y|< % e[g];j; this
chviously implies |g{x)-g(v)|< /2.

Thus, let x,yefiwith {=x-v|z %E[g}:1_ if %[g(x)+g(y]]EE, we can
apply the above argument, and (1.11) s+ill holds: this is
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certainly the case if either g(x) or gly) belongs to 93/2.

Hence we can reduce ourselves to the feollowing situation:

— 1 —_
lgt-g(pker2: gl glv),gE el o+l #a. (1.12)

gset ¢ =max{|g(x}=-aly)|, ig(x)—g(-}%x)l, lg(y)—g(ii—-ztz}l};
ochvicusly

a

fa

11.!x—y|i /2 (1.133

We want now to find a point w€f satisfying

: 1
Lvrgxl, Torgi)], wrg@501, Slur JletorsnIlen (1.14)
and

|g(x)-w|<30, lglyy-w|z3g, Ig{x—;’x)wlg%c (1.15)

Suppose that this has been done: then by (1.14) we can write

{ fog(x)+fog(y)-zfag{§g-¥)1 = £(g(x) )+f(w)-2f(";'(w+g(x) N1+

L £(gy})+E @ =2E (5 arrg (y))) 142 £d (g CAFEG b g})) —
22wt T(gG+a (7)) =2 6 +Eg PG -
- zf(-;—(w‘i-g(%z)))]+4[f(%[w+ %(g(x)w(y))]) -
~£ T (51)))]
and hence, by (1.15) ard (1.13)

]fog(x)+fog(y)—zfog(?—‘;—’1)Igif],} 1{|g(x)ﬂwi-i'ig(y)—W|+iq(X)—9’(Y)1"’

XY, 1-1/a xRy 1/
+g w1 o+ [flq/dig(XJ_-l-g(yB 29(5 )] <

21 1-1/a
2

< UEl, 4 [dl J-y |+ 4 fli/a[gllfz |-y ].

This implies the result, provided (1.14) and (1.15) hold.
In order to find the point weR satisfying (1.14) and (1.15)}, we

19

start with observmng that, by the defln;tlon cf g, we have
d13t(~[g(x)+g(y)3 BQ)< c/z choose a 901nt zEBQ rea1121ng such

distance: then
0< | % [g(x)+gly)l=z] < o/2 {1.16)

and the unit exterior normal wector: at.z is-

-;-ig(x}-t-g(y)]—z

viz)= 3 -
[Slexi+giy)l-z |

Define hcw w=z-20v{z):. by. (1.6) and (1.13) weR' and-

dist {w,50)= 20; (1.17)

in part1cularﬂ5ﬁ~§&ﬂ+g(yﬂjeﬂ becauge it lleS in the segment
joining w and z. ' i

By (1. 17}, wa see that {1.14) will ‘follow if we show that the
points E Twtglx)], %{w+g(y)] . %{w+g(—5z}] iie in a ball sentered
in w with radius less than Zcf_as we will see, this will also

imply (1\J5}.:Indee&, we have by (1.16)
1
15{w+g(x)]7w{ﬁ %{g(x)-wi _%1g(x) z| - |26v(z)I
'"i’—lg(x) —{ (x)4g 1) +-Hg(x)+q(y)]-z|+
+a < % o
and in partlcular |g(x)-w| < 36,'31m11arly
|= [w+g(y)}—wi = Ecn ]q(yl-wl = 3«:,
and finally

)
12 o B2 1 —w]= 3 e ) wl< Tla - Hamrain] ]+

[Zigx)+giyri-al+o .5 %]g@%z)-g(x) | +

N|‘_L

I

pha ﬁ(a

=i (J%X} ~g (y)+ -i- Tz % o
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- . . 4
which also implies IQCEEE)-Wii %cd. Thus, (1.14) and (1.15}

are proved and this concludes the prdof. o

We finish this section with a version of the well-known Sobolev's
Theorem. Set

p{ﬂ)={f:ﬂﬁ€: f is Lebesgue measurable and

r

€1 = [ /|£(x) |Pax] 1/ P}
Py o

_ , .
1 P )= (a1 (g ; -af—erf’(m, i=1,...,n},
X1

where pgi 1, ==[ - Similarly one defines the spaces LF (2, =" ) B 'P(ﬂ,mm)zmd
Pa,e™, a""Pra,e™ . whe result is the following:

LEMMA 1.20. Suppcse M is of class C1 and set Q(xo,r)=

={xeq: i:'c—x0|<r}D whare xﬂeﬂ and r>0. Suppose qrpon and'a =f=n/p:
o

then H 'pcﬂ)c,h (Ws- moreover there exist C1,c >0 guch that

2

for each xoeﬁ, >0, and ueH ’p(ﬂ)

([l - Fe loat <c, P79 jpy

- . =2 :
o, Rx, T) Lptn(xe,r)) . Lqm(xo,rn

Proof. The first ineguality is Sobolev-Morrey 's inequality (see

e.9. Adams [ 4], Lemma %+17), the second one follows by HSlder‘s
inequality. o '

Finally we remark that in the forthcoming sectiens any number
C appearing in the estimates will denote a constant which is

independent of the . estimated guantities.

2. THE CASE QF A HALP-SPACE WITH ‘A NORMAT, BOUNDARY CONDITION

Let us consider the closed haLf~spéce

n 11 -
=R 0, ={(x,y) rxe® T y503,

21

obvicusly the uwnit exterior normal vector at each point of

n 1
the bomndary % =" x{U} is v= —e''. Let asc (IR ,R) be a

real nonéﬁegative function; define the boundary cperator

Nu(x)—a(x)u(x,0)+(v]Du(x,O)) —u(x)u(x 0)- ——(x,O), {2.1)
xR

and consider the spaces (see Definiticons 1.13 ané 1.14)

(a) c};(m: )={feck{mz‘) sNf=0}, k=1,2;

n

) sNE=0},
+

Tra o, _ 1,a
(b) CN' (ﬂh) ={feC (R

“(®) =tfen ' (W) gm0l €] 0,11 5

: ()= -1
(e) c*"’(mi-} ={fec*’1{m‘;) el v=sﬁp{i—z—-—‘—l-f(x' )Yf(x'o) 0,25 Jeod,

W

h;”{:af) (e e ) pam EEITEEO) e 0
v e ' v
=1

Fre IR ¥.

These spaces are complete with respect te the norms

(a} vl ; (BY If1 1C LR LI Hel, .
c* =) c“a(mﬁ)' ¢ ’1(JR2) 19

Our goal is the following theorem:

n=4

THEOREM 2.1. Let aECz(]R yIRY with o>0 and let N be the operator

defined in (2.1). The following continucus inclusions held :

®@?) 1z eet0,1/20,
2m™, m™) { ¢ } Af 8= 1,2
[ - = == '

(R, ) if 8e]1/2,1( ;



which also implies [gczgz)wwli % ¢ . Thus, (1.14) and {i.15)
are proved and this concludes the proof. o

We finish this section with a version of the well-known Scbolev's
. Theorem. Set

LP(Q}={f=9f€: f is Lebesgque measurahle and

F£l P = [flf(x)lde11/p<m}
Lo Q) Q

1 : '
T P o= {arP i) ; :"—t—ezp (@), i=1,...,n1,
l

where pe[ 1 m[ » Similarly one.defines the spaces me = 1, B ’P(ﬂ Jlfﬂ)md

b=
LE{a, Cm) H 'p(ﬂ ™ }. The result is the following:

LEMMA 1.2¢€. 5uppose dii is of class C1 and set Q(xo,rj—
={x=qn: |x-x I<r} where xOEQ and r>0. Suppose qrp n and o =1-n/p:

B a
then E ! (Q)c,h Q) ; moreover there exist C1,c >0 such that

2
for each xoeﬂ, r>0, and uEH1’P(Q)
(al ___ . <'ciput o <c, PN .
o, By, ) P, e~ 2 (@ (xy, 1))

Proof. The first inequality is Sobolev-Morrey's inequality (see

2.9. Adams [4], Lemma 5.17), the second one follows by Hélder's
inegquality., o- '

Finally we remark that in the forthcoming sections any niumber
C appearing in the estimates will denote a constant which is

‘independent of the estimated quantities.

2. THE CASE OF A HALF—SPACEZWITH‘A‘NDRMAL’BOUNDARY’CONDITION

Let us consider the closed hayf-spéce

n=-1 -
Ry =R w0, ={(x,y) :xe®® ,y>0);

24

cbviously the unit exterior normal vector at each point of
n-1

the boundary £ =]Rn“1 x{0} is w= -e®. Let :xEC {m +sR) be a
real non—ﬁegative function; define the boundary operator

Nul{x)=e{x}u(x,0)+(v|Dulx,0}) mu{x)u{x,o)- —n(x,ﬂ). (2.1

xEIP=1

and consider the spaces (see Definitions 1.13 and 1,14}

(@) ch(RD)={rec® (B ):mg=0},  k=1,2;

(b) c1'°‘(m2) ={fec1'°‘(mf:} :NE=0},

o
h;'“(mi; ~{een' (B ve=03, wcle, 1] ;
' Y ,C
@ eyt =teec” m a) couptEEAERA g e,
Sl =tee T @ ) dlin M:!?_Q&,_ =x(x)£{%,0)
By R vy + ot
ey,

These spaces are complete with respect to the norms

(a) Ll ; (b} gl e PEE Hel, .
kX, n ! ‘
CHR) c TR c (|}

Qur goal is the following thecrems:

TEEOREM 2.1. Let «eC’ (B ! ,R) with a>0 and let N be the operator

defined in (2.1), The following continuous imclusions hold :

®r 28 (D) 1£ velo, 120,

r™, dmty ele
LI e,
f

(EE_) if 6= 1/2,

(B ) if e31/2,3[ ;



hence it will be sufficient to prove that

hafzegmi) if ee10,1/20

e 00, 11xBD ), wi0xp=flx,y) VixyIER,,

2,_n 0,_n 1Ry if e=1/2 )
(C {m), (R & { By (®,) if ) o n o n
-8 1 pu, w €C, o (10,1],C {]R }) (resp. ¢, (10,11 ,C (R })) (2.2)
NS C R R URPER]

[Nuit,, )] (x}=0 vxe® |, wee]0,11.

Proof. By Definition 1.7, we have to show that if
Here and in the following the symbol D denotes the gradient with

S 0,28 n : ; =
cu,ze(ﬁﬂj (resp. F ’ {Iﬂ)’ if e=€10,1/2f ? respect to the only coordinates (x,y}—(x1,xz,...,xn_1,y).

We will proceed as follows. First we will construct an extension

*1 T *,1 n . '=
£e ¢ (R (resp. hy (R,)) 1f 8=1/2 F of £ to the whole T, in such a way that F is as smooth as £

and satisfies the additional condition along & whenever f does.

1,281
CN N

E) (resp. w0 2P THED) if sers2410 N
+ Next, we will construct a function wit,x,y}, defined in {0,1]xIK",

P satisfying (2.2) in [0,11x®" ; this is done by taking the convo-’
: ) 1/2

n
a function u(t,x,y), defined in [0,1]1xR_,
é Ilution [¢t*F}{x,y), where ¢t is a mollifier of parameter % '

then there exists

with the following properties:
-and adding to it a sultable term in ordexr to satisfy the cendi-

uec? (10,11 xE2 1), ul@,,0)=E;

2.0
vec, (10,1 ,czurﬁ)) (resp. weC, ([0,11,C (R}

0, _n
o
ujec, o(10,1,c (F)) (resp. 0, SC, o ((0,11,C7(RID)

tion Nw[t,-,-)=0. Finally, the restriction of w to [0,1]xIR2

will be the desired functicn u.

Step 1. The extension of £ is the following:

-1
xeTR" , v>0

- .
(Nu(t,s, )] (=0 ¥xeR" =, ¥e&]0,11. ! £,y
: o) = 2.3
Lot us start with the following remark: by Lemma 1.10, we have ! (¥ - . (2.3)
f{x,~y)-2a(x) / expla(x)(y-s)if(x,-s)ds, xER ,7e0.
- 1-8 ! ¥
Et1 eDu(tr'f")ﬂ sc{lt ult, 2 9. n +
Co(mﬁ) c (R+] i REMARK 2.2 - {i) If o vanlshes somewhers, this definition does
+Ht1_eD2u(t C ot 1, E not assure the uniform continuity of F: in this case we replace
r o i .
co(mi:) F(¥,vy) by Flx,y)-aly}, where a€ C®(R) is such that a=1 in [=1,e]
and by Lemma 1.11 and a=0 inl-ae,-2].
| .
sup gtl_eu(t o <?u(1 — . - . (&) If the boundary operator (2.1) is of Neumann type,
o . el . el P .
a1 011 Co(ﬁﬁ) | c (Eh) : i.e. w({x)=0, themn the extension F defined in (2.3) reduces to
, 1-e the even extension of f£: hence it has the property that, for
+ = sup It Ut(tr.f.)l i} o i 5 th £, the £ t o F :
g e} 0,11 c (IR+} moo f e function y-+5§(x,y) (whose evaluation at y=0

vields the beoundary coperator) is odd.
The same property holds -in the general case, namely the extension

F given by (2.3) is constructed in such a way that, for smooth £,
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araund _Y=G
——(x,y) turms out to be oddt This

'the function y+o(x) Flx,¥)~ oy
chvipusly guarantees that NF=0 whenever Nf=0; it is a remarkable

._fact that, in addition, ¥ has exactly the same degree of smooth-—

ness of £, even in the case of non-differentiable £, l.e. when
no boundary condition is required for f£. This will be shown in

the next proposition, o

PROPOSITION 243 ~ Let f belong to any of the following spaces:
- 0,28 g,28
(1) ° (mﬁ) ; (1) ¢ F (mi) {resp. h ' ”R:”' with 8€10,1/2[ ;

(111) c:’1{mn) (resp. h*’1(IRn-)) ;o Giv) o )
() C;,:ze-1 (m ) (resp. h1 28 1(13 }) with 6€11/2,1[ .

Then the function F defined in (2.3) satisfies accordingly:

(i) FECO(IRD) p (i) Fec:o’za(}an) (resp. Feho'ze(mn)) :
(iii) FEC*’1(BJH and sup{IF{x'yigftx’QLi :XEEP—1:Y#O}< w
(resp. Fen ¥ (W) and lim T JDE(x,00 |
0 ¥
=g {x) £ (x,0) VerFa1):
(iv) Fecl (B®) ana §E=0; (v) Fec 28T (R} (zesp pen 2871 (R

and NF=0.

Moreover we have in any case

hFl < cﬂflll
- y

in the corresponding norm; in particular, in case {iil) we set

Ipt=tFl 1 - :='.»u1,_:>{JF(x'v)l'-}?j(x'm“L : erPP1, vEG}.
C L (mn) Yi

proof., (1}=(ii) The results follow by stralghtforward computations.

(iii) This proof is more delicate. Suppose fEC (ER } and let

n
{(%,v)}, (x*,¥'})ER ; we have to estimate the gquantity .

+x' yay!
F{x,y)+F{x",¥')~- 2F(X XEX_)_ This 1s easy if y,y' have the

same sign, SQ we can suppose_y>0>y' and two cases can oCgur:
+ ro 4 ¥
{a) y> u—;,_ 20>y ] (b} y>0> Y—-Y—z >y,

In case (a) we can write

LF (2, g} (x" oy ) zm—’”x LY— N=f(x,y)+E(X -y ') -
0
~2o(x") f exp[c:(x')(y~s)1f(’x*,-s)ds-2f(§"§?3-, L;'L)=
Y {2.4)
r —r ! 1 - P
=L Ge p) +E Gty )28 (T TEED ap £ (L 0 g (K 0y -
0
®hxt ' +x
~al £ (B T (B g)jza(xt) S expla(x’) (y'-s)lE(x’,-s)ds
yl

and comseguently, since |v+v'iv|y'lsly-v'|, we get

B Ge,y) 4 (e 0= 28 (5 T < 08], L st [+ [yy ' 14
! (2.5)
w218 GG tar sy e syt

In case (b} we have

[Fix,7)+P (%’ Xy +E(R-y')~

4}
=2a{x') [ expla(x'){y'-s}] fix' ,---s)ds--Zf(x+x X§ZL) +
¥'oog
+ T T 1
+4a(x2X ) ‘ 7 expiu(xzx }(Xi§~ _s)]f(x;x"_s)ds =
¥y ' :
2 (2.8)
T -y ! _‘ t r
<[ £(xpy)+E (', my ) -28 (5 ,Y—zl-)]afz[f(x*';",y L) -2 3 0))
. 9
XXt +y ! +x ! '
2 £, - )—f(" X 0¥ ~2aix') fexplalx') (y'-s)]£ix', ~s}ds+
o y'
4
+ta (22 £ exp[oc(X+x )(-Y—Y— -5y £EEL _syas

2
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which implies, since |[y+v'|zly'izly-v'|,

|7 (k) #F (7 oy 1) -2F GRS, XL < (el Ll et [yt 1
+2 (£ v[_[x’é‘i{ﬂ%ﬁ | 1+2ka3 L0 [ |v*]+2 [I%K'-I'-Hi (2.7

< o bR [ e {+ly=y]1.
EARE
v +

' *
By (2.5) and {(2.7) we deduce that PeC ’1(HJH and F@e <
< o bgE . n f on the other hand it is easily seen that for
(IR}
each erna1 and vE€ER

£l ¥l if y20

|F(x,y)=F{=,0)]=2 .
Ll viy|+ﬁauwnfﬂm!y{ if y<0

which implies

9ol | " +sup{|F(x’Y)|;Fl{x’G]—L ::;u:éEIIE{nmf Brat ik . .
(®") ¢, iR)

*
Suppose now, in addiion, that fEhN'1 (IRZ)_. %e have to show that

[F () +F (") =2F (B az%?“)i=°(|x*x'k+|Y”Y'[)

. {2.8)
ag|x=x'|+{y=y*|+0 and
1ip  EEI=FO) e 0y weer® ., , (2.9)

y=0 ¥

The proof of (2.8} is easy if v,y' have the same sign. Otherwise,
we again reduce to case (a) or {b). In case (a) by (2.4} we de-
duce as 1x'-x’!+»ﬁy‘--y’|->-|‘J+

2’ yry!
[f{x,yknF(x'.y-J-zF<———mv11§“3]=o<!xux'i+ly+y'l)+

X+X

-y M o (L £ (TEEL 0y4o ()] = (y+y ) o (EE

y+o{i)l+

27

sy ialxz) £lxt, 0040 (1) 1=0(|x-x Vgt ) =29 [u(x+x )f("‘”x

0)-
a2 E(x', 0= o(|x=x"|+{y-y'|}.
In case (b), by (2.6) similarly we get as ezt [ lyy |07

thx,y3+th',y‘)—zF(Eif—,Xixi)i=o<Ixex'i+iy+y'l)+

Figey I o (BEED) £ EEEL 0)4e (1)1 +(yry T a (2 )f(”““x L0 +o(1)]+
+2y’[m(X'}f(x',0)+o(1)]w2(y+y oo (2L )ftx+x 0148 {1)1=
x+x x+x

(Jr=z® |+ly+yt 1427 T alx ) E(x', 00 -al ) E{==—,0)]=

=o ([t [+ [y=y 1)
This proves (2.8). Finally it is easy to see that as y+0

v alx)E(x,0)ra(1)] if y>0
F(x,yi-F(x,0) =
—yl a(x)£lx,0)+0 (1)1 +2yl o (x) £{x,0)+o{1}] 1if v<0,

which .mplies (2.9). This conecludes the proof of (izdi) .

1 aF
{iv) Let fGCN{mi) . It is easy to see that ——?CO(JRn) izl a1

ax]_
IF
about -‘é? , we have clearly
3E : =1
oy (x;¥) xR ,y>0
IF
e (2, 7)= . . 0
"y (%e-v) 20 (0 £ (vt -2 e ()17 [ el o) (y-s)] £(x,~s)ds,
-1 ¥
XER Pyt
when y=0 we ncte that
vim L,y _—(x 0, tim Eyi= 2E(x,0) 20 (=) E(x,0),
Ay f 3y 3y

Y->-Q+ Y+0”
and since Nf=0, the two limits are equal. This shows that there

3F oF af
3 —— — - 3 ti
exists ay(x,y}l -0 and ay(x,O)— 3y {x,0), so that in particular

3T s
WNF{x}=0. Clearly -égeco(mn) and it is easy to see that the reguired
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estimate holds.

1 n - finally set
(v} By {(iv) we know that FPEC (IR ) and NF=0; the result follows v

Wit %, v =it x,p) - e S ey ke 0,11, (2, y0eE®,  (2.13)

easily. O T+a (R)

where 8&C (R}, 031 in [~1,1], 820 outside [-~2,2] and 0<8<1,
Step 2. We wamt to constxuct a function w(t,x,y), defined in

[ﬁ,1]xIRn , with the following properties: : REMARK 2.4 = It can be verified that the function v defined by

() weco([o,ﬂxmn) , w0, )=F (2.11) satisfies conditions (i), (ii) and (iv) of (2.10), whereas
(A1) Dzw&'C _9(10’11 ,C?(IR“)) (resp. Dzwec 9([ 0,11 ,CG(IRn)) and 1 in general condition (2.10) (iii) needs not to be true. For this

1 - | .
1-5 3 i i reason we have to introduce the function g defined in (2.12)
14 t [ tr-st )k = i
tfg'*‘ prwlte ) CO(JRn) 0 {(2.10} which is suitably constructed in crder that (2.90) (iii) holds
(111) [Hw(t, -, )] (x)=0 Vxe’:an-’1 ., wte10,1] ) ‘ ; automatically. We will see that, conseguently, the function w

s m given by {2.13) satisfies {2.10).
{iv) thC e (Jo,1} ,C {(M'}) (resp. thC

0. n
1 e([O,ﬂ;C (R")) and

1- The auxiliaxy function g is unnecessary if in the boundary operator

. 1-8 L. _ {(2.1) we have a(x)Zo=constant, because in this case it ¢an be
l:.m+ t Ewt(t, Ll 0 & =0},
-0 C () shown that (2.10) (iii) holds, i.e.
) n £ t 3 t n=1
First of all set for each t€]0,1] and {;:,y)EIR (W ¢ "wF} ) (x)=al § *P] (x,0)~ B_y {97*F] {x,0)=0 ¥x IR .
£ -n/2 -1 =g - .
9 (x,v)=t n/ ${t /2‘:{71: / v) This ig clear if ¥ is smooth, i.e. if £ is smooth: indeed, as

obgserved in Remark 2.3, for a diffewxentiable F the function

| (with fixed x=m™ )

o= n clin each, vaniable],
whers ¢£C (IR') 1is an evenrnon-negacive function with support

contained in the ball B(0,1) ={ (:’:,y)E:l}'v‘.n :|x|2+y251]- and such

that /¢ (x,y)dxdy=1. Next, define Gly)=aF (2,9)~ "g-g'(x,y}
=

. £, . )
P, y) if +=0, (X,Y)EJRn is odd; as the kernel ¢ is an even function, the convolution

vit,x,y)= (2.11)

[65+GT (y) = ol $°*F1 (x,7)~ -a%; [P (x,v)
Lo%um) )=t ™2 /o™ (x50, €2 g=m)) -
R

is also odd, and therefore it vanishes at y=0. However, even if

; - . .
-F(E,n)d&dn if tego'ﬂ’u{’y)emn i £ isVvEMooth enough to give sense to ¥f, a direct computation can
and show that N[ c,bt*F] =0, We wlll prove this fact indirectly by for-
— + ' . B : +] = .
0 if t=0, z=m” 1 ‘ mula (2.94) below, sines that equality reduces to gl,x)20 if
git,x)= (2.12) o (%) Sconstant. [

£ ‘ . '
a{x)vit,x,0)~ -g;—’(t.x,mm(an: *F] (x,0) - ‘ We have to verify (2.10) for the Function w defined in {2.13).

t
d[%— 7] (x,0) if el 0,1] xR
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We start with the following result:

n
PROPOSTTION 2.5 (i) w is twice differentiable in 10,11xIR .

=1
(ii) [Hwit, .l {®)=q{xLlw(t,x,0)= %§ {t,x,0)=0 wt€]0,1] ,7=ER

n
(111) weel( 0,11 and wi0,x,y)=P(x,y) ¥{x,yIER .

preof. (i) It is a straightforward consequence of the mellifying
properties of the convolution and of the regularity of .

{ii) For each yE€R we have

oV
c«.(x)w(t,x,y)wi%;-{t;x,y)=a (x)vitex,y)- a_y'{t'x’y) -

- '
AR o (g (e, SIS gie 0

and choosing y=0 we get
3
[Nw (E, 7.2 (K)= u(x)v(t,x.O)--sﬁ(t,x,O)-gct,x);

by {2.11) and (2.12} the result follows.

(iii) We need an alternative eﬁpression,for g, namely

o (t, %) =a () L4 ST (%, 00— 4% (Frad] (x,0). (2.14)
T prove {2.14) it suffices to showthat

%%(t,x,ﬂ) = [T w(Fra)] (%,0). (2.45)

In fact, we have )
3 - 34 . =172 -1/2
e,z 00=t 2 [ =t (=—£) =t n)F{E,n)dndE
3y mn 3y

o+
- EE——— o - -1
- N e P

o

*nyElE,n)dnaE +
Ip-i e
n+1 2
- -1/2
w 2 g f ggtt W2 gy, =t~V 20y e g, -n)dndE -

n+1

%i(t’1/2{x—a),—t“1/2n>-

“20{E) J expla(E) (n—s)}]f{E,-s)dsdndL.
bl

s e

34

54
As y = Eg(x,y) is an odd function, the first two terms cancel
each other. Thus by an integzation by parts in the variable 7

w& obtain

o]
%E(t,x,0)=—t n/2 ! I¢(t-1/21x~3),wt_1/2n)'
v =1
. r ) o
20 (B =£(L,-n)+a(E) [expla(f)(n-e)]£({L,~-s)dsldn 4&.
k3l
On the othexr hand, as y+¢(x,y) is an even function, we have
o]
—n /2 - -
2272 s ree™ P gyt ate) £48,-n) dnat =
IR —
~-n/2 0 =1/2 -1/2
=t 7 -1 [ Fo(e (x=E), =t nia(E)E£{E,~-n)dn +
=" e

+ otV ey -t 2 e £ (2 ) anl ac,
o]

and conseguently

3 ~n/2 e - -
ot 0=t et gy T 20 a0 £, myanag
4 ¢]
0
-n/9 - -1
A S Y T L A S {C S
m 0

=26 (8) Sexpla(g) (x-s)]1 £(£,-s)ds] dndf =
-
-n/2 -1 -
=2 eV R gy, e nE e m anae= 0% wiEea 1 (2,09
®
This proves (2.13) and hence (2.14).

Now, to prove (iii) 1t is enough to verify that

1im. lw{t,,")=Fl =0 (2.16)
0" % m™

By {2.14) we get as t+0+

gl x)+e(x}F{x, 0)~o (x)F(x,0})=0 uwmiformly in XEEF_1=
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13
on the other hand we have veC® ([ 0,11xR") , v(0,-,*)=F and ;
' . \ 0,26, 7
im Ivit,-,-)=Ft o = =0, e LEMMA 2.8 (i) Lf 6€l0,1/2[\and F&C "7 (R]) , then
0 C (R 7 & 3+ g=1
(Th facts follow si F i i Forml, 1. ). Thus b 1D ¢ =E] d DL Tw(pra)Il . et Y o268, n
ese facts follow since is wniformly continucas) . us by @ [mn) % aYr (IR+)
{2.13) we get wee10,1].
witrx,v)*Fix,y)- (1=yi8ty) (0,x} = Plx,y) wmiformly in (x y)GJRn * 1 n
e : Tee (0) ' 4 ' ! (ii) If 8=1/2 and £&C ' (R}, then
i i -1/2
i.e. {2.16) holds. The proof is complete. 9O EDZ{ q)t*F]ﬁ . +§Dzi ¢t H{EFea)]! o » <ect / 1El ] .
¢ (®Y c (B’ ¢, (R
Conditions (i) and (iii) of (2.10) are proved; we have now to el 0,4] .
i (ii i 1,28-1 }
verify (ii) and (iv) of (2.10). (1i1) If 6}1/2,10 and fECN (IRi) , then
MIMA, ’ 8-1
LE 2.6. We have for each t€]0,1] P ﬂDZI qbt*F]ﬁ o n +HD2[ ¢t.i.=(F-a)]fi . <ct ') 1,261 _n
2 t t C{R) c{R") c (m9)
I w{t, -, ") 0w <c{l¢ I 5 g ¢ #{F-a)l 2 1.
o (R) e (mh c” (Y ' i weel 0,17 .
i 0,268 _n
: i i 4i {iii) we assume #ch '~ (R} .
Proof. It is a straightforward consequence of {2.132) and (2.14). o 1, morsover, in cases (), (ii), +
, ] £ ;‘1 =, feh;'ze_1 (R)), respectively, then we get
Thus to prove (ii) of (2.10) we have to estimate the € -norms
; - +
of the convolutions tbtfeF, d:t*(F-a), and,; in view of Lemma 1.10, | wl::‘i e{ll:f_’)z{ ¢t*2‘}ﬂ o _n .|.'.1132[Cbt*(F""‘)]ﬂ 0 :IRn} = {1} as =0 . (217
| : C{m)
it will be sufficient to estimate their co—norms and the C0~norms | CTED)

n
+h i £. £ h {(%,v)EXR and t€]0,1]
of eir second-order gradients. This is the goal of the next ! Preof. (i) We have for each (x,y) 10,

1 - n+Z .
oz ! ' = - ~1/2
Bwo lemata. ; D% 45 ()t s w?e €V g, 672 gem e )y anat =
® (2.18)
. 0,0 , ‘
LEMMA Z.7. For each feC (R}, let F be defined by {2.3). Then : =t_1 fn (D2¢} (z,W)F(x—t1/zz,y=t1/2w)d1ﬁdz.
I’
t t -
e *Fllc (:{Rn) e *(Fou}“cﬁ(mn) ze anCG(JRn) viel 0,11 . As the integral over IRn of D'zci: vanishes, in the last integral
1/2 1/2
we can replace F{X-t1/22,ymt1/2w) by [ F{x-t / Z,y-t / wi=F{x,¥)],
Proof. Obviously ’ obtaining
- n
155w ol ) solIFi, + ol b ogetEl | Do G <o +77 N E | e gem® , ¥ee10,1]
c (m™h cmw™h ¢’ (m™ ¢’ (®™h) c(®h ! : 20, B0 g1 51725

(2.9}
and Proposition 2.3(i) yields the result. o

1/2

where B{(x,y),t 1=1{ (z,w)EIE‘.n :kz-x|2+(w—y)2<t}. A similar

t -
procedure applied teo Dz[ ¢ % (Fra)] leads o
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D% o (Brad] (k) < ot [ Frald ¥ix,)ER
28,Bl{x,v¥) .t ;i)
) (2.20)
2&10,1] .

As [Fa]ze E{FIZSJQEE+!FEW[H}ZB_, Ly {2.20) we.deduce that

102 65 1F )] Gey) f< ot T ipl (k7 ER™ S 0,11 .
- 0,28, _n ;

c (R} :

and (i) fellows by Proposition 2.3(ii)7,If, in addition,

fEhO’ze(EJH ; ~then clearlyui24114«fﬁiiows by {2.18).and (2.20).

(1i}) Again we have (2.18). As D2¢ is an even function, whose

integral cver = vanishes, in the last integrail of {2.18) we

can replace F(x—tifzz,y—ti/zw) by %{F{x—t1/zz,y-t1/2w) +

+F(x+tﬂ/22,y+t1/2w}—2F(x,y)}; thus we check

“12 g ¥(x,y)ER" W€l 0,11 .

1% 4T sF) (x,7) [ <ot
*,1,B((x,y),ti;2)

{2.21)

and similarly
0% 6 sl ) <ot/ T ral Flx,y) SR, ¥EE1 0,11
*,1,B{(x,y) £1/2} (2.22)

hence by Lemma 1.18 we easily obtain

-1/2

i Fl wix,v}eE" , W€l 0,1,

c

ID%1 6% *(Fa) ] (x,7) | <ot t 4 n
F(mT)

and by Proposition 2.3(iii) we get (ii). If moreover fEh;'i(Eﬁ)
then (2.17) follows easily by (2.21), {2.22]) and Lemma 1.18.
(iii) As now F€C1(Kfﬁ , instead of (2.18) we can write for each

(x,y}eﬂfl and t€}0,1] f{with an obvious meaning of the notations):
n+1

D27 oEwpl (2,70 =D it *(DFY] (x,yi=E  © [ Do V% gy 1
i m

/2 (g2 -

-DF (g, n)dnag=e" 12 1 D6 (2, DF Lx—t /22yt "/ 2wy awaz.
s

35

2s the integral over Egl of D¢ wvanishes, we replace

DF(x~t1/zz,y-t1/2w)by EDF(X“t1/22,Y‘t1/2W}—DF(X,Y)], cbtaining

¥(x,7)ER ,¥E10,1] .
{2.23)

2 o) Gy et Toe
208-1,8((x,v),£1/2)

Now we have

[ D({Fal] <[ DF}

el +ioF
26-1= al HIDF Lol g g *TFT

g1 17

Ipui_+IFl
261 Dok FIFL D 5.

which implies

1520 o5 (Fa] Geyy) | ot LE ¥,y R, ¥e] 0,11 ¢

C1’26_1(EP)
hence the result follows by Proposition 2.3 {v}. If,in particular,

1 26~ )
fEhN’ze 1tm2] , by (2.23) and {2.24} we also cbtain (2.17). O

By Lemmata 2.6, 2.7 and 2.8 it fallows that eondition {2.10} (ii)
holds.
The proof of condition {2.10){iv) is a little more delicate. As

in the case of Dzw (Lemma 2.6) it is easily seen that wt can he
3. [ 4%4F] and = [¢Ts(Fa)]; but the

esitimated in terms e
ofF 3% 3t

¢
¢’ -pnorms of these functions are not controlled by the approprlate
power of . The peint is that, howeverx, such derivatives appear

in the expression of w, in a suitable combination, which ¢an in

t
fact be estimated by the reguired power of k.

Leem 2.5 (i) If 6€10,1/20 and fec P (®D) . then

e e, 1 o ose e yeel 0,1 -
) 2%

®
(11) If 8=1/2 and fecu'1(rﬁ) , then

= ot™ % weel 0,17 .

9.0
(Ea)

tw, (e, )1
T
c? o™ c,
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(iii) If 8€l1/2,10 and fec;f,"za"‘E (®)) , then

8~-1
tw, (£,°,)1 2 ct I £t ¥LE10,1] .
t CO(EP) c1,28 1(Iﬁ)

0,28
If, moreover, in gases (i), (ii}, (iii} we assume £€h ' (mi) .

#,1 n 1,28=-1 n .
;EehN (IR+) B fEhN (IR+} respectively, then
1-8 +
£ R {g,m,)E 0 mofl) as £+ (2.25)
c (R

Proof. (i) By (2.13), (2.11) and (2.12), we have clearly

- A=y 8{y) 8 t _
Wt(t.x,y)— ™ [¢*F] (x,¥) Tre (%) Ioc(x)at [ ¢ *F] (x,0)
{2.26)
- L ieteEal 00

Hence for each {x,y}G:IRn and t£]0,1] we have

_ nt2
_ _n 2 -1/2, /2, .
wt(t,x,y)— -3t In {¢ (& {z=£) .t {y-m))
™
- - -1 8
- 7P ey -T2y B2 [ai-alf) 13F(Em)dnas -
n+3
1773 21 a6 12 /2
- “2-'t f{s —(t {x-E),t {y—md) {x,~E. ) -
noo. ox, i i
®r i=1 i
n—1
- 34 =12, . 1/2 o =yaiy) _
i.?i1 maxi (& (=) ,=t " "n) (x,-E,) Tro (%) [e (2} =a{E)] }F{E,n)dndL
n+3
3 - -~
- —;-t 2 PR —g(t Vz(x—i),t Vz(y-n}} (y-n3—
n 3y
®
2B VR ey Py DO W) g oy e ()] FE (6, n) dndE .
3y 1+ (x)

Each term on the right-hand side is the sum of two integrals:

1/2
/ (y=n),

-1/2
/ .

-1 -
in the first integral of sach term set z=t /2{X=E),w=t

1/

-1/2
in the second integral of each term set z=t {x~E), w==t

37

After the change of variables it is easily seen that

n—-1
- 1.1 _3¢ kL] .
wt(t.xzy}— St fn Iruis(zn«')*-;‘;t Bxi(Z'W)zi+ By(z.WJw}

'{F{x—tT/zz,y~t1/2w)—{1;uii; i {x) ~a(x-t /22)1 - (2.27)

1/22,~t1/2w)}dwdz V(x,y)E]Rn , ¥tel0,1].

*F {x=t
As

' -1 24 Y
S ooine(z,w)+ £ ==(z,w)z, + ==(z,w}w] dwdz=0C {2.28;
Eﬁ {1 ax i 3y

we can replace in (2.27) F(x~t1/2z,y—t1/2w} oy

1/2 1/2

{ Fix~t Z ¥t w)=-F(x,y¥)] ; consequently

th(t,x,y)ﬁjpte-1{iF] +[a] ‘tFE_J.
ZB,Bﬁ(xyy).t”z} 26,3(x.t‘7§)
(2.29)
Hence
lw (o) | < ct® ! Tz wix,y)€R” ,¥eel 0,1],
t - CG'ZB(RHJ .

and (1) follows by Proposition 2.3(1i). If moreover fehﬁ'ze(mz) ,
then {(2.29) implies (2.25). '

(#1) As in (1) ,we arrive to(2.27) .Now we cbserve that the functien {(z,w)-né(z,w)
n-1i

+ 5 Eju(z,w)z +--§i{z,w)w is even, and in addizion {2.28) holds; this alicws
1=l “Fy o

us to replace in {2.27) F(x—t1/;z,y—t1/2 1/22,y—t1/2w)+

+F(x+ts/2z,y+t1/2w)—2}?(x,y)} . Hence we get

w) by %[F(x—t

=172 =-1/2
jw, (£, %7 [< et {[F}*”HDnlmiFﬂm}f_ ct Izt «,1._n

c (R")
¥ix,y)ER , ¥t€10,1],

and (1i) followsby Proposition 2.3 (iii). Suppose in particular
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*
that fEhN’1(IR2) : then to obtain (2.25) we have to do another

replacement in {2.27), namely the term - A-y)8ly) [a(x)wa(xwg/zz)P

ko ()
=F(x—t1/2z,=t1/2

S lmyey) %{{ e l)a x=t 223 pla-t %g, -1 % +

1+alx)
1/ 1/22,t1/2ﬁ)}; then we get

w) has to be replaced by

ezl alxst 221 Flx+e

-i/2

Jw (eoty)jg et Ur : HFral

and recaliing Lemma 1.18 and Proposition 2.3{iii) we check {2.23}.

Pias 1 ;
(i1i) As now FeC (R") , we proceed in a different way. We write

[$%#7] (x,y)= I~ ¢(z,w)F(x~t1/2z,y-t1/2w)clwdz,
m
[¢t*(F»G)}(x,Y)= fn ¢(z,w)F(x~t1/zz,y—t1/2wJ a(x~t1/2z)dwd;;

i
thus, starting from (2.26) we easily get for each (x,y]eﬁf‘ and

t€]10,1] ¢
1,712 AL B V- IR V2
wt(t,x;y)w— e J ¢tzw) [ T oz, {=—(x-t Tz,y-t W)=
e . i Teox.
R i=1 1
_BF_ A2 /2 (1-y)6(y) _ 1/2
Bxi{x t z,~t " Tw) 1Te 0 [o{x)=a (x-t z)1} +
BB, /2 /2, 8F, 172 /2, (i=y)e(y) i
%ﬂ{3y(x £ Tz, gt Twd ay(x—t z,~t " W) T7a (%) fo (x)=a (x=t * “z}
a=1
- H=yi8ly) oo 12 /2, 3., 1/2
+ 5;121 Cyrr F(x-t z,=t " "w) 3;; {x=t 2)] dwdz .

As (Z,W]+¢(erJzi and [(z,w)+9{z,w)w are odd functions, we can

aF 2 )
replace 3;m(x—t1/2z,y-t1/ w),g%(x—tifzz,y-t1/2w) and
_1/2 1/2. . 3 1/2 ,
F(x-t Z,V=t W) 3;—(x—t z) respectively by
i

i 1/2 1/2 3F ar 1/2 1/2 3P

iz an' - ...t o cecmcones — o = . —
{Bxi(x e T,y Wl aKi(zac,y)] P [ay(x t Tz, Y-t W) ay(x,y)}

1,
*,1,B((X,y),£172) *,1,B((x,y) ,£1/2)

23

and [F(x=tz/22,y-tg/zw)gguix—tﬁ/zz)—F(x,y)%%“(x)]; hence we
i i
obtain
8=1
|wt(t,x,y)lict {[ pF1 +IDEE_f a +
28-1 rB((X,y}.;t ‘ ) 28-1,B(x,t '2)
2.30
+{ F+Dal iy (2.30)
26~1,B ((x,y),£1/2)
and comsequently
iwt(t,x,y) {5ct8'1ll?ﬂ 1201 _n ¥ (x,v)ER" ,¥£€]10,17 .
c’ (B
) s s , . 1,28=1 n
By Proposition 2.3(v) we get (iii). If in addition fEhN CR+),

by (2.30) we also get (2.253). @

By Lemma 2.9 gondition (iv} of (2.10) is proved. This concludes
Step 2.
To complete the proof of Theorem Z.1 we have just to set

u=w .
[0,1] xR
As w satisfies (2.10), it is elear that u satisfies (2.2). By
Dafinitlion 1.7 and Lemmata 1.10 and 1.11, this means

(resp. £ (cfz(mi) S =y ).

2, .n 0, n
fE(CN(R+) JLCT{RD 1-8

+7 18,2

Thecrem 2.1 is proved. 2

3. THE CASE OF A HALF~SPACE WITH A NON-TANGENTTAL BOUNDARY

CONDITION

In this section we consider again the half-space ]f:=

=51 4 0,[ , with general (non-tangential) boundary conditions.
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2 -1 2. _ne
Let eec? (B ,®) and Bec” (R T &) be such that

alx)>0 , B (x)={8(x)|e") < =& <0.
- n n-— 0

It is not restrictive to assume that Bn(x}=—‘¥ vxemn=1 . hAgain,

we denote by (x,y) the polnts of Ifi(x61€-1

;¥>0). Setting
g - 0_2, n-1 ="
(X)—(Bq(xj,.u.,ﬁn“1(x)), we have 8 €C (K . IR ) and we
can write B(x)=(B (x),~1).
Define the boundary operator

(Bu) (x)=0 (x)u(x,0)+(8 (x) [Dutx,00)_ e, (3.1)

We recall the definition of the spaces (see Definitions 1.13
and 1.14)
(a) c (R y ={gec™ (R,) :BE=CI, k=1,2;

1,0 1 1 4
() o’ (m‘;) ={zec ' (®}) :BE=C], hB'“(mi) ={feh '“‘(mﬁ) :Bf=0},

eg10,1] ; .

o]
u, _ L£(x-oB {x),0)=£(x,0) ]
(R, [ f]hB sup{ -

(o) eyt el =t

xEJRn“1 , o>0}< @},

.f—(xrdﬁ—.g (x),0)=£(x,0} _
G

(m )—{fec: (:R o ’1) : lim
o+

—a () £ lx,0) ¥xERT Y.

., 0 ;
obvicusly when £ =0, i.e. B=—en, these spaces reduce to the spaces
k 1,0 1,0 w1 #,1 ) X
CN’ CN ' hN . Cv ' hN of Section 2. In particular, they

are alil Banach spaces with the norms

(z) 1£1 . (b) Mfl (o) 1R + £}
ko0 1ra,_n L . ) 1 -
TR f r
cr +) c (IR+J c (ER_(_)
We want to prove the following result:
THEQREM 3.1 - Let oeC (1&“ -1 R}, Bﬂscz(mn'1, Rn"1) with a>0,

41

and set B=(BO,—‘1) . If B is_the operatox defined in (3.1}, the

following continuous inclusions heold:

(B 1f ee0, 1/

(C (m},c (BD) | g o 24"t

(3R yif 8=1/2 i

*
“a
20Ty ag el /2,0

ho'ﬁ(mﬁ) if 8s10,1/20

2,.n 0, n
(C R LRy o 2 ’1(13 ) Af  9=1/2

20-1,.m A
(R} if 6512.1[ .

%
B
".
E
Procf. We want to reduce ourselves fo the situation of the preced
ing section, i.e. to the case B=-c—:n. Let ¢Ecm {{0,=[) be a function

with support contained in [0,1] and such that
1
$(0)=1, o<p(s)z1 ¥s>0, J ¢(s)ds=¢
¢}

where s<hDBOE;1, Consider the function w: IRE - IRI_: defined by
& 0 n-1
wif,s) = (E= [ ¢{c)do - B (§),s) . EER ; 520 (3.2)
g
Tt is easy &0 see that w is twice differentiable in IR?_ and is
one—to=-one. In addition m—1 is also twice differentiable since
the jacobian of w is pon-singulars indeed, we have

i

0 o]
(bu (£,51= | Tmerm [ #0780 D8 (£) o (=18 (E)
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s
5]
and consequently |det| (Dw} (E,s)]] =|&et[1n_1- Félo)do-DB (E};
o]
on the other hand we have

g 0 0
sup | 79 (c)da-DB (§)|=elDB 1 _<1,
(g,sJemz b

which iwplies [det(Dw){E,s)|>6>0 V(E,S)Emi.
Let us define mow a mapping T:u+T{u) by

vi{E,8) = T(w) (E,s) ={uow) (E,5), uec® (&) .

PROPOSTITION 3.2 — The transformation T maps isomorphically:

R S k
(1} CoUR)) imto CUim)) , k=1,2;

-t

0 1,a(mn) and h'i,cx
N + = N
1 *

11y "% (®Y) amd n ’“(m‘:) into C () , o€]0,%];
T:
L

.1

w oy o

(1i1) ¢ (@) and a " (") into c:' (BY) and b " (K)) ¢

o w g I =

n
+
.1 n
+
O,

i) ¢ N®Y)  (resp. ho'“(mi)) into itself, a€10,11;

+

(V) CO(]RI;_) into itself.

Progf. Ik is clear that T preserves the regularity of type

Q C,a 0,0 1 1,0 1,0
‘ D

2
c, C = . C, C and C°., Suppose next that u is

differentiable and Bu=0. Then v also is differentiable and

(3] (E)me ()7 (8,00~ 2(£,00=L a(E)v(E,8)- SL(E,8)] o =
1 s i s g==0

B0 aa 3wd du pu”
Slatglulw(g,e}- I E;{T(w(ﬁrs” E?(E,S)— a—y(m{E;s)) ;S—(E:SJI
=1 "3 s=0
=1 ‘0 b
=a(Eyu{f,0)+ T 5——’(5,0}8.(5)‘ —{£,0)=[Bu] (§) =0.
\_q OE, 3 oy
] J
Thus we have proved all statements bub (iii). Now let
uec;"' (JR:iJ : by Lemsa 1.19, we have v=uom€C*'1(3Ri) and
172 172
vl Ls{tual [wl +2 [wa] { w] } zelul . (3.
"1 ot =) 1 12" 2 ool =)
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In addition we have
v(E,s)-V(E.D)——~u(m(E,s)}—u(E,0J=[u(m(E,s))-G(E-SED(E},S)H
(3.4
+ [u(z-s8" (8) ,8)~u(E,0}]
and hence

y 12

V(g 3)=v(£,0) |<Tal, lu(g, )= (5-s8°(2), 8} |/ “+lul, 4

on the other hand by (3.2) we check

g s ad
0
lo(E, 81 (6-58° (8) o) [=[8° (83 | < |- 7 pioragws|cta 1 | / 79 (z)dxda]
g oo (3.5)
<z 1% _te0_ s=ks”
and therefore
-1/2 o, i/2 1/2
[vig e vz, 0 <27 Py 0 Prgnl it e
This shows that VEC:’1 (JRZ) and that vl £ 1. n el ul «1 _n
CIRNE 9 ep D

2.2 s
Suppose now that ueh;'11 (IRI_:_) ; if [E-—E‘}2+(s-s') <r®, similarly

to (3.3) we easily get

[+ <{ [ul 0 lwl , +
*,1,B(E,8),7) NI, £ 1 BlwlE,s), l DNR,
+ 21/2 [u] o[ wl 1/3 }=o 1) as ot
- E+E' s+sl . 2 n !
1/2,B(m(T,Tl,[m]*’2 r )ﬁIR+

*
hence veh ' (m_i) . Next, by (3.4) and (3.5) we deduce that

_ /2
128,528 00 igyvig, 00 <ful x

—
# 1/2,B(w(E,s),Ks )ﬂIRi

R

0
ELEELR I oA RPNy

=

+
=0 (1) as s+0
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, . . #,1
which implies vehN’ (IRz) . The proef is complets, o

Theoxem 3.7 fellows now easily. Fix 85) 0,1 and take accordingly

) 0,26, n *.1 _n 1,261
f L r r
in ene of the spages C (IR+) ’ CB (21R+) 'CB

0,28

(IR?) {resp.

1,281
B

n %, st n
h (E_i_) ’hE (IR+) Jh {IR+J). Then Tf=fouw is in the cor-

responding space, specified in Propeosition 3.2, and the mapping
is ceontinucus. We can now apply Theorem 2.1, obtaining

2.1 0, n 2. - n 0, _n
TEe(C (R : . i
{ N( +) c (R+)) 1-6 o (resp ?fE(CN(R+) /C (IR+)) 1-6)' with

continuous_inclusion. By definition, this means“-there exists a function
0 -'
v=v{t,£,8)eC ([D,1}xE§) satisfying

v{0,&,s)=fow (E,s) v(g,s)e:lRi,

2z
Ve, o (10,11,C7 (R} (resp. vec, . (10,11,¢% (®D))

1-8
v.ec, . (10,1, (EY)) (ves e, {0,1,c” (=

o 1"'8 r ? + P' Vt 1"6 ’ ],C (]R+)) r
(Mv(t, -, )] (8)=0 veem™ |, wee]o,1].

. -1
Hence if wa set ult,x,v)=vit,e {(xz,v)), we egsily deduce
ul(0,x,y)=£(x,y} V(x,yJele,

2
uEC,‘_B(]O,‘I]rC (Ri)) (resp. uec e(iorﬂ,cz(mi)))

1 -

u €c, . (10,1] ,CO(JRE)) (resp. ue

1

0, n
C1-e {{Te,?,c (m+)))

[Bult,«, )] (x)=0 wxep™ , WEE10,1] ;

™y ) and the

2,_n 9 _n 2. _n ]
h fe(C B -
ence { B(R+) C {Z[Ei+)) 1~e'm(resp fe (CB(]R+),C (IR+ 1-8

continuity of the inclusion follows. Theorem 3.1 is proved. O
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4, THE CASE QF A BOUNDED CONNECTED QPEN SET

Let @ be a bounded connected open set of = r nxt, with
boundary 20 of class CB. For each z£30 denote by v{x) the unit
exterior normal at x; then \)ECZ(BI{LER) .

2 2
Let «=C {38, R) and BeC” (87, R} be such thar

a{x)>0, {B(x) Ev(x))n 2 8,20 Wx€3q,

and define the boundary operator
[ Buj {x}=a(x}u(x)+(8(x}!Du(x))r\ , x€ 30 (4.1)

We will use the spaces of functions (see Definitiomns 1.13 and

—- - — ; e, * -
1.14) cg(n),c;'“(n), h;'“(g), C;'1EQ), hB’1(Q), as well as the

HBlder spaces cl:e ), hO .

Our goal is to prove the following rezult:

THEOREM 4.1 - Let Q@ € R’ be a boundsa comnected open set, with

o=
22 of class C°; let acc’(30, W) , 820 (30, 2°) with a0 and

(B|\J)n z 60>0. If B is the ogperator defined in (4.1), then

the following continuous inclusicns hold:

28 G uz seo, 1/
2= 0= e, =
(Co(@,c @), ¢ L {0,/ @ 12 e=t/2
's
a2 @ iz el /2,10
k97280 %) if eera, 1/
- — £ —

(cg(ﬁc),cﬂ(m)%{3 ] hB’1(m if B8=1/2
n;’29'1(§) if.6s]1/2,40,

Preoof. Fix 8€]10,1] and, accordingly, take £ in CO,ZB (5),

0,2 1,28-1

(@) (resp. h

# = 1,25~ —
CB (n)} or CB ()).

@@
Q)th Q) or hE



According with Definlition 1.7 and Lemmata 1.10 and 1.11, we

look for a function w#w(t,x)eca([0.1lx§) such that:

wl(0,x)=Ff (x) w=eli,

- 1-
sup ¢ eﬁwt(tf')ﬂ 0 == {resp. lim, t eHwt(t,-)ﬂ o - =0},
€1 0,11 ¢ @ 0 ¢’ (M

- 4wp
sup £ Utofwie, )0 _ < (resp. lim & 1pf (e, 1 _ =0),
€} 0, 1] c (R} >0 C (@)
[Bwit, )] (x)=0 ¥x€3a, ¥t€]o,1]. (4.2)

Our method consists in transforming the given function £, by
an usual localization argument, intec a finite set of functions

{Fi,Gj} of two different kinds:

(a} a fuaction Fi, as smooth as f, defined in a ball, with

zero boundary cconditions;

(h) a function Gj, as smooth as £, defined in the half space

If: and satisfying AjGj=0 on the bhoundary whenever Bf=0 on 30;
here ﬂj is a suitable first-order differential operator of type
(4.1).

The loecalization argument is not completely standard, for it is
carried on by the construction of a finite partition of unity in
@ with special propérties along 30 : namely, we need that the
loealizing functions near 32 transform the boundary cperator B
into an operator Aj of the same kind, This is done by choosing
the functions uj, localizing near 22, in such a way that at each
®EIN  their gradients Dpj{x) are orthogonal to the vector B (x)
appearing in (4.1). This construction is performed in the first
step of the proof.

The second step is the verificatiom that the localized functions

‘F;,L or Gj in fact satisfy the conditions stated either in case

L?

{a) or in case (b). In case {(a), Fi has compact support in a
»all Ui’ 50 We apply a result of Lunardi [ 12] to prove that

2

4] 2 0
€ [
Fi (CO(Ui)’CO(Ui)1-e,m {resp, FiE(CO(Ui),CG(Ui))1_e), in case
() we can apply the rvesults of Section 3, obtaining
2 =3 g, n
s
Gj {CA,. (IR+) C (3R+) ,- ).

0,=

2 n o, o
€
(resp. Gj (CAijR+) PCTIRD) L g

Thus, according with Definition 1.7, we have Fi=ui(0J,G,mv_(0)

for some suitable functions ui(t),vj(t)‘ . 2

In the final step we show that the function w(t), which is obtained
by gluing together the functions ui(t), vj(t), in fact satisfles

(4.2).

Step 1 ~ Here we will construct the required partition of

wmity. We start from the localizing functicns near 91: for each
XOEBQ the construction gives a suitable function u, defined in

a cartain neighbourhood vV of e in 5; a compactness argument then
vields a finite number of localizing functions p. with the re-
quired properties. Next, we complete, in a standird way, the set
of localizing functions by a finite number of suitable functions
nyr defined in balls contained in Q. Finally we normalize the
functions ni,uj, obtaining the desired partition of unity.

To begin with, fix xOEaQ. Our first goal is to comnstruct two

néighbourhoods v*, V' of x_ in T with " € ¥', and a function

_ Q
1:+R with the following properties:
yee® (@), 0zpst in @,

— (4.3)
p=0 in @-v', uI1 in V"

and

(B(x)LDu(x))n = 0 FRER0. (4.4}
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3
To do this, first of all note that, since 3% is of class €,

n , ;
there exlsts a nelighbourhood W of x, in IR . and a diffecmorphism

0
w:w»ﬂflof class C3, such that, denoting WNR by V:

n
vVI=K {4.5)
— n. .
wﬂmagw T = {EEJR+ .gn—o},
v oec” (®mYy .
set
= T ail whene ), £€T, bBet....m;  (4.6)
h ax > ! r - -r i
r=1 bl

then 7602(2 ,IRn) and it is e=sasily seen that
C(muroy” (£) |80y () =(Dluoy” ) () [y (8)) vER, vuec (V). (4.7)

Moreover it is not difficult to verify that
-1
- -1
v (O=tri8) [o™) = (goy™ () voy " () - LR LD ey,
|D{gay™y (£} ]
which implies

Y LEY < - 6,%0 vEer . (4.8)

Thus, the non-tangential vector B(x) is transformed by ¥ into the

non-tangential vector y(f) given by (4.6). Hence we can define

7, (B)
=-2 . &=, n=1,...,0: 4.9
() == Sy 8 n (4.9)
antinousfy diffonenkiab
thus A & twice¥ i Rn(€)=~1 v¥E&&Z , and by (4.7)
(owoy” (8 [Boy | (£))_==v_(€) (Btuow” ) (£} [M(EN) (a.10)

wEEL , *vTuEC1 (V).

Next, we want to transform the vector A, defined in (4.92), into

. n oo R
-en; hence we need to construct a function m:]R+ ~>]R+ just as in

P

&9

{3.2) of Section 3, with B replaced here by ). Tc be more precise,

4] ]
write £ ﬁ(g?""’gnwfj and A (£)=(A1(E),...,An_1 (£)), so that

g=(%,5) vEsR] and A(6)=(2"(2),~1) VEEZ; then set

£
w(E)= (0= Ppioac-2”2%,00,8 ), =%,z er",
9 n L +

(=]
where, as in Section 2, ¢€C ([0,=[}is a function with support

contained in [ 0,1] and satisfying
1
${0)=1, 0<¢(s)<1 ¥s>0, fq;(s)dsze-:nnlo(-,o)ﬁ;
Q

1

-

) n : -
Then cu:JR+ *Ri is twice differentiable and one-to-cne, with w 1
also twice differentiable; ncte that
2@ 0
w(E}=E, E—(E)#--?\(E) VE= (£ ,0)eL (4.11)
n

Now let BO&C {[0,«[ ) be such that 0<8<1, 9=0 outside [0,1],
=1 in [0,1/2], and set

zie)=s(iz)) R, ;

then, clearly, cecm(mi) ; 0221, £=0 outside B+(0,1)=
={g=®] :|g]<1}, €21 in 3% (0,1/2), and moreover
3z 0
‘5‘%‘- (E}=0 VE=(£",0)< (4.12)

n

i.e. the gradiemt of ¢ is orthogonal to -a, By {4.12) and (4.11)
wag easily get

(D (zos™ ) (£) [A(E)) =0 weer | (4.43)

We are finally ready to define the desired function p satisfying
{4.3) and (4.4): set
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;owd1ow(x) 1f xeV,

wlx) = (4.14)

0 Lf %€q-V;
then it is easily seen that (4.3) holds with
- -1 +
vy T 0,1))), v (e (B (0,1/2))),

while by (4.13), (4.9) and (4.7) we get (4.4).

Up to now, for each fixed xOEBQ we have constructsd the function

i given by (4.14), which satisfies (4.3} and {4.4), as well as

the sets V, V', V" verifying v"CV'CV and the functicns Y,v,A given

respectively by {4.5), (4.6), (4.3}, for which (4.8} and {4.10)
hold. By the compaciness of 28, we can select a finite number cof
points xgeaﬁ, 1<i<k, such that the corresponding neighbourhoods
V;, 12jzk, cover 39, Accordingly, we have also selected the cor=-

responding -functions wj,T A;,uj and the-sets Vé, V;; in parti-

37
cular, for j=1,...,k we have V;EV%EVj and:

) n -1_ 3. n
. = . W (v, nag)=L . eCT (R (4.15)
Ty (V)R 0 (V000 v )
v (Er= v I e el e e (4.16)
3 ] J ]
= n - 4.17
(ijnta) th(s)le Ty 27 8490 vEel ( )
1
R S runranere=—ulit S0 VeSS {4.18)
A5 (8 G 3 &
i‘n
EGIE -1 =y - 4.19
ooy} (2 LDl op] | (83 == () (B) (448 [Dtmoty ) (81 (4.19)

1
VEEL , WuEl (vj)

2 —an
eC” (), O<p,<i
uj {$) _uj__
{4.20)
.0 in R-V! LE1 in VY
Hy=h i 50 P 3

i

(Duj(X)[B(x})n=0 YxEIQ . (4.21)

The functions uj are the required localizing funetions near 54,
T complete the sel of localizing functions, we cover the

compact set @ -~ U V" by a finlte set of open balls {Ui,Tiijm}
=1

such that UiCCQ; next, we choose a refinement {Ui,iiijm} of {Ui},

such that the family {Ug,vg, 1£i<m, 1%3<k} still covers G, and

select another family of cpen sets {Ui, 1<i<m} satisfying

UECCE£CCUi° Finally, we take for i=1,...,m a functiom niecz(xﬁ)

such that Oiniii, niEO outslde Ui, niE1 in Ugo

The set {uj,ni, 1<j<k, 15i<m} is the reguired set of localizing

functions. To conclude Step 1, we have only to normalize the

funetions uj, ny in order to get & partition of unity. Thus, we

set
m k -
g, &)= T n_(x)+ T u_(x}] m, {x},
* =1 T a=1 ° L (4.22)
m k o1 _
p. =l T n (x)+ & u_ (3] “n,{x, ®ELN.
I =1 T g=1 ° d

Clearly oy, o,&c"(®) for i=1,....m; 3=1,... k, and

m k -

L o,{x)+ I p.{x}=1 dn Q

. i . |

i=1 §=1

.20 in E"Ui’ i=1,...,m, (4.23)

p.20 in Q-v!, J=1,...,%;
j ij I L]
in addition, by (4.21) it follows that
(acx)}Dpj(x))n=o Ve, §=1;...,%, (4.24)
Step 1 is finished.

Step 2. Here we reduce our problem to the cases (2) ard (b)
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mentioned at the beginning of the procf. Let
<228 &) (zesp. bOr20(m) Lf esl0.1/20
AN @ 8= 1/2
fe Cﬂ {q) {resp. hB (@) 1f

e;,28—1(a) {resp. h;,29~1(§}) if 9€11/2,10;

we localize f by setting
o . ,
g {x) £(x) if meU;
F.{x)= yi=1, ..., {4.25)
il -
Q if xﬁﬂ-Ui

G.{E)=[pjo¢;1(5}1.{f0¢;1(E)], Ee}f:, =1, .00k, (4.26)
]

pDefine -1
aol, (&)

= = A (E)[DutE)) , &=, 3=1,...,k7(4.27)
tAzul (2 (Yj)n(g} u(E)+{r, (& | pu "

then we have:

PROPOSIFION 4.2 For i=1,...,m and j=1,...,k we haves

0,28 = 9,26 = e 621,121
CO' (Ui) (resp. hD (Ui)) if 6€]C,
MANT B not V(G LE 8=1/2
Fi e S Co (Ui) (resp. o i if
i i,20-1,= 1,28=1 = o1 /2 1
* cg 7T (B, (zese- By (@) L es11/2.10,
0,28 _n
cc'zs(m‘;) {resp. b’ (W,)) Lif 6€10,1/2
#,1 T x*,1,_1n (£ 0=1/2
G, € cF ™y (zesp, b, (W) iE
j A + Aj
3
1,26-1 _n 1,26-1 000 .. ee11/2,140.
cy (H,) {zesp- hAj (1)) if e€l1/2,
5 .
Morsover " x
T tF. . 8+ 1§ fgl < ¢ Ifl
=1 SO, 4=t °

i
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in the corresponding norms.

Proof. Obviously, Fi has compact suppoxt in Ui ,and its regu-

Y

larity follows easily (for the case 6=1/2 recall Lemma 1.18}, as
well as the required estimate,

About Gj' the result is obvious 1f 8€}0,1/2[ . Suppose now §=1/2;
by Lemmata 1.19 and 1.18 it is clear that GjEC*'1 {mﬁ) {resp.

i * 1, n
Gth (Eh}) and ﬂGjE <o igh 1 = ; SO we have only

g Q)

*
AN ) c
3!
to show that
5

G, (x=ui, -G,
! ](xcr J(E)) J(i)l

sup { 1Ee8 050} <al £ if fec N (@), (4.28)
5] - 1= B
c )
B
and
8, (5=0h, ()G, (8)  oop;’ (6) ot =
lix = - fen
G{-‘éur p RN Gj(E) VEEL 4f (@), (4.29)
First, we observe that ¢51ec3(zfﬂ and that, by (4.16) and (4.18),
we have
o B A (E) = o e gl (EY) wESE (4.30)
3 3 (vj), (8 3 !
hence by Taylor's formula
=1
Blyw. (£))
=4 -1 2.-1 22
. ~UA, =y, -
ij (E=ah, (E))=b, (E)-0 (Yj)n(g} | <tp vy Emﬂ)\jimcr (4.30)

Vo0, VI .
Next, by {4.39) and (4.24),

-1 -1 -1
D = . =
( (ﬂjowj )(E?lkj(E)Jn ((Dpj30¢j (E}I(D¢j } (E) kj(EJ}n
(4.32)
— 1 -1 -1 -
“--—TET((DDj}o¢j (E)lﬂowj S, 0 WL,

(¥j3n
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5§
Now ohserve that, by (4.17) and Lemme .15, for each E€C the
point ¥ (8) + )Uc ) B4 (E)) certainly lies in %, provided . - the requlred estimate holds. Hence it is encugh to verify
3 { 3% g 3 that AjGj=0, with ﬂj giver by (4.27)., Now if E€L we get, hy
¢ iz sufficiently small, say UG]O,GO]. Consequently we can write {(4.19), {(4.24) and {4.32)
G, (E=a), (E)}=G, (&) - -1 1 ~1 ="
J ol d _1 =t - 1 £ —gx, (E))+ (A G.1(8) e { [ vy (B) £09 (8) =
- =3 [Pjowj (g akj(E)) ajo¢j (£11 owj (£ j i3 (Yj)n(E) 3 3
v oot ey Liew e (0 -£ 0] () =B ()1 (4.33) ~(v)_{E) (A, (8) |D(£ov 1) (£))_Tp, 00 (£)-
P39%y o 3 i i (Yj)n(E) 3 i'n 3 3 n "33
Pl R T T E e e U S C PP EEAUMECIPI =y, (5) O (8) [D e ow. ) () _fou )} =
P59% g 3 (v, (8 7 3 iI'n i 3773 n 3
. €1~ , - 1 -1 -1 -1 -1 -1
Hence, if feCg (Q) by (4.31) we easily deduce that : W{Yj}n(g){[mwj (Ej)fotpj (E)+(Bowj (E)|(Df)mpj ()] 3 pjoq,j (£}}
G, (E-0), ()] -G, (£) et g1 3 ¢ i 0o (03 _
i | se{lgl_+(£1, ,*+[f] Sebf _ = w oy el [BE e, lx _ = 0.
= 127 c;”{m . ) (8 3 Fw;(sl
WESL , Wogl 0,01 - - _
¢ 2,1 1 ; This shows that Gjécl'ze 1(IR:) (resp. G.‘Ehl'ze_ ! (mﬁ)) ; and
by Remark 1.4(iii}, this yields (4.28), so that GjECA' (=) : 4 i

and the requirsd estimate holds. 3 the procf is complete. O

: PR =,1 = . 2 .
Suppose now, is additlon, that fen {(Q): then by (4.33), {4.32) By a result of Lunardi ([ 13], Proposition 2.5) we have for

and {4.31), recalling that in partieular feho'1/2 (ﬁ], we get i=t,....m

- Fo,oel@, @ (resp. P, &(C2(T,),Co@ 1), ),
Gj(EmU’\jf)}-Gj{E} =e(1)-[fc¢;1(E)+e(1)]+pjotb;1(‘€)“o(1) + Ho, OO He, 0T e
+. . - C!.(lj.)-,;] (E)) f(wu1(5})_1’0(”]3“&(‘&'.'1(5” ey wt?ilezby Tnheor:m 3r,;1 we got for j=‘l,...;k ) o

pyoby (8 (vry), (8 B try) (8 3 GjE{Cﬁj (R LCTHR) g o (resp. GjE(chj(m+) TR o)
VI .

and in addition

1

This proves {(4.29), and hence Gjeh;' (:le) . The proof for the
B

case 0=1/2 is complete.

Suppose  Iinally 8€]11/2,10; it is easy to see that

G.ec1'23”1tmi) {resp. Gth1’28-1{m2)) , and that
]
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m
L IF I -
ilu
i=1 i 2 = 0 =
(CO(Ui),CO{U))j_e'm
el £1 o if egjo, 120
( 0028 3 |
k
+ 7 lg. i < { chfl if g=1/2 (4.34)
P, 2 n 0, . n - #, = !
=1 (Cf (BRI LCHURD) 6 o cg @
3
al £1 _a _ ifeslt/2.40 .,
c!,ZB 1(9)

Hence by Definition 1.7 there exist functiops zi,vj satisfying
z,ec’ o, 1,8 @, ) (0)=r
i ”Oi ,Zi —iUi

2_
ziec _8(10,1],C0(Ui)}(resp. z;sc

2— -
1 g (10,11,CH¢T 1)) =1, . pm

(4.35)

4=

i G ol t
2iec _a(]D,1I,CD{Ui))(resp. ziEC

0_
1 o L0, 11,6, )

1=
and

v.ec® o, 13,c% =), v, (0)=q,
1 3 + Jd 3

2 e ‘.
1_9(£0,11,CA.tE%}J) =tk

J J
11,¢% = 428
oo, =,

2 n
E vjEC1_e(]0,1],CA-(ﬂu)) {resp. vjEC

¢ _n
1 ]
vjEC _8(]0,1],C (EH)} (resp. vjEC

1 1=

Pinally we extend the functiocns zi{t,-) to the whole 0 by

defining

€, (x)z, (t,x) if vl 0,1] ,%=U0,
I I 4
ui{t7x3= LJi=%,...,m

o if el 0,1] ,xéa-"Ui

where for i=1,...,m, tiecm{ﬁ,ﬁi) is a function with support
contained in Ui and such that €;=1 in Ui. {Compare with (4.,23)

and {4.25)). It is clear that
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¢ 0 -
u,=C (IU,T];CD(Q})r u, (Q)=F,

2 - -
9,60, ,(0,11,¢ (@) (resp. wec, . (0,11,c3 @)

1-
{4.37}

1 0= N 0 ,=
uiEC1_e(]0:1]rCG(QJ) (resp. uiec1_e([0,1j,co(n}))
'ui{t,-)[asfo, Dui(t,-)|m=o wes] 0,17 .
This concludes Step 2.

Step 3. In order to construct a function w(t) satisfying (4.2)
we just glue together the functions (4,37) and (4.36), setting

hsi] k
wle,xi= T u (t,3)+ L v (5,9 (x)), tel0,1], x=q ., {4.38)
i=1 j=1 J J

We have to show that {4.2) holds. By {4.258), (4.26), (4.37) and
(4.38}, recalling (4.22) and {4.23), it is clear that

wec ([0,1150) and wi0,x)=f (x) vxeh.

By (4.38) it is also clear that wt,DzweC

o 16.11,c% @)
(resp. c1_8(f0,11,c0(§))) and, by (4.34)

1=

sup t1-eiwét,-)ﬂ 0— *
£€10,1] co)
cl £l . iE 8810,1/2(
Co,ze(m
1-8, 2 .
sup t TEpTwie, o)l o = 24kl 4 - if e=1/2 (4.39)
€] 0, 1] co () CB’ (2)
cl £} _ if Bep1s2,7% .
otz 1(9)

It remains to verify that Bw (i, -}=0 W&€]0,11. Now, for each
XS3IN we get



2:3

[Bw(t,-)}(xJﬁa(x)W(t,xJ+(B(x)IDw(xJ)n =

&

=jﬁ=1pj (x){a(x)vj(t,wj (x))+(ﬁ(x)iD[vj(t,¢j (=113 1+
=

+ I (B{x}|Do, () _=v, (k¢ (x));
=1 3 n 3

and recalling {(4.36), (4.24) and (4.27)

k
[Bw(t."}](x)=ji1pj(x){a(x)'vj(t,wj(x})-(Yj}nowj(x)'
-(Ajowj(xJ!(va)(t.wj(x))3n1=

k
== I . . X RS- . =0
j=1£ (Y])nomj(x)]pj (x)iﬁjVj( ' )]Ow3 {x)

2
4

since v, (t,°)eC {EP) .
3 . +

]
Thus we have shown that the function w defined in (4.37) satisfies

(4.2). genca £=(c2@,c’ (@), _(resp. fe(ca(@,c’ @), ), and

8,
b £1 _ if 8€10,1/2(
C0,2B(Q)
ufﬂ(cz(a) CO(E)) = cﬁfﬂc*’1(§) if B8=1/2
B ’ 18 = g8
cl £ . if esjt/2.10 .
C1'29-1(Q)

Theorem 4.1 i3 proved. ©O

5. THE REVERSE INCLUSION

Let @ be 2 bounded open set of ﬂfl, n>1, ﬁith boundary 28
of class c3. consider the differential operator with complex-

valued coefficients, defined by

59
n 3 u o du
{Bu} (2} = JIZ aij(x) 3§T§§T(XJ+.E bi(x! EE_{X)+C{xJu(X)’ {(5.1)
ij=1 1779 i=1 i
xea,

under the following assumpticns:

(A.1) - {Strong uniform ellipticity). There exists v>0 such that

Re
ij

[~

2 I -
1 a; (x) gigj > v|E| YEER , ¥x={.

(A.2) - The coefficients aij' bi’ ¢ belong to Cq(ﬁ,tJ for

i,=1,...,n.

Consider also the boundary differential operator with real-

-valued coefficients, defined by
[Bu] (%} = a{x)uix) + (mx)inu(x))n S XEI0 {5.2)
under the following assumptions:

{B.1) - Denote by v{x}) the unit exterior normal vector at x<3d;

there exists 6>0 such that

a{x)>0, (B(x)iv(x))n > 8 ¥xE30.
(B.2) = The coefficients o, Bi belcng to Cziaﬂ,ﬁz) for i=1,...,n.

Under these hypotheses the pair {E, Blis a very special example
of the situwaticn considered by Stewart [20] . Hence if we set
2 0
pia)={ee 0 #°'3():Euec” (@), Bu=0}
gEt 1,(
(5.3

Bu =[Eu] {*},
by Theorem 1 of {20] we get that A is the infinitesimal generator
of an analytic semi-group in the space Cg(ﬁj; more precisely we

have:

LEMMA 5.1 - Let § be a bounded connected open set of EF , _with
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35 of ¢lass C3; suppose that the operatoxs E,B defined by (5.1)

and {5.2) satisfg (h.13, {&.2), (B.1) and {B.2). There exists

A0>0 such that {A0,+mE is centained in the rescolvent set of the

operator A defined by (5.3)3 moreover if o>n there exists co,

k5>0 such that for each Axh, the following estimate holds:

aat o _ om0 sup_ 1pui o <
co iR s (Q). XOEQ L (Q(XD;IA))
< kel o woec (@,
c{a)

_ . _ =-1/2
whare w=R(A,A)q, Q(xn,rk)—{xEQ.lx x01<rl} and r =e.} .

Procf. See Theorem 1 of [ 20]; see also Acguistapace-Terreni [ 1],

Lemma 7.7. ©

By Remark 1.9 it follows that a norm in the intermediate space

D (8,e)=(0),c @), ,  is given by

B,
BEY o= 1FE 4 [£] ,
8 @ ¢
where
[f{9 = sup PUSTOWNYD 0 - "

LEZ c i
In addition if we set

Ed = sup HABAR(X,A)EH 90— 7 MFA
Az c (@)

then

0 -—
D {8)=(D(B),C ()} ={feD_{6,~); Lim |£| =0},
A 1--0 iy f Merao g,M

Obviously we have also

[ €] fia_i LN VM2, VEED, (8,%).

A
8,1 =

&

This section is concernad with the proof of the follewing result:

THEQREM 5.2 - Under ths assumpticns of Lemma 5.1, if 8€]0,1[

the fellowing continuous inclusions hold:

%128 3y g sey0,1/2]
* 1 arar -
D, (8,2) < CE’ () if e=1/2
c;'ze"ﬂﬁ) if esl/2
w228 @) 1 eeio, iy
* ‘i —_— o
D, (8) < (kTR if 6=1/2
h;'28"1(§) Lf BE11/2,10 .
CZA?
Procf. Let fEDA(e,m} and set t0= Ao , where c0 and AD are

defined in Lemma 5.1.
For each te[O,tOI let us consider the auxiliary function defined

by

1 1 ;
3 R(E B E if tE]O,t&

ulg)= (5.4)
£ if t=0.

In the next proposition we list the main propertiss of the

function (5.4).

PROPOSITION 5.3 ~ Under the assumptions of Lemma 5.1, let

fEDA{B,B),GE]O,1[, and let u be defined by (5.4}. Then:

(1) wec® (o, e,1,c @) and wivyenia) vrelo,t,) .

(1i) u:]D,t0]+D(A) is continuously differentiable and

=g i 1
ut{t)_R(t,A)[ t2 AR(t,A)f] VtG]O,tU}.



[

(iii) If g>n there exists k,>C such that

1/2 1-n/2gq 2 ;
fu{t)f +t / Ipu{s)! 0 = Tt gsup_ D (e}l q 1/2))j ‘

o m o % €0 L (qlxg et

Sk

_ wesoe . i
¢’ (@) :

(iv}) X£f g>n there exists k2>0 such that

R T IR A A (LI |
E c Q) c{Q) :
2=8=n/2 : 2
t n/2q sup  Ip a (£} g 172 5k2|f§ g VEElO, kL.
xoeﬁ L7 (2(=,,t 1) g,e

(v) ueco’e([o,to],co(ﬁ)) and there exists k,>0 such that

fa(s}-u{z)l 9 < = (g—-r) y 0<r<t<t

- 0"
c

{vi) If e€10,1/2[ . for esach EE]U,tO] wa have

k
£V puey _<_-=1-1—5 t1/2—8ifﬂ + 12 P £} _q FEEl0.el.
@ Y @ 1-e e

0,8=-1/2
{vii) If 6€11/2,1[, DusC '’ /

k4>0 such that

{go,to],co(ﬁ)) and there exists

k P
2 (e-y® 1/2|fl qr OZE<Esto.

B=1/2 -

Iou{t)-Dulx) )k 2

(@

(viii) If q>%n(1-8)“1, for sach e€10,t lue have

L1-8-n/2q sup_ “gzu(t)“ 12, %
2 &0 a7 N
Q 0
k k
1 1=-8-n/2q 2
& mem————c—c——n I £1 +,_......_._.._.._|f| wE]Q,e] .
- - - =Q=n/2 =1
51 n/2q Co(ﬂ) 1=0-n/2q 8,8
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Proof. (i) PFor each tE]O,tO] we have i > A 50 that R{1/t.,A)

‘
is defined; as fEDA(S,W}EﬁTKT, the re:ult is an obvious con-
sequence of the properties of the resolwvent,

(ii) It follows easily by a straighiforward compﬁtation.

111} Set d=ch/t, te10,t1; then AS[A,+el and the estimate fol-
lows easily by Lemma 5.1 with g=t-1-f.

(iv) Set again A=cg/t; by applying Lemma 5.1 with g=t_2AR(1/t,A)f

we obtain

t-1ﬁut(tJﬂ _ +t"1/2ﬂnut(t}n g *
c{R) c @)
- 2 —_
+tn/qsqlﬂ¥ugﬂﬁq PP RS IC)2 % SE
xGEQ L (ﬂ(xa,t n co{n
Yi&} O,to]
and the result fellows,
{v] For each x€Q we get by (iii}
t T k1
fate,x)=ulx,x) = | fus(s,x)dsfi 7 705 | £] oy 88 2
r r s 8,s
k
1
= ?;(t-rjejfi IR 0<r<tit0,
8,8 .
and (v) follows.
{vi) Let t€]0,e], x=0. By (iv)
£ ek,
[Du{t,x)=Dule,x)|= | / Du {(s,x)ds|< f —t_ [£] ds <
t s S 8,70 T~
-1/2
€k & | £] i
1/2--8 S,E"T
hance, by (iii)
: -1/2
iDuit,z){<|Dule,x) |+{Duit,x)-Dule,x) |< ke iee o _ o+
” c{w
2 g=1/2
b ——
T/2=5 °© el

8,¢€



[

which implies (vi).
{vii) We have by (iv} for d<r<tzit,

t
Ipu(ei=Da(m)d  _ 2 J‘RDus(s)“ g . 482
CT(R) o ¢ {@
.t k -
ds 2 5-1/2, ¢
sk 5, T S5 25z {t=x) ! -1
2 8,t 1 T 53/ / 8,e
and {vii) is proved.
{viii) Let t€}0,¢). We have
e
Dzu(t,x)—Dzu(e,x}= /D us(s,x)ds for almost all xEQ,
£
and therefore by (iii)
£
2
2 z (s)1 ds <
Ip " u(c)=~D"ule}l < flpn 172
S rY LG PR A O IO 2y
£ 14
ds 2 =141 /2g
. < t £ ,
sk el T 3Tegeg £ Toe-n/2g T ]e -
8, t S r

and the result is proved. 4
Now we are ready to prove Theorem 5.2. We distinguish three cases:
B<1/2, 8=1/2 and 8>1/2.

case 1 (685]0,1/2[). Let fEDA(e,W); choose e>0 such that
s<tOA(M?U%), where 01, M1 are t%e pumbers defined in Lemma 1.16,

and take x%,veEQ with |x-v|z 2 o - Then the points .x,y satisfy
the asswaptions ¢f Lemma 1.16, ;nd hance there sxists a contimiously

di Fferentiable path T3 0,1]1+0 such that
1

T(0)=x, DiP=y, &{T1= J|T'(M)]a&xrg M1|x-—y{.
0
(Clearly if R is convex we can take as . the segment joining/
' 1/2 172
=z and y; in this c¢ase we have to require only |x~v|z2 ¢ :to Y.

set tszlx-yiz, so that t€]0,e]. If u is the functicn (5.4},

by Proposition 5.3 (v}={vi) we have

fE(x)I=2(y) | 2| £(x)~ult,x) [Hiute, ) ~ute,yi {+]ult,y)~£(y) |
Ak 1

3.8
SegT o lEL o [ oute, TN I 0)) aa]
8, 0 "
- " o (5.5)
3.8 “1/2 z §-1r2
< 2 -2z
S jfle qtlkgE Igl_+ T727g © el e
'€ B,E
. 20 -
2 Dy 2t te) xmy | P08 _wop2] b
8,z
9,20 — '
Hence f&C (2) and 1 £8 < clft _; if in addition £€D_ (8)
Co,ze(a) - 8 Aty

cheosing in (5.5) t=M§|x—y¢%;<e, we deduce that

1/2=0

[ ] sele) ¢ LEl +e|£] . O<r<s, x€@,
= o -4
26,8 (=, ;2M1 ) B,¢e
Consequently
limsEp sup [ f] e [f] '
fa)] x€q 28,00x, 7%; ) a,e !

and since e is arbitrarily small, we conclude that fEhO’ze(E).

Case 2. (0=1/2). This proof is a little more delicate, Let
1. 1.2 2
fEDA(E") and choose =»0 such that E<tOA(ZM1U1), where, again,

01,M1 are ?ifined in Lemmra 1.76. Take x,yEE such that E%Xeﬁ and
2€ -

: X+
: then the pairs x,—Ez and y,ﬁiz both satisfy the

|x~y[<

assumpticns of lLemma 1.16, and consequently there exist two
continuously differentiable paths ¢:[0,1]+§, m:[0,1]»5 such
that

M M
- _ - _ =t 4 1
$0)=x, $(O)=y, 9=y (= L, 209)¢ Tyl 2 ox-y

{again, for convex 9 the argument simplifies obvicusly). Choose
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o= % Mf;x_y|2; then if u is the function (5.4) we have

P (x)+E0y) ~2€ BTL) | < | £0x) =u (k,%) [ +#] £y)—u (t,y) | +2| £ (zc_ztx) -

(5.8}
-y {t, §%X)]+|u(t,x)+u(t,y)—2u(t, ngJl.
By Proposition 5.3 (v}
|£tx)—a e, |+ £ yd-n (b,) [+2 ute, By g <
(5.7)
< okt g e[y | £] -t
1/2,¢ 1/2,¢c
Onn the other hand
1
it xule,y)-2u e, Z) = of =Sale, 6 0)+ule,p0))]ar =
0 (5.8}

1

= -f{(Du{t,¢(1»!¢'(A))n+&Du(t,w(A)Jlw‘(k})nidx:
0

since

1
£mue,EE) g o+t (01)_ar=a,
0 2 n

we ¢an rewrite (5.8} as
1
wes ) (e, y)=2uie, EX) = of (1 ace, e 00)-oute, B o0 00+
6]
. (5.9)
+(1Dult, (1)) -du e, 5] o+ () _}aa. '

Now recall that, by Lemma 1.20, Du(t) iz HSlder continuous

with any expenent ofl0,1[, and morsover if p=n(1-a]-1

[ Du{t)] =< ahp®u ()l n ¥x €Q,¥a>0 ; (5.10)
a,ﬂ(xo,c) L (Q(xo,a))
/2

hence for o€l0,1] fixed, as % M1[x“y[$t1 , by {5.9) we get

et

iu(t,x)+u(t,y)-zu(t,5§2)Ig

1
<muie)] S 0a-s E F e o0+
1/2 0

s a1 :

+p =y 555 | [t (0) MaseipPu (e) , L@ am ™
: )

P )

se ot ESdha
P e!/2))
-1
As 8=1/2, p=n{1=a) >n, by Proposition 5.3(viii) we obtain

-q/2

iu{t,x)+u{t,y)—2u(t,§§£}|i c|x—y[1+a{c(s)%flm+c t | £] _1}
1/2,¢
3 fx=yl{e (o) |x-y |15 _+c£] gt (5.11)
1/2,¢
By {5.6), {5.7) and (5.11) we gat
ne
tf(x}+f(y)=2£{—‘~’"2 ¥z '|x-y|{c(s)|x—y|aifiw+c|f| e {5.12)
1/2,¢
£ —
This proves that f&C '1(93 and
i £l < ¢ Efl . {5.13)
* -— e .
c ,1(9) 1/2

If in addition fenA(%d, choosing in (5.11) t= % M:]x-y|2§r<e,

wa get

i ] < eeiria_+el£] L 0<r<s, xEQ,

*,1,0Q0x,20172M-1)

1

172,77
which yields, since £ is arbitrarily small,

. * ey
lim sup (f} . =0, i.e. -f€n '1(93.
0t  xeg *,1,n(x,2:1/2M;1)

Next, we have to prove that fECZ'1(§) {ox f&h;'1(ﬁ)if fGDAf%)):

‘thus, we have to estimate the quantity 6-1 [£(x=08{x))=£(x)] when



of

®E3R, 00, x-of (%)Eh,
By Lemma 1.15, it suffices to consider small values of ¢, say
-1 1/2

UE]O,GO], with UGiEBEm to . Choose £>0 such that < aglsﬁj R

and take x€3Q; we can suppose that x—of (x)eR woelo,s7/2.5g177) .

Set t=02ﬂﬂﬂi ; then tE]U;E] and

| £ (x=08 () )=£ (%) | | £(x=08 (x)) =u{t, x-08{x) ) |+[u(t, x} =2 {x) |

+lult,z-agB {a) }~ult,x) . (5-14)
By Proposition 5.3 (v}
£ (x~08 (%) )=u (£, x=08 (x) ) |+] u (&, %) ~£ (x)kdk_ | £] 172
2 -1 -
1/2,%
< e|f] 179 (5-13)
1/2,;¢
on the other hand
% a
u(t,x-c8 (x))=uit,x)=J7 =[u{t,x~sB(x)]ds =
g & ds o
== f(Du(t,x»ss(x)}1B(x})nds=— J {(Du(t,x-sB(x))- (5.16]
0 Q
uDu(t,x)|B(x3)nds=ﬁ(Du(t,x)iB(x))n.
Now recall that u(t) satisfies
a(x)u(t,x)+(ﬁ(x}ipu(t,x))n=0 ¥xEI0; {(5.17)
so (5.16) can bhe rewritten as
G
u{t,x=08 (x)}~ult,x}=- S (Dult,x=s8 (x))-Dul{t,x) |B{x))_ds +
0 ! {5.18)

oo (x)ult,x).

Now we fix a€]0,1] and set p-n(i=g) . 8y (5.10) and Proposition

3.3 (wviii)

&9

g 1+c I3
[ fpuit, x-s8 (x))~Dule,x) [8(x}) d&s|<lnpuitl] AT

0 ‘ o, {x,t 7%)
<cipiu(e)d B T s bl T U S E RE
: @t N 1/2,¢

o
2 ooletede DL 4c] £ _1},
1/2,¢€
while by Proposition 5.3 {iii}
ola(xiult,x)] = c chel . (5.20)

By {5.14), {5.15), (5.18), (5.1%) and (5.20) we obtain fec;'1(§3

_ =alzl
(2)

and, recalling (5.13), we have I£l on the cother

;
c 1/2

%,1
B

1
hand, if in addition fEDA(E), we cbhbtain similarly

[f(x—dﬁ(x))wf(x] ~o (%) £{x) | <a] £]

pr X 12,1 +c(s)crallf![m +
r

(5.21)

+a(x) jult, ) =£(x) [ < ¢l £ ot TN

1/2,¢
As € is arbitrarily small, the left hand side of (5.21) tends
to 0 as o+0": this shows that EEh;’ﬁ(E).

Case 3 (8€]1/2,1 ). Let fGDA(G,w}. First note that, if u is the

function” (5.4), then by Proposition 5.3(i)-(vii)
alt) + £, Dult) > Du{0) in CO(R) as t=0",

which means f€C1(§) and Df (x)=Du(Q,x) ¥xsf. In particular, as
{(5.17) helds for small positive £, we get

af{x)£(x) + (B(x)IDf(x)}n = 0 Va3,

i.e. fecé(ﬁ); in addition by Proposition 5.3(vii)~(iii)

fou{e)l 0 - iﬂDu(tJHDu{tOJH 0 - +ﬁDu(t0)! a =

e (@) e (@) c” ()
< c§f1e +elfl 2 e bEl



Els]

-+
and as t+0 we clearly obtain

iel e il (5.22)
c ()
Thus we have only to show that D£€CD,28-1(EJ {or DfEhD’ﬂ"1/2(E)
/2

if fEDA(S)). Choose sezo,tol, and take X,y€3 with IX-YliEi

Set t=|x—y[2, so that t€]0,e}; then if p= %n(1-8)m1 and g*p, by

Lemma 1.20 and Proposition 5.3{vii)~{viii)} we have

|DE (s} ~DE (y) | <] DE(x)-Dult, %) |+[Duts, x) ~Dult, v} |+|Du (s, y)-£ (v) |

g=1/2 -
<2c t / [ £] _q+Ipute)] Ix-ylze !
8,t 28-1,Q(x,£1/2)
lL(q_P)

=z te_1/2[fi _f+cID2u(t)ﬂ 1/2 2 ey 267

6,t L@y,

523
281 T ARIT1HOR e
< |x-y] {c] ] +e| £ i 9 4+
- -1 -1
0,e g,e

n

So{a=-p)
+c(e) If£l thp }.

o
n n n
— bl - = = = i @ =
As Zqéq p)=1+8+ 2a ErS “ ¢, we get
Zo_n
28-1 :
e -0eiy) |<lxey |27 a2l _vetedlxmy|T Y amn ).
8,e
0,26-1 — .
Hence DfEC (2) and, recaliing (5.22), I£f <ch £1
1,28=1,= —
C {§2)
If in addition feuA(a), chocsing in (5.23) t=ix-y|25r<s we obtain
Ll 4
{ DE] B < c|£] _qTete) Z P Ige o, xR,
26=1,0(x,2172) @,c

and since £ is arbitrarily small, we deduce that

H

iim  sup [DI] =0 i.e, fEh;'29"1(§). Theoren

r+0t  xen 20-1,0(%,c172)

5.2 is completely proved, O

6. CONCLUSIOHNS

Collecting the results of the preceding sections, we have

proved the following result:
£

THECREM 6.1. Let © be a bounded connected open set of Ifl, nz1,

with boundary 32 of glass ¢, Let E, B be_the differential ope-
rators respectively defined by‘(5.1J and (5.2), and suppose that

conditiens (A.1), (A.2), {B.1), (B.2) of Section 5 hold. Let A

be the abstract operator defined by (5.3) in the space @ .

Then the following egualities hold (with eguivalent norms):

%28 g, if 68€10,1/2
D (6,=)=co(m,cl @), = et if 8= 1/2
AT B 1-0,= 8 =

c;'29“1(§} igesl 12,10 ;

n%2% (g if 681 0,1/20
o) = 2@, @) =@ Lf 6=1/2
n !5 T gty 1-5  ~{ "B L

1,20-% = |
{ Pa (R) if e€11/2,10., ©

REMARK 6.2. The case of Dirichlet boundary conditions, i.e.
3(x)ED in (5.2), can also be studied with cur method; however
the extension procedure given by {2.3) in the case Q=3R2 has
to be replaced by the odd extension method. It can be seen that

in this case the treatment developed in Sections 2,3,4 still



Ti

works; on the other hand the reverse iﬁclusion of Section 5
can be proved in the same way, by applying the estimates of
Stewart [19] instead of [20]. Hence we find again a known
result of Lunardi, which had been proved in [13] with a slight

strengthening of assumptions. Namely, we have:

. n
THEOREM 6.3. Let § be a bounded, connected open set of IR,

2 ; .
n>1, with boundary &0 of class C . Let E be the differential

cperator defined by (5.1}, ard suppose that conditions (A.1)

and {(A.2) of Section 5 hold. Let A be the abstract operator

O—
defined in the space C (&) by

p(a)=fue n  52'Pa)mec’ (@), ul o =0}
PE[11¢'{

Aune= [Eal (43},

Then the following equalities hold (with egquivalent morms}:

<, ) if 9€]0,1/2(
e im0 3 AT 15 e=1/2
D, (& =)= (cq @) g (), o f =
63,26—1 (@ Lf e€it/2,M
hg,ze @ if e€lo,1/2
3 - 0 — et = 3 -
- = h Q if o=1,/2
D, (8) = (Cy(R), Cot@), o ¢ B it
h;,ze-a (9) if 8€11/2,10. B
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