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STOCHASTIC ANALYSIS AND APPLICATIONS, 131-186 (1984)

AN APPROACH TO ITO LINEAR EQUATIONS IN HILBERT SPACES
BY APPROXIMATION OF WHITE NOISE WITH COLOURED NOISE

P. Acquistapace
Scucla Normale Superiore, 56100 Pisa, Italy

B. Terreni
Dipartimento di Matematica,Universitd di Pisa
56100 Pisa, Italy

ABSTRACT

We consider the stochastic problem du(t)=[A(t)u(t) +

+ 1/2 B2u(t) + £(t)1dt + Bu(t)dwW,, u(0)=X, in a Hilbert
space H, where f,X are prescribed data, Wy is a real
Brownian motion, and A(t), B generate an analytic semi-
group and a strongly continuous group respectively. The
domains D(A{)) may vary with t and we only require
D(A(t))SD(B)for each t. A unique generalized solution
is constructed as the pathwise uniform limit of solutions
of suitable approximating deterministic problems, which
are obtained by approaching the white noise dWg¢ with a
sequence of regular coloured noises Wj(t).

0. INTRODUCTION

Let (Q,e,P)be a probability space, let H be a real se-
parable Hilbert space. We lock for a solution of the fol
lowing stochastic problem:

du(t) = [C(t)u(t) + £(t)]dt + Bu(t)th, telo 1l

(s,)

u(0)=x 0
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where C(t) and B are closed linear operators on H, with
domains D(C(t)) and D(B), W, is a real Brownian motion
on 2, and £:[0,T1x @ » H, X:Q -~ H are prescribed data.
Problems of this kind arise in a lot of applications,

as for example filtering theory, control theory, popu-
lation dynamics, hydrodynamics, theoretical physics,etc.
(see, among others, Zakai [26], Lipster-Shiryayev [17),
Curtain~Pritchard [ 6], Krylov-Rozowskiif 16}1).

One among the most fruitful methods for the study of
Problem (SO) is based upon semi-group theory: following
this approach several results have been obtained by a
large number of authors (Dawson [ 10], Balakrishnan [ 31,
Metivier-Pistone [ 18] , Curtain [5], Krylov-Rozovskii[ 15],
Chojnowska Michalik [ 4], Kotelenez {14]). In all these
papers it is assumed that B is bounded and C(t) genera
tes a strongly continuous semi-group, and existence and
uniqueness of the solution are proved by the contraction
principle.

The case of unbounded B has been studied with varia
tional methods by Pardoux [ 19],[20]and Krylov-Rozovskii
[16], and from the semi-group point of view, by Curtain-
Pritchard [ 6], Ichikawa [ 12], Da Prato-Iannelli-Tubaro
(81,(9].

The method employed in [ 9] consists in solving (SO)
path by path, by transforming (SO) intc an egquivalent
deterministic problem; this one is in turn studied using
the classical theory of Tanabe [ 23] about linear abstract
evolution equations. In [9] it is supposed that B gene-
rates a strongly continuous group while C(t)=C is a clo

sed linear operator with domain D(C)ED(BZ) such that
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2
Cc - %; generates an analytic semi-group.
The method of [ 9] can be adapted to cover also the
case of a family of operators C(t), provided D(C(t)) is

constant and contained into D(Bz) and, for each te¢f(O0,T],

C(t)- %; generates an analytic semigroup.

In this paper we study problem (SO) from the same
point of view of [9], but we allow D(C(t)) to vary with
t. The method of [ 9] cannot be directly extended to
this case; in fact, the transformation into an equiva-
lent deterministic problem leads to a non-autonomous e
volution equation where operators a(t) with variable
domains appear: in this case the classical theory of
Kato-Tanabe [ 13] requires, for solvability, a differen
tiability condition in t for the analytic semi-group ge
nerated by 8(t). Now, this condition does not hold, sin
ce the Brownian notion has non-differentiable sample
paths.

In order to overcome this difficulty, we will consi-

der for each n€eXN and for a.a. we€Q the deterministic

problem
B2
un(t) =[C(t) - 7{]un(t) + f(t)-Wn(t)Bun(t),tE[OE]
(s )
n,o0
un(O)=X

where Wn(t), neN , are regular functions converging uni

formly, as n+«, to the paths of the Brownian motion. Now
it is well known the following phenomenon (see Wong-Zakai

[24], Sussmann [22]): given in Eim the stochastic problem
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du = g{u)dt + h(u)aw, , te[ 0, T]
t
(0.1)
u(0) = X
where Wt is a real Brownian motion, if we approximate
uniformly the paths of the Brownian motion by regular
functions Wn(t), then for a.a. wel the solutions un of

the corresponding deterministic problems (with fixed w)

dun
Tl g(un) + h(un)WA, te[0,T],
un(O) = X

converge uniformly pathwise as n+« to the solution of
(0.1) in the sense of Stratonovich [21], i.e. to the so
lution - in the classical sense of Ita— of the problem

du = (g(u)+ % < h'(u), h(u) >) dt + h(u) dwt

where the extra deterministic term %<h'(u),h(u)>dt ap-

pears. Note that if h(u)=Bu, where B is a mxm matrix,
1
then 3 <h'(u); h(u)> = % Bzu.
This is also the case in our situation. We will show

that the solution un of (Sn 0) converge uniformly path-
’

wise as n+® to the solution, in the sense of Stratono-
vich, of
1
du(t)=[[C(t)- EBz]u(t) + £(t)]1dt + Bu(t) dwt, te[ 0, T]
u(0) = X

i.e. to the solution of (SO) in the sense of Ito.

Thus existence and uniqueness of the solution of (SO)

will be proved, generalizing the result of [9]; in addi-
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tion this solution will be obtained as the uniform 1li-
mit, path by path, of the solutions of the deterministic
problems driven by a suitable coloured noise W;(t) ap-

proaching, as n+«, the white noise th.

If we set A(t) = C(t)~- % BZ, problem (SO) can be rewrit

ten as follows:

du(t)=[A(t)u(t)+ —B2u(t)+f(t)] dt+Bu(t) dwt,te[ 0,T]
(s1)

=

u(0) = X

where B generates a strongly continuous group and for
each t€[0.,T] A(t)generates an analytic semi-group.Prablem (Sq)is
exactly equivalent to (So)provided we assume that D(A(t)=D(C(t))C
gD(Bz)for each t[ 0,T] ; however this formulation allows us to weaken
slightly the hypotheses about D(A(t)):we will require only that
[NA(t))ED(B) for each t€[{0,T] .

1. NOTATIONS AND ASSUMPTIONS

Let us introduce some notations.
Let H be a Hilbert space. We will consider the following

Banach spaces:

a) CO([O,T],H)={u:[0,T]*H continuous}, with norm

lall = swp  Juw)| ,
c([o,TIH) t€lo0,T] H

8
b) for each 6€]0,1}, the 0-Holder space CO' ({o,T],H) =

= {u:[0 T]- H :||u(t)-u(s)||H = O(It—slg)}, with norm
Il (e)-u ()l
Hull 0,8 =|]uH 0 + sup )
c ' 7{[0,T] ,H) C([0,T] ,H) t#Fs |t-s]

A
e) ¢ (0,T] ,#)={u:[0,T]~H strongly differentiable with
wec’((0,T] ,H)}, with norm
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Fal = ful 0 +u'l
clao,m,m c®o,m 1) o,Ti,m

d) for each pe€[ 1,49, Lp(O,T,H)={u:]O,T[*H strongly mea-
surable with nu<-)uHeLp(o,T>}, with norm

[T Pae) VP i pew
0 H
Iall =
LF (0,T,H)
esssup lu(t)l ifp= =
te] 0,TI[ H

We denote by L(H) the Banach space of bounded linear

operators H+H, with norm

I
AxHH
1Al = sup

L (H) %40 HXHH

if more generally A is a linear operator on H, we deno-
te by D(A) its domain and by R(A) its range ;p(A) is

the resolvent set of A, 0(A) its spectrum, and the re-
solvent operator (k-A)m1 is denoted by R(A,A). If B is
another linear operator, we write [A,B] = AB-BA whenever

the right-hand side is defined. Now let {W be a

t}tzo
real Brownian motion on the probability space (Q,F,P)

and let F={Ft}t>0 be an increasing family of o¢-algebras

contained into E, non-anticipating with respect to

and such that (Q,F.,P) is a complete measure

{Wt}tgo' 0
space.
We denote by C;(IO,T],H) (resp. Cg’e([O,T],H)) the

class of processes u:[0,T]x0Q+H adapted to F, and such
that t+u(t,w) is continuous (resp. 8-Holder continuous)
for a.e. wen. C;([O,T],H) is the class of processes

u:[ 0,TI x»H adapted to F and such that t-u(t,w) is stron

gly differentiable with t - (t,w) continuous, for

du
ot
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a.e. wefl,
Finally L?(O,T,H), 1<p<, is the class of processes

u:{ 0,T] x0+H adapted to F, and such that t-u(t,w) belongs
P

to L (0,T,H) for a.e. w€R, and L_ (H) is the class of

Fo

all H-valued Fo—measurable random variables.
Let us list now our assumptions.

Let Wt be a real Brownian motion on the probability spa

ce (Q,E,P), and let {Ft}t>0 be an increasing family of

o-algebras contained into Z, non-anticipating with re-

spect to {Wt}tio and such that (Q,FO,P) is a complete

measure space.

Let H be a separable real Hilbert space. Let {A(t)!} ,
tef 0,T]

B be operator on H satisfying the following conditions:

HYPOTHESIS I B is a closed linear operator on H with

domain D(B), which generates a strongly continuous group
B

{’eg 1

EER; in particular

i) there exists n>0 such that p(B)2{)e€: ]ReA|>n}=:EB,

ii) there exists N>0 =uch that

HR(A,BY] T <« N YneN , VEL .
L (H) - n B
[ |ReA|-n]

HYPOTHESIS II For each t€[0,T] A(t) is a closed linear

operator on H with domain D(A(t)), which generates an

EA(t)} ; moreover:

analytic semi-group f{e 50

(i) there exists GOG] %},ﬂ[such that p(a(t)) 2
> {xec: |arg A<8,} U {o}=: I, wvtel0,T];
0

(ii) there exists M>0 such that

-1 | M
ENOR ¢ PRGN oos 5T
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vier . -{0}, wtel[O0,T];

(]
0
(1i1) £ > RO,A(E))x ec' (10,71 ,H) VxeH, Ve and
0
there exist K>0 and o0€] 0,1] such that
d -1 3 K
| — I | — I <
g B gy SR Ty ROGALEDD gy < RSk

VAGZ e _{0} r Vte[ O,T] .
0

HYPOTHESIS III

(i) D(A(t)) € D(B) Yte[ 0,T] .
(ii) For each t€[0,T] there exist Ao(t)ec, L(t)€EL(H)
such that:

(a) AOGC([ O,T] ,C) ’ LEC([OIT] ’ L(H))7
(b) D(B) € {xeH : B R(Ao(t), A(t))xED(A(E))}
(c) [Xo(t)-A(t)] B R(Ao(t),A(t))x= Bx+L(t)x

¥xeD(B).

In view of Remark 1.2 below, we shall assume Ao(t)EO.

HYPOTHESIS IV

1

t >~ BA(t) 'x€ c([0,T] ,H) W¥x€H; in particular there

exists E>0 such that
1

IBA(t) IIL(H) < E ¥te[0,T].

REMARK 1.1 Hypothesis II is classical in the theory of
analytic semi-groups with variable domain (see Kato-Ta
nabe [ 13], Acquistapace-Terreni [1]. In the following

we shall use the results of [ 1], where however condition
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(1ii) of Hypothesis II is replaced by a slightly stron-
ger one, namely
(iii)' € -+ R(X,A(t))E C1([O,T],L(H)) Vkﬂ:e and there
0
exist K>0 and a€]0,1] such that

4
at

1

- 3 K
I Aty I HEER(A,A(t))I <

L(H)iK' L(H) — |>\|o¢

ViET 5 -{0}, wtelo,T].
0

Hence we have to verify that all results of [1] still
hold under Hypothesis II. Indeed, this is true with es
sentially the same proofs: in fact, some of the proofs

in [ 1] use only the estimates about é% R(A,A(t)), so that

no change is needed; in all other cases the operators
g%R(A,A(t)) are always evaluated at a fixed vector or

at a continuous function g(t), and therefore condition
(iii) of Hypothesis II guarentees +the continuity of the

composition, which is all what is really needed.

REMARK 1.2 Hypothesis III arises from a similar (and
apparently weaker) assumption Of Da Prato-Iannelli-Tuba
ro [ 9], where an analogous situation (with A(t):=A) is
considered. They suppose there that condition (ii) of
Hypothesis III holds for all x in a dense (in the graph
norm) subspace VCD(B) (and not possibly for all X€D(B)).
But we shall see in the Appendix that a similar condi-
tion in the case A(t)ZA (i.e. the existence of a family

{v(e)}

t€[ 0,T] of dense subspaces of D(B) such that (ii)

holds for all x€V(t)) in fact implies that (ii) is sati-

sfied in the whole D(B).
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Itis also easy to see that if Hypothesis III holds, then

for each t€[0,T] and X@Ze we have D(B)C{x€H:BR(A,A(t))x€E
0

€D(A(t))} and there exists an operator Lx(t) such that

LAGCQO,T], L{H)) and
[ A-A(t)]B R{(A,A(t))x = Bx + LA(t)x ¥XED(B)

(one has simply to take Lx(t)= L(t)[ko(t)—A(t)] R(XA,A(E))).
This shows that it is not restrictive to assume Ao(t)EO

in Hypothesis III.

2. AUXILIARY RESULTS

In this section we collect a list of results which
will be used throughout Some of them are almost obvious,

but we state them for further reference.

PROPOSITION 2.1 D(B), D(Bz),D(A(t)) (for each t€[0,T])

are dense in H.

Proof See e.g. Yosida [25].

PROPOSITION 2.2. If ¢€C0([0,T],H) define for each k€N
o, (£)=kR(K,B)6(t), 2z, (£)=kR(k,A(0))6(t).Then ¢ c®(( 0,1,
D(B), Z ec’ (10,T1,D(A(0))) and t,>6, Z,+6 in CO(Q,T] ,H)

as k»e,

Proof. It follows by straightforward compactness argu-

ments.

PROPOSITION 2.3. (i) There exist N>0 and w&R such that

1% < w19

¥YoE<
L) = oS RR
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(ii) xeD(B) = n(eUB—1)qu

I A

ClojlBxl,, ~ ¥oeR

oB
s e -1
(iii) || R(A,B)]IL(H) < C ¥oF0, Wy
(iv) For each o>0 and t€[ 0,T] we have eOA(t)
= S eGA R(A,A(t))d)r, where =y Uy U
= 201 'y , , Y=Y Uy LYY s
vy = (€C : [A|=1,|arg Ar|<6}

Y, {xec : |x|>1, arg A=%6} ee ]ﬂ/Z,SO{;

A(t
in particular [IeG ( )IIMH) < C ¥o>0, ¥te[ 0,T]

oA (t) <

(V) HA(t)e ||L(H) _

C
5 ¥o>0, wte[0,T]

GA (L) oy

(vi) x€D(A(0)) = fA(t)e g < clIA(O)an ¥o>0, wte€[0,T]

(vii) xeH = lim loa(t)e®(t) 4

c-bO+

8, oA(t)
e (e bl

H=0 wte( 0,T]

‘s c
(viii) | L (H) < ;T:E ¥o>0, ¥t€[0,T]

Proof (i)-{(ii) Standard.

(iii) It follows by (ii) since IBR(:,B}I < C ¥EL g

L (H)

(iv)—(viii) See [ 1], formula (1.1), Lemma 1.5 and formu-

la (1.3).

PROPOSITION 2.4 For each t€[0,T] and AEZG we have
0
[R(AA(£)),Blx=R(A,A(£))L(t)A(t)R(A,A(t))x WxXED(B),

consequently the operator [R(A,A(t)),B] has a unique

extension to an element T €L(H), which satisfies

at

c
IT -
o, L2 G 1Ty WMy S TR YA, {0}, veel0,T]

0
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Proof By Hypothesis III we have

1

BA(t)  Tx=a ()

Bx+A (t) L (£) x YXED(B) ;
now if x€D(B) and Aéle we get
0

BR(A,A(t))x=A BR(X,A(t))A(t)_1x—BA(t)_1x =
-1

2 BROLA(E)A() Tx - ale) TBx - a() Lt x=

Tee AR(A,A(E))A(E) 'Bx +

1

=\ BR(M,A(t))A(t)

+R(A,A(t))Bx - A(t) 'L(t)x =

=A BR(X,A(t))A(t)-1x—A R(A,A(t))[BA(t)-1X -
-a () 'L (t)x 1+R(A,A (£38x-A (£) T L(t)x =

=AB,R(AA(E))IA(E) 'x + R(A,A(L))Bx+

+H A R(A,A(E)) = 1] A(t) L(t)x

which implies

[B,R(A,A(E))] (1 - AA(t)_1)x = R(A,A(t))L(t)x ¥xED(B).

Now x€D(B) if and only if y:=(1- AA(t)_1)x€ D(B); hence

[B,R(A,A(E))]y = ROLA(R))IL(E) [1-2a(t) 117y =

==R(A,A(t))L(t) A(E)R(A,A(t))y WyeD(B)

The operator T t=-—R(>\,A(t))L(t) R(A,A(t)) is obviously

A
in L(H), with norm bounded by T%T , and the result fol

lows.

COROLLARY 2.5 For each t€[ 0,T] and XEZe the operator
0

R(A,A(t))B can be uniquelyextended to an element of L (H)

with norm bounded independently of t,A.

Proof We have R(A,A(t))Bx = BR(A,A(t))x+[R(A,A(t)),Blx
¥x€D(B). The result follows by Hypothesis IV and Propo-

sition 2.4.
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PROPOSITION 2.6

CA(t)), < c

(1)  IBe LS g

¥o>0, ¥t€[0,T]

(11) xeH = lim_ 1oe®® (£) 4

=0 Wwt€[0,T]
H
o0

cA(t) %I

(iii) xeD(B) =lBe i < C{HxHH+HBXHH} ¥o>0,%te[ 0,T]

oA (t) oA(t)

(iv) xeD(B) = A(t)e x€D(B) and IBA(t)e

C
S {uan + anuH} ¥o>0, ¥tel0,T]

IA

eoA(t) oA(t)x

(v) x€D(B) = B x€D(A(t)) and IA(t)Be "H

A
aln

Uxl + IBxl } ¥o>0, ¥ee[0,T].

gA(t) 1 cA(t)

Proof (i) We have Be x=BA(t) A(t)e x and the

result follows by Hypothesis IV and Proposition 2.3(v).
(1i)If x€D(B) we can write by Proposition 2.3 (iv)

ORI 1 I eGA[B,R(A,A(t))]X dr + e

: oA(t)Bx
2wi Ty

B

and the conclusion follows by Proposition 2.4. The ge-

neral case follows by (i) and Proposition 2.1.

(iii) We proceed as in (ii), applying again Proposition
2.4,

(iv) We have

oA(t)x _

BA (t)e 7 2% [B,R(O,A(E))] xdMF
2w7i Ty

+ a(t)eB(tlg,

and Proposition 2.4 gives the result.

(v) As A(t)e”™® (M yep(a(t))cn(B), we can write by Hypo-
thesis III
Be% (t) ypa (6)71 a(e)e® B yen(ae)),
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A(t) oA ()

a(t)Be’ x = [B+L(t)] A(t)e ;

thus the conclusion follows by (iv) and Proposition 2.3 (v).

PROPOSITION 2.7 D(A(t))ﬁD(Bz)is dense in H for each

te[0,T].

Proof Let x€H; by Proposition 2.1 for each e€>0 there

exists yeD(B) such that Hx—yHH<e. Since D(A(t)) is dense

in H, we have 1lim HeOA(t)y—yHH =0 so that there exists
o+0

§>0 such that HeaA(t)y—xHH<25. By Proposition 2.6 (v),

eSA(t)yED(A(t))nD(Bz)and‘the result is proved.

PROPOSITION 2.8 For each t€[0,T] and 0€IR we have:

e“B(p(a(t))) ¢ p(a(t)) and

A(t)eGBA(t)—1X = (B+L(t))X

YXEH.
Proof See Da Prato-Iannelli-Tubaro [9] , proof of Pro-

position 1.

PROPOSITION 2.9 For each t€[ 0,T] and Z€IR we have:

wlE| n (B+L(t))
(H)ilile sup le [

“eE(B+L(t))_eEBnL
Inl<l&]

L (H)

'HL(t)HL(H).

Proof See Da Prato-Iannelli-Tubaro [9], proof of Pro-

position 1.

COROLLARY 2.10. For each t€[0,T], IR and ¢>0 we have:

EB]eoA(t)=[eg[B+(t)]_e£ oA (t)

[A(t),e Bla(e)e €L (H)

and

Ita(e) ,e5P 28]y

¢ Ll e

L(H) —
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Proof. Immediate consequence of Propositions 2.8 and

2.9.

PROPOSITION 2.11 For each t,r€[0,T], IR we have:

E[B+L(t)] __ElB+L(r)] )
e e ML(H)iﬂL(t)—L(r)HL(H)

- ClElexp(expC|E])

Proof For each xeH we have (see [9], proof of Proposi

tion 1)
eE[B+L(t)]X=eEB+Qf _%; [e(s—s)aes[B+L(t)]x]ds -
=e™Ph P e (5SIBL () SIBFE(EN g,
which implies
eE[B+L(t)]X_eE[B+L(r)]x=4$ o (E=8)B[ [ (1) SIBHL(E)]_
- L(r)es[ B+L(r”]x ds.
Hence
HeE[B+L(t)]x _ eE[BJrL(r)]x“H <
<—Mo£ e(E—s)B [L(t)-L(r)]eS[B+L(t)]x dS"H +
+"f0€ e(E-s)BL(r) [es[B+L(t)]_eS[B+L(r)]]x dsuH_
set ¢ (€)= 1 ELBFL(R)] eE[B+L(r)]XII and
t,r
A= "L"co([O,T],L(H))' Then we deduce:
o (wHh) ]
¢, (8 < ;g[nL(t)-L(r)uL(H)uan — +
+ A ew[£[|&f ¢t,r(s)ds|
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By a Gronwall-type argument ({(see e.g. Amann [2], Corol-

lary 2.4) we check

g eIt
¢t,r(€) < ”L(t)-L(r)NL(H)HxHH { - +
wle] o _ (wHh) | s
. l&? eAe (g-s) sl e - as|]

and the result follows easily.

3. APPROXIMATION OF THE STOCHASTIC PROBLEM

Let fEL; (0,T,H) and X€L, (H). Consider the fcllowing 1i
0
near stochastic problem:

du(t)=[A(t)u(t)+%B2u(t) + £(£)]dt + Bu(t)dw,

(8)
u(0)=x

DEFINITION 3.1 We say that uecg([O,T],H) is a strict so-
lution of (8) if:

(i) u(t)ED (A(t)) wte[0,T] w.p.1,

(ii) t - A(t)u(t) € L;,(O,T,H);

(iii) t - B2u(t) S L;(O,T,H);

(iv) t - Bu(t)€ L;(O,T,H);

(V) ut)=x + [¥ [A(s)u(s)+2n’u(s)+£(s)lds +

t
+ % Bu(s)dwS vte(0,T], w.p.1,
where the stochastic integral in (v) is in the sense of

Ito.

0 .
DEFINITION 3.2 We say that uECF([O,T],H) is a genera-

lized solution of (S) if there exist {u, ? < Cg([OITJ,H),
kEN
P (H) such that:

0

1
(£ ey & Lp(0,T,H), and xlrcw
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i) uy is a strict solution of

2
2

ii) for each >0 we have

lim P{ sup la

t)—u(t)“H >} =0
k> te( 0,T]

k(
. T 1o
iiﬁz P{Q) "fk(t)—f(t)“Hdt >ei= 0

i P{l —xl =
lim { R €}l= 0

k>

1
du (t)=[A(t)uk(t) + —B uk(t) + fk(t)]dt + Bu

k

147

(t)dWt

We will consider now a deterministic problem which is,

in some sense, an approximation of (8); it is obtained

by approaching pathwise the white noise th by a suitable

Wiener process ;n(t) (coloured noise), namely the sta

tionary Ornstein-Uhlenbeck process defined by
d t) = - +
¢, (&) ng (t)dt + naw,

Cn(O) = 0;

then it is wellknown that

t -n(t-s)dW

ta(t) =n e <*

. _ t )

Define Wn(t) = % ;n(S)ds, then we have:
LEMMA 3. 3.
. 1

(i) Wnec [0,T], Wn(O)—O w.p. 1;

(ii) Wét)* Wt as n>«, uniformivy_in [O0,T], w.p. 1;

<K < o w,p. 1 ¥pE10,1/2]

(iii) "Wn(.)"CO'B[O,T] 2 Kg

14
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Proof By Ito's formula (i) follows easily and in par-

ticular
3 _ _ t 2 -n(t-s)
3 Wn(t)—cn(t) = nWt % n Wse ds .p. 1;
hence
(£) = /5 tow.- 5 0% we ™5 g as -
Wn ) = b I[n o n o€ o S
=n /5 was - ARG e—n(s—q)ds] do =
0 0 "o o]
t -n(t-o
=n % Woe n )dc, w.p.1,
and again Ito's formula gives
_ t -n(t-s)
Wn(t) = Wt - % e dWs w.p. 1,
which proves (ii).
To prove (iii) let t,te[0,T] with t<t. Then
W (t)-w_(1)]|=|n Fw e g Ty e_n(T—c)do] <
n n 0 o 0 c -
t - - - -
<n [T|W -W_|e n(t o)dor+n|w | £ n(t O)do +
- T o T T T
T -n(t-0) ~-n(t~0) T -n{1-0)
+ - -—
Ly Le e ] do|+ n Q)[Wt w_lle
- t-0 - - - -
- e )]dc+nlwt-WT|&; [ n(T=0) 0 (E-0) 44 w.p.1.

Recalling that Wt is B-Holder continuous w.p.1 VBE]O,%[,

integration by parts yields

[wn(t)—wn(r)li CQ?(G—T)B ne_n(t-c)do+CTB|1—e_n(t-T)
+ e_n(t_r)-e_nt-1+e—nT|+c[1—e_n(t-T)]&; (t-o)Bne_n(T-o)do+
+C(e=1) B [1=e™ T (E-T) Nt Bt B

(o—r)1_B
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e P o v Bre™ e o 1= P BT (pany B -
- 8
~tFe Tt — e (=9 g5y 4o (g-1) B[ 1™ (E7T),

(t=0)

[1-e_nT]§ C(t-T)B+ C(TB—tB)(e_nT—e_nt)+ C(t—T)B +
1_e-n(t-r)

vl ge-n) P (1-e Ty 4c(t-1) Bec (3+p) (£-1) B
n{t-t) -

w.p.1.
Now denote by N the subset of @ such that

'P(N)=0, and for each weNc;
t > £(t,w)e c2(0,T1, H)
t - Wn(t,w) satisfies the properties stated in

Lemma 3.3. for each nelWN.

c
Now for each (fixed) weN and nelN , consider the deter
ministic problem

V'(t)—A(t)V(t)—Wé(t)BV(t)=f(t), t€[ 0,T]
(5_(w))

v(0)=x. n

DEFINITION 3.4. We say that vec! ([0,T) ,H) is a strict

solution of (sn(w)) if v(t)EDpAa(t) wtelo,T]l, A(-)v(-)€E
ec®([0,T] ,H) and v(0)=x, v'-A(-)v()-W'BY(-)=£ in [0,T].
REMARK 3.5 1If v is a strict solution of (sn(w)), then
Bv(-)eCO([O,T],H) by Hypothesis IV and by the identity
Bu(t)=BA(t) ' (A(t)u(t)).

DEFINITION 3.6. We say that VGCO([O,T],H) is a strong

. . . 1
C
solution of (Sn(w)) if there exists {Vk}kEN cc ([0,T],H)

such that:
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Vk(t)EDA(t) vte{ 0,T1, YkEWN
v];-A(->vk(-)ec°([o,T1 JH)

' . AR X 4 - : 0
vk-A( )Vk( ) Wnka = fk £fin ¢ ({0,T] ,H)

vk(O) = X - x in H

v, > v in o, ).

We shall find a strong solution v(t,w)Evn(t,w) of (Sn(w))

for each feC_([0,T],H) and xeLF (H). We shall see that
0

as nree vn converges to a process u{t,w) which will turn

0
F

out to be a generalized solution of (S), or, equivalen-

tly, a solution of

du(t)={Aa(t)u(t)+f(t)]dt + Bu(t)th
(")
u(0)=x
where the stochastic integral is in the sense of Stra
tonovich.
To solve (Sn(w)), we will transform it into an equiva-

lent one. Set

= ¢ Mn(8)B

u(t) t),
then, formally, u solves
u' (t)=e-wn(t)BA(t)eWn(t)Bu(t)+e—Wn(t)Bf(t) L€l 0,77,
(Pew))
u(0)=x.
Define
D(A_(t))=D(A(t))
An(t)z=e—wn(t)BA(t)ewn(t)Bz
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Then Problem (Pn(w)) can be written as

u'(t)-An(t)u(t)=F(t), tel 0,T]

u(0)=x

where F(t)=e—wn(t)Bf(t).
Let us verify that Problems (Sn(w)) and(P_(w)) are indeed
n

the same:

LEMMA 3.7. v is a strict (resp. strong) solution of

(Sn(w)) if and only if u is a strict (resp. strong) so-

lution of (Pn(w)) in the sense of [1].

Proof By definition if v is a strict solution of (Sn(w))
we have

vec' (0,11 ,H),

v(t)eD(A(t)) vtel[0,T]

a()v(oec o, ,m

v(0)=x, v'-A(-)V(:)-W'Bv(-)=f in [0,T],

so we immediately deduce that

(u(t)ED(A(t)) Yte[ 0,T] (Proposition 2.8)
)AP(')u(')ECO([O,T],H)

ueC1([0,T],H)

u(0)=x, u'—An(')u(')EF in{O0,T],

i.e. u is a strict solution of (Pn(w)) in the sense of[1].
The converse is quite similar. The case of strong so-
Jutions is analogous.

We want to apply to Problem (Pn(w)) the results of
Acquistapace-Terreni [1]. We have to verify that all

hypotheses of [ 11hold in the present situation. First
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of all, we have:

LEMMA 3.8. p(An(t))=p(A(t)) for each neEN and te[ 0,T],

and there exists C=C (w) such that

-1 c
1 < -0,
HAn(t) HL(H)ig,uR(A,An(t)) L(H)i B vxegeo {0}
¥neEN , Vt€[0,T].
Proof For each A€p(A(t))
R(As8, (6) y=e "n(B)Br(x,a(t)) MR (B)B

hence the result follows.

LEMMA 3.9, For each xX:I 6 and x€H the function
0

1
t - R(A,An(t))x is in CF([O,T],H) and its derivative is

given by

-Wy (£)B 3 Wn(t)B

o -Wn(t)B.
atR(A,A(t))e

3 '
SER(A,A(t))x—e x+Wn(t)e

Wn(£)B_

1

[R(A,A(t)),Ble

in addition for each nelN there exists Cn=cn(w) such that

C
—n A - ,
s NE ¥ eZeo {0}

1<a ey

)
— 1
dt’'n IL(H)iCn'"BtR(A'An(t))

¥YnelN .

Proof A straightforward computation yields, as T+t

R(A,A_(t))x-R(A,A (7))
n Xt n X +e-Wn<t)B a—atR(A,A(t))ewn(t)BX'*
- T

—Wp, (£)B i (€)B_

+ e [R(AIA(t))IB] WI;.(t)

r

. . 0
and it is clear that t - é%R(A,An(t))xECF([O,T],H).More—
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over by Proposition 2.4.

)
lgER(A,An(t))HL(H)i |A|a +M[B,R(A,A(t))]HL(H)
C C
K n n
W'k 0 < o <
n cY([0,T],H) —I>\|O{, [ X] IHOL'

Taking into account Proposition A.1of the Appendix, we can
apply the results of Acquistapace-Terreni [ 1], obtaining
that Problem (Pn(w)) has a unique strong solution un(t),

which in addition satisfies

-Wp, (8)B

Pu_ (e)1 <c_(w) {Ixd + file £(s)1,ds} wte[0,T]

Hence Problem (S _(w)) has a unigue strong solution too,

n
M (£)B

given by vn(t)w= un(t), which satisfies

v ()1, 2 € (w) [Ixl, + anf(s)ans]_

REMARK 3.10. The function un(t),strong solution of

Pn(w),has its own representation formula in terms of the

{eEAn(t)}
£>0

sequently a representation formula in terms of

semi-group (see [ 1], formula (4.1.)); con-

{egAn(t)} does exist also for the function v_(t). But
£>0 n

we need another formula for vn(t) in terms of{eEA(t)}E>O

£B

and {e in order to be able later to "pass to the

}€€R,
limit" and generalize it to the stochastic case.

THEOREM 3.11. For each neN , for each xeH and feco([O,T],H),

Problem (Sn(w)) has a unigue strong solution given by

Vn(t)=ewn(t)BetA(t)x + fot e[Wn(t)_Wn(S)]Be(t_S)A(t)gn(s)ds,
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(3.1)
where gn(t) is_the unique solution of the integral equa-
tion

t
gn(t)+ % Rn(t,s)gn(s)ds = f(t)—Rn(t,O)dx (3.2)
whose kernel R (t,s) = R, (t,s,w) is
_ [Wn(t)-Wh(s)IB 3 ZA(t) _
R (t,s)=e [Bte ]E R
e[Wn(t)—Wn(s)]B] e(t‘S)A(t), 0<s<t<T (3.3)

Proof First of all we prove some lemmata about the

integral equation (3.2).

LEMMA 3.12. For each OG]OIa]m]OI%[ there exists

M =M (w) such that
o o —_

M
g

& —
L(H)— 1-0

Ir (t,s)“
B (t-s)

¥neN, 0<s<t<T, w.p.1

Proof It is an evident consequence of Prop. 2.3(i)-(v)-

(viii), Lemma 3.3(i) and Corollary 2.10.

LEMMA 3.13. Consider the integral operator defined by

[R0] (£)=[R_(w)] ()= R (t,5)¢(s)as, ¢ec’((0,m1 1) or

L (0,T,H), pel1, .
Then (1+Rn) is invertible in CO([O,T],H) and LP(O,T,H),

1<p<*= and

=1 Y
||(1+Rn) HL(CO([O,tol ,H))iM =M' (w)

¥Ynew, VtOE]O,T]

-1
Il i ' =M
(1+Rn) L(LP(O,tO,H))i MP Mp(w)
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Proof As in [1], Proposition 3.6(i),taking into account

Proposition A.1. of the Appendix.

LEMMA 3.14. For each neEN we have:

(i) er=>Rn(- ,0)xec0 (10,T] ,H)mLp(o,T,H) ¥pe[ 1 J/\ﬁ[ '

(11) *eD(A(0))=R_(+,0)xeC’((0,T] ,K) and R_(0,0)x=0.

Proof (i) By Lemma 3.12 we get Rn(-,O)xeLp(O,T,H)

1
Vp6[1,2A-T:;[. Let us show continuity in ]0,T] :we have
Wp (t)B

S B

Wn (£)[ B+L(t)] _
3t g=t* 7t €

Rn(t,O)x=e [

_ Jn(t)B £A(E)

1

Ja(t)e

the first term is the composition of a strongly conti-
nuous operator with the function t*[é% egA(t)]€=tx
which is continuous in ]0,T] (see [1], Prop. 3.3(i));
hence it is continuous in ]10,T].

Similarly the second term is continuous in [ 0,T] since

it is the composition of a strongly continuous operator

with the function t*A(t)etA(t)x, which is continuous in
10,T1 ([1], Prop. 3.4(i)).
(11) 3f x€0(a{0)) then to[o% eEA(t)]E_tx and t-a(t)etA(t)y

are continuous in [ 0,T}and the first vanishes at t=0

([ 11, Proposition 3.3(iii) and 3.4(v)). By Proposition
2.9 the result follows easily.

The preceding lemmata imply in particular that equation
(3.2) is uniquely solvable in Lp(O,T,H), pe[1,2A?%Z1

and its solution 9, satisfies

1
Hgnﬂ < C =Cp(w) YnEN, ¥pE[ 1,2A 1_a[.

LP(o,T,H) - Tp
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In addition we have:

0
LEMMA 3.15. For each neN, gnec (1]0,T] ,H); in addition

if x€DA(0) then g ec’([0,T) ,H) and g_(0)=£(0).

Proof As inl 1], Prop, 3.6(i)-(iii).
We have thus proved that equation (3.2) has a unique

solution gnECO(]O,T],H)ﬁLp(O,T,H) ¥pel[ 1,2 T%;[-

Now we will verify that the function vn(t) given by (3.1)
is a strong solution of (Sn(w)).

0
First, vnEc (I0,T] ,H), due to the strong continuity of

the group {egB}EeR and of the function t+etA(t) (see
Propositions 3.4 (iii) and 3.7(i) in [1]).
Let us construct the regular data xk,fk approximating

%,£. As {xk} we take any seguence contained in D(A(0))

and converging to x. To construct fk' define
-1
= +R -R (°,0 H
(t) (1+R ) (£-R_(",0)x.) (t)

then wkeco([O,T],H) by Lemma 3.14(ii) and Lemma 3.12;

moreover as k>« Y in Lp(O,T,H) for each pe[1,2AT%E[,

k»gn
due to Lemma 3.12 and 3.13. Define wk out of [0,T] setting

e (£) = ¥, (0), <0

wk(t) = wk(T) ' £>T.
Next, set

¢k(t)= Gk-* wk(t) =/ wn(t—s)ek(s)ds,

R
1
where Gk(s)=k6(ks) is a mollifier: then ¢k€C (to,T] ,H)
and ¢k—wk+0 in CO(IO,T],H) as k+« . Now recalling Pro-
position 2.2, for each keN there exists hkelq such that
the f ti = i i
e function Ek(t) hkR(hk,B)¢k(t) satisfies
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gec’ (10,71 ,1)

Ek(t)ED(B) veef o, 1], ng(-)ec1 ({o,7] ,H) (3.4)
<1

k

”gk—¢k"c°([o,T],H)

Define finally the desired functions f, by
£,=(1T+R )& +R (* 0% i

then fkeco([o,T],H) and fk»f in co([O,T],H) as k»«, since

fk-f=(1+Rn) B TR (* ,O)Xk—f=(1+Rn)[ Ek-wk] +(1+Rn)wk+Rn(- ,0) -

-xk—f=(1+Rn)(Ek-¢k)+(1+Rn)(¢k-wk) ~ 0 as k- o

We have thus constructed the approximating data Xk'fk'

Now set

W (£)B_tA(E) |,k [Wy(£) Wy (s)1B (t-s) A(t) |

uk(t)=e ety

(3.5)
-Ek(s)ds;
we shall verify that w tvoin CO([O,T],H) as k+®, and
that u is the strict solution of

u];(t)—A(t)uk(t)-Wr'l(t)Buk(t)=%( (t)
(3.6)
Uk(0)=xk;

this will prove that v is the strong solution of (S (w)).

It is clear that

T
sup fu, (&) -v_(t)h _<Chx -xi_+c/ Mg (s)-g (s)h_ds->0
e[ 0,T] k n H k H 770 ~k n H

as k+ e,
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since £ >g  in P (0,7,H) VPE[1,2”\T%E{.

Let us show that U solves (3.6). Let us compute A(t)-
-uk(t): to begin with, the first term in (3.5) is in

D(A(t)) (Proposition 2.8) and

tA(t)

Wn(t)BetA(t)xk=eWn(t)[B+L(t)]A(t)e X (3.7)

A(t)e

clearly it is acontinuous function of t (see Proposition
2.11 and the proof of Lemma 3.14(ii)).

The second term in (3.5) can be written as:

E [Wn (t)-Wy(s)]B  (t-s)A(t) -1

/ Ek(s)ds=A(t)

0

+fE oW (€)Wn (S)TBHL(E)]_ [ Hn (€)Wn ()18 5 (4 o (E78)ALE),

t, [Wp(t)-Wn(s)IB (t-s A (L)

£, (D ds+fle -11a(t)e £ (t)as +

(et(A(t)

+ -1 g, (8) 1, (3.8)

and all integrals do converge (by (3.4), Proposition 2.9
and Proposition 2.3(iii}=-(v));

hence this term belongs to D(A(t) and is a continuous
function of t, as it can be easily seen by a repeated
use of Lebesgue's Theorem. This shows that uk(t)EDA(t)
¥te[ 0,T] and that A(-)uk(-)eco([O,Tl,H). Let us compute
now ui(t). It is easy to verify (see also [1], Proposi-
tions 3.4(i) and 3.7(iv)) that if t€]0,T] we have

d_ JWn(t)B ta(t)

Wn (£)B_tA(t) Wn (t)B
ac e xk+e .

Xk=W$(t)Be
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. tA(t) Wn(t)B 3 A(t)
A(t)e X, te [Bt e ]€=t Xy

and

4t [Wn(t)-Wn(s)]B_(t-s)A(t)

J,

£ (s)ds=£k(t) +

at ‘o k
w150 (£)Bel M0 (8) Wn (8)]B (£=S)A(R)E () aq 4
0 ' n k
+Qf e[wn(t)-wn(s)]BA(t)e(t-s)A(t)[Ek(s)_gk(t)]ds +

+f()t[e[Wn(t)'Wn(S)]B—1]A(t)e(t_S)A(t)Ek(t)ds+

A _qyg (g)asfel M) TRISIE BERIEY gy (s)as.

+(
0 at E=t-s

Taking into account Hypothesis IV, it is seen that the-
se functions are continuous in ]0,T]; this shows that

uﬁeco(]O,T],H) and summing up we get ¥t€]0,T]:

Wn(t)B, 3 EA(t) _
[Bte ] X

uﬁ(t)=A(t)uk(t)+Wg(t)Buk(t)+Ek(t)+e E=t ¥

_[eWn(t)[B+L(t)]_eWn(t)B]A(t)etA(t)Xk+4fe[Wn(t)-Wn(s)]B.
g2 JEA(Y) ot [Wp(E)-Wh(s)][B+L(t)]
[at e }E=t—s Ek(s)ds Jb[e n

_o[ Wn (€)W, (s)1B (t-s)A(t)

IAa(t)e %{(s)ds=A(t)uk(t)+W£(t)B'

t
“u, (£)+E, (£)+R_(£,0)x, +f R (t,8)E, (s)ds=
= A(t)uk(t)+WI'1(t)Buk(t)+fk(t).
On the other hand, as t->0+ we have (see Lemma 3.3.(iii)
of [1]):

ui(t)+A(0)X +WA(O)BXk+£k(0)=A(O)Xk+W$(0)BXk+fk(0)

k
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and this shows that uﬁeco([O,T],H) and that U, solves
(3.6). The proof of Theorem 3.11 is complete.

4. CONVERGENCE OF THE SOLUTIONS

Let xeLF ("), fecg([O,T],H). For a.e. we2 and for each
nEN we can solve the deterministic problem (Sn(w)) with
data x(w)€H and f(-,w)ECO([O,T],H);its strong solution Vh(-,w)is
then given by (3.1). In this section we will show that

the sequence {vn}converges uniformly in [0,T] w.p.1. Mo

re precisely we have:

THEQREM 4.1. Let XELF (H),fecg([ 0,T] ,H) and let Vn(t,w)
0
be given by (3.1). Then as n»« v ~u uniformly in [0,T]

w.p.1, where uecg([O,T],H) is defined by

u(t)=eWtBetA(t) (Wt-Ws)Be(t-S)A(t)g

x+f0te (s)ds, (4.1)

g(t) being the unigque solution of the Volterra integral

equation

g(t) + 4? R(t,s)g(s)ds=£f(t)-R(t,0)x (4.2)
whose kernel R(t,s) is_given by

(We=Wg)B & 3 EA(t) S[AE) e

ot E=t-s

(We-Wg)B

R(t,s)=e [ ]

e(t"'S)A(t) (4-3)

Proof We need some preliminary lemmata.

LEMMA 4.,2. For each o0€]0,aln]0,1/2[ there exists

M =M (w) such that
o} EEEE—
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M

o]
I R(t,s) | < — 0<s<t<T, w.p.1.
L (H) (t-g) 17C

Proof. As in Lemma 3.12.

LEMMA 4.3, For each p€[1,T%EA2[ we have as n-»e

R_(+,0)x > R(+,0)x in P(o,T,H) w.p.1.

Proof It is a simple application of Lebesgque's Theorem.

LEMMA 4.4, For each p€[ 1, «] define

Ro (£)=[ R(w)¢] (£)=/R(t,s)é(s)as, 6€LP(0,T,H)or
sec® ([ 0,71 ,H). (4.4)

Then Rer(LF(0,T,H))NL(C([0,T],H)) ¥pEl1,«, w.p.1.

If in addition Rn is the integral operator whose kernel

is Rn(t,s), the we have for each ¢€Lp(O,T,H), pel 1, ,
R > R in Po,T,H) w.p.1.

Proof. The boundedness of R can be proved as in [ 1],
Proposition 3.5(1i). Next, if 0<s<t<T we have

limll[Rn(t,s)—R(t,s)]¢(s)ﬂH = 0 w.p.1.

n- e
Hence by Lemma 3.12, Lemma 4.2 and Lebesgue's Theorem

we get

lim ftll[Rn(t,s)—R(t,s)]¢>(s)ll§ds=0 ¥te[ 0,T] w.p.1.

n-> <«

On the other hand,
t p o(p-1) ,t p
L MR (t,s)-R(t,s)]1¢(s)lzds < CT Sy e(s)lzds,

and applying again Lebesgue's Theorem we obtain the re

sult.
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LEMMA 4.5.

(i) (1+R) has bounded inverse in CO([O,T],H)and in

LP(O,T,H) for each pe(1,«], w.p.1.

(ii) For each pel 1,«[ and ¢eLp(0,T,H) we have as n-«
(1+Rn)-1¢ > 1+R) Y  in LP(0,T,H), w.p.1.

Proof.

(1) As in Lemma 3.13.

1

(ii) Set ‘Pn=(1+Rn)-1¢, ¢ =(1+R) " '¢; then ¥_,¥ LP(0,T,H) and

-1

‘Pn-\y= (1+Rn) (Rn-R) Y

hence Lemmata 3.13 and 4.4 yield the result.
The preceding lemmata imply that the integral equation
(4.2) has a unique solution g belonging to Lp(O,T,H)

-1
VPE]O,T%EAZ[ w.p.1; namely g(t)=(1+R) (£f-R(-,0)x). In

addition we have:
LEMMA 4.6. R(.,0)x and g belong to c°(10,T],H) w.p.1.

If in addition XGLF (D(A(0))) then w.p.1 R(-,0)x,
0

gec® ([ 0,T) ,H) and R(0,0)x=0, g(0)=£(0).

Proof. As tﬂwt is B-H8lder continuous ¥Re]0,1/2[ w.p.1,
it suffices to repeat the proof of Lemmata 3.14 and
3.15.

Now we are able to prove Theorem 4.1. In what follows we
fix w out of the exceptional set whose P-measure is 0
and where all the preceding lemmata may fail to be true.
Let e¢>0. Because of Proposition 2.1 there exists 5£>0
such that

Il O'B_ . .
|0|<c5€ = |l (e 1)xNH<e,
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0<t<s_ = | (etA(t)

—1)X"H<g,

Set K = sup|Wn(t)], fix Aoep(B) and define
t,n

tA (t)

hlo

M _= sup H(AO-B)e xHH (note that M_ < 7
tzdg €

by Proposi

-

tion 2.6(i)). Next, take nQEIJ such that

£
=W - < —_ (< .
n>n_ | n(t) Wt] 5€A€A MC ¥t€[ 0,T]

Then by Proposition 2.3(i) we have, for each tE[O,és]

I (eWn(t)B_eWtB)etA(t)x" Wn (t>B_eWtB) (etA(t)

< | - o+
g (e 1)x -

+ "eWtB(e(Wn(t)--Wt)B_1)x"HizNewKE+NemK€icE Vningf

on the other hand for each te[ég,T] we have by Proposi

tion 2.3(iii)

0 (ewn(t)B_eWtB)etA(t)x" Hi" eWtB[e(Wn(t)—Wt)B_”
sB
~R(>\0,B) (AO—B)etA(t)xllH-*:I\IewK sup = - R(XO,B)”
0<s<2K L{H)

wK
M < Ne Cse vn>n .
o - €

Wn(t)-wt
This proves that as n»«

WtB )
Nt etA(t.

-

ewn(t)BetA(t)x x uniformly in [0,T] w.p.1.

We shall prove now that as n-»e

fte['wn(t)-wn(s)] B, (t=s)A(t)

(We-Wg)B_ (£-8)A (L)
0

T
gn(s)ds+Q)e

+g(s)ds uniformly in [0,T] w.p.1.
By Lemmata 4.3, 3.12 and 4.4 we have g ~g in L1(0,T,H);
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thus it is enough to show that as n»

[ Wn (£)=Wn ($)1B__ (We—Wg)B, _ (£-s)A(t)

sup | fot [ le g(s)dsi 0

t€[ 0, T]

w.p.1.

Since g€L1(0,T,H)ﬁCO(]O,T],H), for each ¢>0 we can choose
5€>0 such that &f+6€ ”g(s)ﬂHds<s VtE[O,T-6€]; set

= I I € ~
He= sup glt) H and take n_ N such that |Wn(t) Wt|<
£€l 5€,T]

€6

£ for each nznE and t€[0,T}]. Then it follows that,
€

if tE[O,ée],

t [Wn(t)'Wn(S)]B_e(Wt-Ws)B

"Q)[e (t=s)A(t)

le g(s)dsllH <

8
<cC fo E"g(s)HHds < Ce V¥neN,

while if tG]SE,T]by Proposition 2,3(iii) and 2.6 (i)

we have

$ t-§
<hf €, ,.dsl_+l €
< % sl + J, <

t
'
A sl +1f_...ds

€ € H

< 2Ce+l fét‘ége(wt‘WS)B[ e (Wn (£) -Wn (s) -We+Wg)B_y,

€

R(A.,B) (A.=-B) e(t-S)A(t)g(s)dsN < 2Ce +
0 0 H -
t=-5 ds
+C € - - o= . .
féa Clw ()W |+|w, (s)-w |1 £ - H_ < 2Ce+2C
et T H =C
H 6 e €
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To complete the proof of Theorem 4.1 it remains to show

that ueCE([O,T],H), i.e. wru{t,w) is Ft—measurable for

each t€[ 0,T). First of all we have:

LEMMA 4,7. For each yeH and te[ 0,T], the function
Wt(w)B
wre

y is Ft measurable.
Proof. The following equality holds:

y if Wt(w)=0

k
Wt (w)B , k .
e ¢ y = limn [ —— R{( , B} vy if W_{w)>0
re W (@) W (W) t
k k k
lim[( R( ,=B)] Y if W_(w)<0
o Wy (@) W () t
Define
k
k k
b, (W)=YX ;. _nqHo—F—R( ,B)] Y-x +
Kk {w =0} "W, (w) W (w) {°<wt<%}
H—— gy B)1° yox ;
Wo(w) W (@) {%‘WJO}
t(w)B

then ¢k(w)aew y as k>« w.p.1.

Since H is separable, it is enough to prove that for

each k»+IN the function

,B)1 5%

) {O<Wt<§}

is Ft—measurable. Consider the functions

v:{|s|>n} > H, w(s)=[sR(S.B)lky

F:IR-{0}>TR, F(t) = %
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we have to show that w ~+ (wa)(wt(w))~x K =:G(w)

< L=
{0 W, n}

is Ft—measurable. Now if ACH is a Borel set, we have

k‘q -1 "'1 E N .
[{0<Wt<ﬁrn{WtEF (v (A””U{WtiO}U{Wtin} if 0ea;
{Genr}=
K -1, -1 )
{O<Wt<ﬁ}n{thF (¢ (A))} if 0€a.
As w+Wt(w) is Ft-measurable and F-1(w-1(A)) is a Borel

set of R, we conclude that {GGA}EFt.

LEMMA 4.8. Let t€[0,T] and consider the kernel R(t,s,w)

and the operator R(w) defined in (4.3) and (4.4). Then

we have:

(1) If xeLF (H), then the function wrR{t,s,w)x(w) is

F_-measurable for each se[ 0,t.

t
. 1 .
(ii) if ¢ELF(O,T,H) then w~[ R(w) ¢l {t,u} is #_-measurable.
(1ii) If ¢eLl(0,T,H) then w>{ 14R(w)]~ ¢it,v) is 7 _-measu-
rable.

Proof. (i) As W _-W_ is F_-~measuracie for each s€l0,t[,
the result is on easy consequence of Lemma 4.7.

{1i) Set Y(s,w)=R(t.s.w)d(s,w); then v (i), wruis,w)
is 7 _-measurable for each s€ 0.5 . T"hus =“here exists

a sequence c¢f rfunctions W, , having the fsrm

Ay
, = ; - N < <
DS, = L B8 w0 L a8, Gms 4L, <5 =,
L iz - -l K 9 .
L= = PR >

such that as k>«

Y, {s,w)*Y(s,w; for a.e. s€lG,tl w.p.1,
k P
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Qf wk(s,w)ds+[R(w)¢](t,w) w.p.1.
ny
Since w+&f wk(s,w)ds= ;i1 w(s§_1,w)(s§-s§_1) is Ft-meg
surable, the conclusion follows.
(iii) From the identity [ 1+R(w)] o= ;‘[R(w)]n¢
n=0

we deduce by induction the result, since each term in

che series is Ft—measurable by {(ii).

3y Lemmata 4.6,4.7 and 4.8 we conclude that the fun-
ction u(t,w) defined in (4.1} belongs to CE([O,T],H);
Therwam 4.1 is completely proved.

5., TBE STOCHASTIC PROBLEM:EXISTENCE

Let us go back to the stochastic problem (8) introduced
at the beginning of Section 3. We want to show that the
function u{t) defined in {4.1) is a generalized solu-

cion of {8;. We will first consider the particular case

2
n which x€L_ (D{A{(C)INDIB™)) and the integral equation

¢
4,72) has 2 scolution ¢ naving suitable regularity pro-

mercizs, More mrecisely we have:
THECREM 5. Y. Let k€L, (D(A{CY)NDIET)), .nd let
R 0
el 9,7, have the fcrm
Siey={ (1+R)g) ) ¢ R(t,0)x, {5.1)

!
with g€C_<[C,T],4) such that g(t)eD(A(0))nD(8°)vte[ 0,T]

and ng(~)ec {{0,T] ,H). Then the function u(t) defined

q ¢

in (4.1) is a strict solution of (S) (see Definition 3.1)
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Proof. Let us verify that u(t)ED(A(t))ﬂD(Bz) vtel 0,T]

w.p.1. As in the proof of Theorem 3.11, we have u(t)e
€D(A(t)) w.p.1 and (compare with (3.7), (3.8)):

A(t)u(e)=e Tl BYE (O] 4 () EALE)  pb  (WemWg) [BHL(E)]
-A(t)e(t—s)A(t)[g(s)—g(t)]ds+f0t[e(wt'ws)[B+L(t)]

e MeTSIB 5 (1) (7SIR () g (¢) aes i e METWSIB_y,
e TR g s (P Ly g (e, (5.2)

0
moreover it can be seen that A(-)u(o)GCF([O,T],H), by
using arguments which are similar to those employed in
Theorems 3.11 and 4.1.

Thus, in particular, u(t)ebD(B) vt€[0,T] w.p.1 and

t ~ Bul(t) = BA(t)-1A(t)u(t)€Co([0,T],H)7
but we need now a different expression for Bu(t), namely

WeB (A (t)

Bu(t)=e"tB 1 ; ot(g,R(),A (L)) ]xd)N] +e Bx +
2mi Ty

t (Weg-Wg)B 1 t=-s) A
+f0e( t~Ws) ore er( S) A B, R(A,A(E))1dN] g(s)ds +

t, (We-Wg)B o (Ems)A(t)

+% Bg(s)ds. (5.3)

Let us show now that u(t)GD(Bz) Yte[ 0,T] w.p.1. By (5.3)
we see that the first term in (4.1) belongs to D(BZ) and,

by Proposition 2.4,

52oWEB tA (£)

x=BeWtB[—lT
27

T Qfet*[B,R(x,A<t)>1xdx +etA (g

5, eS BROVLA(£))L(£)A(E)R(2,A () ) xd )+

fYetA[B,R(X,A(t))]Bdi+etA(t)B2x]=
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=e"tB E%I Q{etABR(A,A(t))L(t)[A(R(A,A(t))-R(A,A(O)))x+
+A(0)R(X,A(0)) x! d“ﬁ}i_ fY etx[ B,R(A,A(t))]Bxdx+etA(t)B2x]=

1

ZR(x,A(s)) [A(0)7'-

9s

=WtB 1 etABR(A,A(t))L(t)[ft('A
2mi 'y 0

—A(s)—1]A(0)xds—ft(a

d -1
b SER(A,A(S))+EEA(S) JA(0) xds+

+ft 1

d -—
A AR(,X,A(S))EA(S)

A(0)xds-R(X,A(0))A(0)x]daN] +

B
We etA(t>B2x.

4B Q/etA[B,R(A,A(t))]Bdi)+e (5.4)

27i
It 4is not difficult to see that all integrals converge
and that the last equality in (5.4) defines an element

0
of C(0,T1,H).

Again by (5.3) and Propositions2.4, 2.8 we have that

the second term in (4.1) is in D(B2) and

Bzfote (Wt-WS)Be (t-s)7 = (s} ds=B] fote (We-Wg)B |

Q- = s e (E™S) AR, A(E)) L (E) A (£)R(A A(t))g(s)dr+
271y ! !

+ e(t—s)A(t)Bg(s)]ds]=fotBA(t)—1e(wt—ws)[B+L(t)]

g

- (EYR(XA,A(E))L(E)A(E)R(A,A(t))g(s)d)lds+
2mi Cy

e MeWe)B L/ o (8780 A5 r(3,a(¢))1Bg(s)ar) as+

2%i Ty

. fot e Wt=Ws)B (E=s)A(E) 2 oy qe = (5.5)

1, (Me=Wg) [B+L(E)] | _1_ er(t-s)

: A EIR(A,A(L)) -
27i

t -
—fo BA (t)
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1

'L(t)[fot(-X%R(X,A(O))[A(O)- -a(0) " 1A (0)g(s)do-

<

-t -1 t .
fo (BGR(X,A(O)H dGA(O) )A(O)g(s)do+fo AR(X,A(0))

--a%'A(of%(O)g(s)do-—R(X,A(O))A(O)g(s)]d)\] ds +f0te(wt_ws)B.

1 t-s)A t (W,.-Wg)B
‘[EFI &re( s) [B,R(A,A(t))]Bg(s)dk]ds+&)e( t s

_e(t—s)A(t)Bzg(s)ds;

again it is seen that the last equality defines a fun-
ction belonging to C?([O,T],H).
We have thus proved that u(t)ED(A(t))ND(R) for each
t€[ 0,T] w.p.1, and that the functions t*A(t)u(t),t>Bu(t}.
t*B2u(t) belong to Ci([O,T],H). We have now to verify
that

t 1.2 L )
u(t)=x+/[A(s)u(s)+ 3B u(s)+f(s)]ds+f0Bu(s)dWs ¥tel 0,7
w.p.1. (5.6}

Let us compute first the Ito integral &fBu(s)dwq. We

recall Ito's Formula:

LEMMA 5.2, Let G=G{y,r):IRx[ 0,T|>H be a continuous fur-

2 .
ction such that 36 , 387G 56

are continuous. Then

!
oV ayz or N
t | 9¢G 1 3°C
= ! —— =
G(Wt,t) G(0,0)+© [ar(Ws,S)+ 2 5§Y(WS’S)]dS+
+ ft Eg (W ,S)dW .
0 oy s s

Proof. See Friedman [ 11] page 81.

We will apply Lemma 5.2 with suitable choices of the

function G(y,r).
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Suppose first
yB erA(r)x_

Gly,r)= e :
then
3G B rA(r) azc; 2 yB rA(r)
= —naYP Al d G, .2 yB rA(r
ay(y,r)-Be e X, 3y2(y,r)—B e’ e X,
3G __yB rA(r) 3 _EA(x)
S Yir)=e [a(r)e X+[3r e { x]
£=r
which implies
QfBeWSBeSA(s)xdWS=ethetA(t)x-x-€f [eWsB[A(s)eSA(s)x +
.9 1.2 B
lggegA(S)]£=sx]+ 5B eWS eSA(S)x]ds (5.7)
Set now
-W~)B -
G(y,r)=fore(y olB, (x O)A(r)g(c)do;

then it is easily seen that

2 2

(y=Wg)B_(r-0)A(r) 3°G
Y™ Wo!%q g(o)do,syj(y,r)= B”.

3G r
Ty(y,r)—Bfoe

0 g(O)dCT:

and (compare with (5.2))

Ele
3xr

(y—Wr)Bg(r)+Ire(y—Wg)B[ iegA(r)}

ly,r)=e 0 dr E=r-o

(Y"Wo )B

‘g(o)ao+[Te A(r)e TR L5y g ()1 a0 +

+4f[e(Y_WO)B-e(y_wr)B]A(r)e(r_o)A(r)g(r)do+

Thus we deduce that

171
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(c)do] aw =fte(wtnw0)B .
s 0

t OS (Ws—Wg)Be<S-G)A(S)g
(WS_WG)B[ ieEA(S)]

t s
g(o)do—% [g(s)+Q)e 38 E=s5~0

rg(o)dotiye s MoBy () (87BN g5y g5y 1a0 +
+&f[e(WS_WO)B—1]A(s)e(s_O)A(s)g(s)d0+(eSA(S)—1)g(s)+
+ % quf e Ws~Wo)B_ (s-0)A(s) () 551 as. (5.8)

By (5.7) and (5.8) we get, recalling (4.1),(4.2), (4.3)
and (5.2):

WS[B+L(S)]A(S)esA(S)

QfBu(s)dWs=u(t)—x—4;[R(s,O)x+e X +

s, (Ws=Wg) [ B+L(s)]

+g(s)+&?R(s,o)g(o)do+% e (S_O)A(S)-

(s)e

(Wg=Wo) [ B+L(s)] __ (Wg-Wo

‘[glo)=g(s)] do+/ e VB A (s)

s-0)A(s)

o (8=0)A(s) -1)A(s)e( g(s)ds+

g(s)do+&f(e(ws—WG>B

+HeS28) 115y + %Bzu(s)]ds=u(t)—x-&f[f(s)+A(s)u(s)+

+ %Bzu(s)]ds.
This proves that u(t) is a strict solution of (S).
Let us consider now the case of general data x,f. We

have:

THEOREM 5.3. Let x€L_ (H) and fecg([ 0,T] ,H), and let u

F
be the function defined in (4.1). Then u is a genera-

lized solution of (S) (see Definition 3.2).
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Procof. Let {xk}cLF (D(A(O))ﬂD(BZ)) such that x +x w.p.1
)

as k+« ; due to Proposition 2.7, such a sequence exists.
Consider the function

-1
wk(t)=(1+R) (f-R(',O)Xk)(t); (5.9)

it belongs to C?([O,T],H) by Lemma 4.8 (i)-(iii) and Lem

ma 4.6, and in addition wk+g in Li,(O,T,H) as k> for

each pe[1,;%;A2[, where g=(1+R)_1(f-R(-,0)x).

As in the proof of Theorem 3.11, define wk(tﬁn R-0,T] set
ting Yy (B)=y (T) ¥&>T, ¢, (t)=y, (0) ¥t<0, and take ¢, =6,%y,,

. . 1

wherz ek is a mollifier.Then ¢k€CF([0,T],H) ang ¢k—wk+0

in C°([0,T] ,H) as k>« w.p.1. Next, set Ek(t)=hkR(hk,A(0))-

'RGEJB)%Jt)ﬂdereﬂk}hsan increasing sequence of integers

such that"ék—¢ I 0 < % w.p.1 (compare with Propo
c'(o,r!,H

sition 2.2). The functions 5k satisfy
1 2
EkECF([O,T].H)lik(t)GD(A(O))ﬂD(B ) ¥te[0,T], w.p.1,

B Ekec;([O,T],H>, (5.10)

as it can be easily verified. Finally, define

fk=(1+R)§k+R(-,0)Xk.

Then £ 6c;([0,T],H), and f

K >f in CO([O,T],H) as k> w.p.1:

k

indeed, as R is bounded in C;([O,T],H), by (5.9) we have

as k-«

fk—f=(‘l+R) (Ek—wk)+(1+R)q;k+R(- ,O)Xk-f=(‘l+R) <gk-wk>=
=(1+R)(Ek-¢k)+(1+R)(¢k-wk)*0-

Consider now the function

B - -
uk(t)=ewt etA(t)xk+&fe(Wt Ws)B, (€ s)A(t)ik(s)ds;
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by Theorem 5.1 it is a strict solution of the stochastic

problem

- 1.2
duk(t)—[A(t)uk(t)+ 2B uk(t)+fk(t)]dt+Buk(t)th

Uy (0)=x,.
Moreover it is clear that uk+u in CO([O,T],H) as ko e
0
(u is given by (4.1)). Since also f>f in C ([ 0,T],H) and
XX in H w.p.1, by Egoroff's Theorem we deduce that the
conditions of Definition 3.2 are satisfied; therefore u

is a generalized solution of (8).

6. THE STOCHASTIC PROBLEM: UNIQUENESS

In order to prove that the strict,or generalized,solution
of (S) is unigue, we need some further lemmata.
For each neN and te€[ 0,T] define Jn(t)=nA(t)R(n,A(t)).

Then we have:

LEMMA 6.1. For each n€EIN and t€[ 0,T] the following proper-

ties hold:
(1) Jn(t)GL (H) ;

(i1) (J_(£))2p(A(E)) and R(A,J_(£))= Tf n-A(E) I R(FA2,A(E))-

2
craygl. EIn(t) L ;
tinige 0 2 S YR

(iv) Jn(t)BJn(t)-1x=[B+Ln(t)lx, ¥xeD(B), L (t)=

=nR(n,A(t))L(t);

(v) MBIy ()% ()77 weem;
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"eE(B+Ln(t))—e€B“ < clgyeCI‘E]

I VIETR .

(vi)
Proof. (i), (ii), (iii) are evident. Let us prove (iv):
for each x€D(B) we have by Hypothesis III

n-A(t)
n

Jn(t)BJn(t)_1x=nA(t)R(n,A(t))B A(t)-1x=nR(n,A(t))'

-A(t)BA(t) “Tx-A(t)R(n,A(t))Bx=nR(n,A(t))Bx+nR(n,A(t))-
-L(t)x~-A(t)R(n,A(t))Bx=Bx+nR(n,A(t))L(t)x.

To prove (v), let us first verify that
R()\,B+Ln(t))=Jn(t)R(>\,B)Jn(t)-1 ¥A€p (B)Np (B4L _(t)) (6.1)

Indeed, for each x€H we have y=R(A,B+Ln(t))x6D(B) and

Ay—[B+Ln(t)]y=x. Hence

-1, _ _ -1
Ay—Jn(t)BJn(t) y = Jn(t)(k B)Jn(t) Y

X

or

-1
y = 3 (B)R(,B)I (8) x.

Starting from (6.1), (v) is proved as in [9], proof of
Proposition 1.
Finally, (vi) is proved as Proposition 2.9, since

HLn(t)N < cln(e)h

L (H) L(u)-*

For each neN, consider the stochastic problem
du(t)=[J_(t)u(t)+ —;-Bzu(t)+f(t)] at+Bu (t) dW,_

[ u(0)=x (s))

. 0
with prescribed data xELF (H), fecF([O,T],H). Then ,we

have: 0

PROPOSITION 6.2. Let U Dbe a strict solution of (SA)-
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Then there exists c(n) such that

la(e)l y<cn) {xl +71£(s) ] ds} ¥eel 0,71, w.p.1.

In particular, Problem (SA) has at most one strict so-
lution.
Proof. Let t€]0,T]. For each s€[0,t] define

(t-s)Jn(S)e(wt-Ws)B

v{s)=e u(s);

then taking into account Lemma 6.1, it is easy to verify

that
av(s)={l _e(t-s)Jn(s) (e(wt_ws)[B+Ln(s)]—ewt—WS)B)Jn(s)+
3 &In(s) (We-Wg)B
+[as e ]£=t_slu(5)+e $’'Pf(s)lds
v(0)=x
which implies
u(t)=x+f0t{_e(t-S)Jn(S)[e(WA.;"Ws)[B+Ln(s)]_e(Wt--Ws)B]Jn(s)+
o _&Jp(s) (We-Wg)B
+[as e ]E=t—s]u(s)+e f(s)}ds.
Hence
t
HU(t)"H§”X"H+C% ]Wt-WS|HJn(s)HL(H)Hu(s)HHds+
t 1 t
+ Cf ———~—?:E—“u(s)“Hds+C% “f(s)“Hds,
(t-s)

and by a classical Gronwall-type argument (see e.qd.

Amann [ 2], Corollary 2.4) we get

t
”u(t)"H < c(n){llqu + uf(s)qus},

COROLLARY 6.3. Let u be a generalized solution of (Sé).

Then there exists C(n) such that




Downloaded by [UniversitaDi Pisa] at 08:16 07 May 2013

ITO LINEAR EQUATIONS 177

t
Hu(t)"H < C(n){HxHH+% Hf(s)ﬂHds},

In particular, Problem (Sé) has at most one generalized

solution.

PROPOSITION 6.4. Let XGLF (H),fGCg([O,T],H). Egen Pro-
0
blem (SA) has a generalized solution u given by

WtBetJn(t)x+4fe(Wt_WS)Be(t_S)Jngn(s)ds, (6.2)

u_(t)=e
n
gn(t) being the solution of the integral equation

t

gn(t)+% (t,s)gn(s)ds=f(t)-Kn(t,O)x w.p.1. (6.3)

n

whose kernelKn(t,s) is defined by

- (Wt—Ws)B __a_ an (t) _ (Wt-ws)B
Kn(t,s)—e [Bte ]£=t—s [J,(t),e |
e (£78)In(t) 0<s<t<T. (6.4)

Proof. We proceed as in Section 5: first we prove that

if xeLF (D(B2)) and £ is such that the solution of (6.3)
0

is suitably regular then (6.2) gives a strict solution
of (SA); next, we approximate the general data x,f

with more regular ones, and show that (6.2) is a gene-
ralized solution. We omit the proof because it is quite
similar to that of Theorems 5.1 and 5.3, and even easier,
since the role of A(t) is played by the bounded opera-

ter J (t).
n( )

PROPOSIZION 6.5. Let u be a strict, or generalized, so-

lution of (Sﬁ). Then there exist$s C (independent of n)

such that
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t
y
uu(t,nH < cl llxilH+fO "f(S)"Hds] vt€[0,T], w.p.1.

Proof, It follows by the representation formula (6.2)
and from the fact that the operators (1+Kn)-1' with
Kn(t,s) defined by (6.4), are bounded in L;(O,T,H)
uniformly in neEN (this is a consequence of Lemma 6.1
(ii1i)=(vi)).

Now we are able to prove the uniqueness theorem for the

solution of (S).

THECREM 6.6. Let u be a strict, or generalized, soluticn

of ‘S). Then we have

[ t -
ia t)llH < C{HXHH + % Hf(s)HHds} vte{ 0,T], w.p.1.

In particular, Prcblem {5) has at most ¢ne strict, or

generalized, scolution.

Proof. If i is a strict solution of (P), then u is also

a generaiized solution of

{ au(e)=la_ (t)u(t)+%B2u(t)+f(t)+[ A(£)-3_(t)]u(t)] dt +Bu(t)a,
u(0i=x

Hence by Proposition (6.5) there exists c (independent

cf n) such that

llu(t);lﬁic{llxllH#otuf(s)+[A(s)—Jn(s)lu(s)ﬂHds} vte[ 0,11,
w.p.1.

As n+«, the result follows by Lebesgue's Theorem, since
{A(S)—Jn(s)]u(s)00 for each s€[0,t].

By a standard argument, the estimate holds also for any

generalized solution.
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7. AN EXAMPLE

Take H=L®(0,1) and define

D(B)={ueL2(0,1): gu’€L2(0,1)},

’Bu=gu'
where g€C2([0,1]) with g(0)=g(1)=g'(1)=0; then it is well
known that B generates a strongly continuous group and
Hypothesis I holds.
Next, denote by Hk(0,1)(keN) the Sobolev space of func-
tions u€L2(0,1) whose distributional derivatives u',u",...

k ~
...u( J belong to L“(0,1), and define for each t€[0,T;

D(A(t))= {ueH®(0,1):u(0)=0,a(t)u(1)+(t)u’ (1)=0}
{A(t)u=u"

where a(t),8(t) are real continuously differentiable
functions, such that «>0,8>0,a+8>0 in [0,T]. It is

also known that A(t) generates an analytic semigrouyp,
and Hypothesis II is satisfied with a=1/2 (see Acquista
pace-Terreni [ 1] in the case of C{[0,1]) instead of

t% (0, 1),

Let us verify that Hypothesis III is fulfilled: clearly
D(A(t))ED(Bz)ED(B) for each t€[ 0,T}; next, taking %O(t)EO,
we have D(B)E{XGL2(0,1):BA(t)_1ED(A(t))}: indeed if

$€ED(B) and w=A(t)—1¢, we have w€H2(0,1), so that

(Bw) "o, (gw v)uzgnwl_‘\_zglq;u_‘_gwut =g"w'+2g'¢*"+B¢EL2 (0',‘:

and addition
(BY) (G)=g(0)p'(0)=0, a(t) (By) (1)+B(t) (BY) '(1)=
= a(t)g (MY (MNM+B(t)g' (MY (1) +g (1) yY" (1)]=0.

In particular we get
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A(t)BA(t)_1¢=(Bw)"=g"¢'+2g'w'+B¢=g"4f¢ds+2g'¢+B¢ YOED (B) .
Define

[L(£)0] (x) = g" (%) ¢ (s)ds+2g" (x) 6 (x)
then L(t)=L and

A(t)BA(t)—1¢=[B+L] ) ¥6ED(B) .
This shows that Hypothesis III holds.

Finally we observe that

[A(t)—1f](x)=—fo(s)(x—s)ds+

o (e) [ £(s) (1-5) as+8 (t)f01f(s)ds

X a(t)+8(t) , ¥t€( 0,71, ¥x<[0,17,

and consequently

x
[Ba(6) T £l (x)=g () -/ £(s)ds+

a(t)qgf(s)(1-s)as+e(t)4;f(s)ds

* a{t)+B (t) 1 vte[0,T], ¥x[0,1];

hence Vt,re[ 0,T]

1BA(t) £-BA(r) £l 5 =igl
L°(0,1) L (0,1)

(a(t)&?f(s)(1—s)ds+8<t)&;f(s)ds
: o (£)+8 (t) -
u(r>f01f<s> (1-s) ds+8 (r) f01f(s)ds

- alr) + B(r) -

Thus Hypothesis IV is obviously fulfilled.
Therefore we can apply the theory in the previous sections

to the stochastic problem
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du(t,x)=[ (1+ %gz(x))uxx(t,x)+%(gz(x))'ux(t,x)+f(t,x)]dt+

+[g(x)ux(t,x)]dwt
u(0,x)=¢(x) (7.2)
u(t,0)=0

a(tiult, N+ (t)u (t,1)=0

2
where fec;([o,T], L"(0,1)) and ¢ is a Fo—measurable random
variable with values in L2(0,1). By Theorems 5.3 and 6.6

we deduce:

THEQREM 7.1. Let g,a,R real functions such that gECZ([0,1])

with g(0)=g(1)=g'(1)=0, a,B€C1([O,T]) with «>0, 8>0,

o+8>0 in [0,T]. In addition, let Wt be a real Brownian

motion, and Ft an increasing sequence of c-algebras on

the probability space (Q,¢,P), non-anticipating with re-

spect to Wt and such that Foze and(Q,FO,P) is a comple-

te measure space . Then for each fGCF([O,T],L2(0,1) and

¢€LF (L2(0,1)), Problem (7.2) has a unique generalized
0

solution uecg([O,T],L2(0,1)).

APPENDIX

Here we want to prove the following result (see Remark

1.2):

PROPOSITION A.1. Let Hypothesis I,II hold, and suppose

that:

(1)' D{(A(t))CD(B),

(1i)' For each te[0,T] there exist Ao (E)E€p (A (L)), L(t)E
€L(H), V(£)CD(B) such that:
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(a) Aoec([ 0,T],C),Lec(lo,T],L(H))

(b) Vv{(t) is a linear subspace of D(B), dense in

D(B) with respect to the graph norm;
(c) V(t)S{x€H:BR(A (£}, A(L)XED(A(L)))

(@) [A,(£)=A(£)]B R(A (£),A(t))x=Bx+L(t)x ¥xEV(t)

Then Hypothesis III holds.

eroof. We consider conly the (unrestrictive) case

An{t!'=0. For each x€V(t) and XL, we have, as in the
' i
2
preof of Propositicn 2.4:
A

PB,ROMA(E))] (1=2A(E) )x=ROGA(EIL{t)x;  {A.1)

. . o1 . A :
sefine W(t)={1-AA{t; 1 {V{t)). As Vv{£} is Adense in D(B)
in zhe graph norm, the same is true for W(t). To prove

~hig. note %fhat, obviously, W(t)CD(B); next, if yeIiEB)

3
o
ot
(T
pob
51
Py

[l

1
2]
ot
W
e~
3
\‘fv

L
£
&
£
I
0]
[
T
)
w
ot
Q
Cr

-

my o ) chere oxists fx P TV(R] such that as e
% _»x and BXP*BX in H., Set yr=1A(t}-AjA{t) 'xq; then
IR - i 4

v EWin, and as nre o sl a(e)-alA(EY Txsy,R3y =
. ; “n - o
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BR(A,A(t))yn—R(A,A(t))Byn=—R(A,A(t))L(t)A(t)R()\,A(t))yn

YneEIN ,
and as n»« we get

[B,R(XA,A(£))]x==R(A,A(E)IL(L)A(L)R(A,A(t))x ¥xED (B)

14

vte[ 0,T] , WXEI A.3)
6
9]

Now we are ready to prove that {d) holds in the whcie

D(B). Indeed, let x€D(B): then for each nEN Dby {A.3)

we have:

A

- L L -1 ~1
Jq(t)BA(t) x=nA(t)R{n,A(t);B8A{t) x=-nBA|t} x+
2 -1 L1 2, P
+n“R(n,A(t))BA(t) 'w=-nBA(t) x+n"!BR(n,a{t)}}+
. -1
+R(n,A(t))L{t)A{L)R(n,A(L))TA(L) "x=
-1
=nB[ -1+nR(n,A(t))1A{t) " x+nR{n,A(t})L/t . nR{n.aA{t))}x =
=nBR(n,A(t))x+nR(n,A(t))L{t)nR(n,A{t))x=nR{~,Alt; 8% -
-nR(n,A(t))L(t}AL)R,A{E))x+nR(n,A(Lt)jLitnR{n,Aait) ) x=
=nR(n,A{t))Bx+nR(n,A(t))Li{t)ix,

which implies

Jq(t)BA(t}—lx + Bx+Lit)x sE e,

This proves tihat

-1

P e N WA TiapgD ™ 0T
DALt S (A () TMED IR
R
ANA
a7 ey " e 7Y W -~ - .. k4 P o lo=
At DT ARDRPL LN FREDLE .

s¢ that aypochegis 1T NOLGG.
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