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The linear non-autonomous evolution equation u’(t) -A(t) u(t) =f(t), t E [0, T], 
with the initial datum u(O) =x, in the space C([O, T], E), where E is a Banach 
space and (A(t)} is a family of infinitesimal generators of bounded analytic semi- 
groups is considered; the domains D@(t)) are supposed constant in t and possibly 
not dense in E. Maximal regularity of the strict and classical solutions, i.e., 
regularity of u’ and A(.)u(.) with values in the interpolation spaces D,,O,(l?, co) 
and DA&B) between D@(O)) and E, is studied. A characterization of such spaces 
in a concrete case is also given. 0 1985 Academic Press, Inc. 

Let E be a Banach space, and {A(t)},,l,,,l a family of closed linear 
operators on E. We consider the linear non-autonomous Cauchy problem 

u’(t) -A(t) u(t) =f(t), t E [O, q, 

u(0) =x, P> 
x E E, f~ C( [0, T], E) prescribed, 

where C( [0, T], E) is the space of continuous functions [0, T] + E.‘We are 
concerned here with the parabolic case: in other words, we suppose that for 
each t E [0, T] A(t) is the infinitesimal generator of an analytic semi-group 
{et’(‘)},,,, (not necessarily strongly continuous at 0), and its domain D@(t)) 
does not depend on t and is possibly not dense in E. In a recent paper 
(Acquistapace and Terreni [ 21) existence of strict and classical (i.e., 
continuously differentiable) solutions of (P) is proved under the same 
hypotheses of Tanabe [ 141 and Sobolevskii [ 131, provided the data x, f are 
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sufficiently regular. That paper also contains several time regularity results 
“of maximal type” for such solutions, namely, if $ belongs to a suitable 
subspace of C([O, T],E) (i.e., f is Holder continuous), then u’-and conse- 
quently A(.) u(e)-belongs to the same subspace. 

The aim of the present paper is to prove, under the same hypotheses, 
existence and “maximal” space regularity results for strict and classical 
solutions of (P), by making use of the intermediate spaces D,(,,,(B, co) and 
D,(,,(8) between D@(O)) and E: namely, iffis continuous or bounded with 
values in any of such spaces, then the same holds for U’ and A(+) u(a). 

Results of this kind are known in the autonomous case, i.e., A(t) = A (see 
Sinestrari [ 121). In the non-autonomous case, other space regularity results 
had been proved in Sobolevskii’s classical paper [ 13 ] by using the domains 
of the fractional powers of -A(t). More recently Da Prato and Grisvard [5] 
proved results similar to ours under the stronger assumption that 
4(,,(~ + 1) = c onstant for some 0 E IO, l[ (here D,(,,(B + 1) = {x E D(A(1)): 
AWx E 4&W); in addition Sobolevskii’s condition, namely Holder 
continuity of t -+ A(t) with values in the space F(D(A(O)), E) of bounded 
linear operators from D(A(0)) into E, is replaced in [5] by the assumption 
that t + A(t) is continuous with values in ip(D,(,,(B + l), D,(,,(Q). 

As in [2], our method does not require the construction of the 
fundamental solution; it is based instead upon a representation formula for 
the solutions of (P), and all our results are obtained by a careful analysis of 
it. The formula that we used in [2] is different from the present one: the 
former required suitable time regularity assumptions onf, while the latter is 
meaningful provided f has suitable space regularity properties. Of course iff 
is assumed to be regular both in time and in space, then both formulas apply 
and in fact they coincide. 

Our representation formula can be derived by the following heuristic 
argument: if u solves (P), fix t E IO, r] and consider the function 

u(s) = e (f-sMI)U(S), SE [O,t]; 

the first derivative of u(s) is 

u’(s) = -A(t) e(t-s)a(r) u(s) + e(f-s)acf)(A(s) u(s) +f(s)) 

= e(t-s)A(‘)(A(s) -A(f)) u(s) + e(r-s)a(t)f(s). 

Integrating over [0, t] we get 

u(f) - etA(l)x = 1’ e(r-s)A(r)( 1 -A (t)A((s)-‘) A(s) u(s) ds + 1: e(t-s)A(l)S(s) ds, 
0 



170 ACQUISTAPACE AND TERRENI 

and applying A(t) we obtain an integral equation for A(t) u(t): 

~wu(r)-p(~) e(f-s)A(f)(l --A(t’)A(s) U(S) ds 

= PI(~) efA(‘)x + I ’ A(t) e’f-s’A”‘f(s) ds. 
0 

Denoting by H the integral operator 

fw) = c’ ‘4(t) e(f-s)d(f)(l -A(t*)g(s)ds, t E [O, Tl, 
0 

we check 

A(t) U(t) = (1 -H)-’ A(t) efaCf)x + ‘A(t) c(f-s)a(f) J 0 
f 6) ds) 7 

or 

where 

u(t)=A(t)-‘((1 -H)-‘(L(.,O)x+Lf)(t)), (O-1) 

L(t, s) = A(t) e(f-s)A(f), O<s<t<T, 

Q(t) = if L(t, s) g(s) ds, 
0 

t E [0, T]. 

This procedure is quite heuristic and we need to give some sense to it. We 
will see that the integral operator Z-Z is of Volterra type with integrable 
kernel, and that the operator L is well defined on the space of bounded 
functions with values in some D,(,,(B, 03). Thus if we takefin such a space 
and x suitably regular, formula (0.1) will turn out to be perfectly meaningful 
and will give the desired representation of the solutions of (P). 

Let us describe now the subjects of the next sections. Section 1 contains a 
list of notations, definitions and assumptions; in Section 2 we establish some 
preliminary results. In Section 3 we derive the basic technical background 
which is needed to prove our main theorems. In Section 4 we discuss the 
existence of strict and classical solutions. Section 5 is devoted to space 
regularity results. Finally in Section 6 we illustrate an example where an 
explicit characterization of D,(8, co) and DA(e) is given, when A is a second 
order ordinary differential operator with Neumann boundary conditions in 
the space of continuous functions. A similar characterization in the case of 
several variables and more general boundary conditions will be given in a 
forthcoming paper. 
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1. NOTATIONS AND ASSUMPTIONS 

Let us list some notations. If A is a linear operator on a Banach space E, 
we set: 

D(A) = domain ofA, R(A) = range ofA, 

p(A ) = resolvent set of A, a(A) = spectrum ofA, 

R&A)=@-A)-’ foreachAEp(A). 

If X, Y are Banach spaces, we denote by 9(X, Y) (or simply 9(X) when 
Y = X) the Banach space of bounded linear operators with domain X and 
range contained in Y, with the usual norm 

Let Y, E two Banach spaces, with Y continuously imbedded into E. We shall 
make use of the following Banach spaces of functions: 

(a) B,(O, T, Y) = (u:] 0, T] + Y: u is strongly E-measurable and 
su~,,~~,~~ II ~~~(~)lI, -C 0~) }, with norm 

when /3 = 0 we shall simply write B(0, T, Y) instead of B,(O, T, Y). 

(b) C,(]O, T], Y) =.{u E B,(O, T, Y): U: IO, T] -+ Y is continuous}, 
BE [O, 11, with the norm of B,(O, T, Y), and its closed subspace 
C,([O, T], Y) = {u E C,(]O, T], Y): 3 lim,,,+ t%(t) E Y}; when p = 0 we 
shall write C([O, T], Y) instead of C,([O, T], Y). 

(c) C”([O, T], Y) = {u E C([O, T], Y): IIu(t) - u(r)/jy = O(lt - rl”) as 
/ t - rl+ 0 + }, 19 E 10, I[, with norm 

and its closed subspace he([O, T], Y) = {U E Ce([O, T], Y): lldt> - uO-liy = 
o((t-rr(e) as (t-rl+O+}. 

(d) Lip([O, T], Y) = {u E C([O, T], Y): llu(t) - u(r)/ly = O(ll- rl) as 
(l-t-+0+}, with norm 
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(e) C’([O, T], Y) = {u E C([O, T], Y): u is differentiable and u’ E 
C([O, T], Y)}, with norm 

II 41 C~(~O,zI,Y) = II4lc~~o,TLY~ + I/~%,,,,],,). 

We shall also consider the following spaces of functions: 

(f) W+, T, r) = f7sPlo,rl B@, T, y) and 
(g) c( [0, T], Y), P(]O, T], y>, he(]O, T], Y)W IO,1 [I, WIO~TL 9, 

C’(lO, Tl, y>, 
which are defined similarly. We observe explicitly that C(]O, T], Y) and 
C,(]O, T], Y) are different spaces. 

Now we list our assumptions. 

HYPOTHESIS I. For each t E [0, T] A(t) is a closed linear operator on 
the Banach space E, with domain D@(t)) E D@(O)) independent of t, which 
is the infinitesimal generator of a bounded analytic semi-group {elA(f)}s>o. 
More precisely: 

(i) there exists BOG] 7r/2, n[such that 

p(A(t))cC={zEC:(argzl<8,}U{O}, VtE [0, T]; 
0, 

(ii) there exists M > 0 such that 

IIW9AW)ll Y(E) < fi v1 E cOo - i” 1, IlAW’ II &f(E) < bf ‘it E [o, Tl. 

HYPOTHESIS II. There exist a E IO, 1 [ and K > 0 such that 

II 1 -A(t’II,,, <Kit--TI=> Vt, r E: [0, T]. 

Remark 1.1. D(A(0)) is not supposed to be dense in E; however, if 
Hypothesis I holds and E is locally sequentially weakly compact (e.g., E is 
reflexive) then necessarily D(A(0)) = E (see Kato [6]). 

Let us recall our definitions of solutions of Problem (P) (see [2]): 

DEFINITION 1.2. Let fE C([O, T], E), x E E; a function u E C([O, T], E) 
is a strict solution of (P) if u E C’([O, T], E), u(t) E D(A(0)) Vt E [0, T] and 

u’(t) -A(t) u(t) =f(t) in [O, Tl, u(0) = x. 

DEFINITION 1.3. Let fE C(]O, T], E), x E E; a function u E C([O, Tl, E) 
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is a classical solution of (P) if u E C’(]O, T], E), u(t) E D@(O)) Vt E IO, T] 
and 

u’(t) -A(t) u(t) =f(t) in IO, rl, u(0) = x. 

In (21 a weaker type of solution is also considered, namely the strong 
solution. We will not study such solutions here: we just recall their definition 
and some related properties. 

DEFINITION 1.4. Let f~ C([O, T], E), x E E; a function u E C([O, T], E) 
is a strong solution of (P) if there exists {u,},,~ s C’([O, r], E) such that 
u,(t) E D@(O)) Vt E [0, T] and n E N, and 

u,+ u in C([O, r], E) 

u:,-A(*)u,(.)rfn~f in C([O, T], E) 

u,(O) = x, + x in E. 

Remark 1.5. By definition it is clear that a strict solution is a classical 
and a strong one. It can be seen also that a classical solution is a strong one, 
provided fE C( [0, .T], E) and Hypotheses I, II hold ([2, Remark 6.71). In 
[2] the following necessary conditions are proved under Hypotheses I and II: 

(a) if Problem (P) has a strict solution, then x E D@(O)) and 
‘4 (0) x +f(O) E W(O)) ; 

(b) if Problem (P) has a classical (resp. strong) solution, then 
x E D@(O)). In addition, the strict (or classical, or strong) solution is 
unique. 

About existence, under Hypotheses I, II the following properties are 
known ([ 21): 

(c) if fE C”( [O, T], E), x E D(A (0)) and A (0) x +f(O> E D(A (0))) 
then a strict solution exists (Theorem 4.3); 

(d) if fE C,(]O, T], E)n C”(]O, T], E) and x E D@(O)), then a 
classical solution exists (Theorem 5.4); 

(e) if fE C( [0, T], E) and x E D@(O)), then a strong solution exists 
(Theorem 6.4). 

2. PRELIMINARIES 

Let A be a closed linear operator on the Banach space E, satisfying 
Hypothesis I; then the bounded analytic semi-group {elA(‘)jlxO can be 
represented by a Dunford integral 
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where y=y’Uy+Uy-,and 

y”={zEC:]z]=1,]argzI&8}, 

y*={zE@:argz=*f?,]z]>l}, 

with 6 E ]n/2,8,[. The operator elA maps E into n nE N D(A “) for each 5 > 0 
and 

the integrals being absolutely convergent. 
If A is a closed linear operator on E, then its domain D(A), equipped with 

the graph norm, is itself a Banach space continuously imbedded into E. It is 
then possible to construct the interpolation spaces (D(A),E),,, and 
(D(A),E),, u E 10, l[, as follows (see Lions [7], Lions and Peetre [8], 
Butzer and Berens [3]): 

DEFINITION 2.1. Let x E E; we say that x E (D(A),E),,, (resp. 
(D(A), E),) if there exists u: 10, l] -+ D(A) having first derivative (in the 
sense of distributions) u’: IO, l] -+ E, such that 

(i) u’, AuEC,(]O, l],E) (resp. C,([O, l],E) with liml,,+(lt”u’(t)j(,= 
lim,,,+IIt"Au(t)lj, = 0) 

(ii) u(0) = x. 

Condition (ii) is meaningful because from (i) we easily deduce that 
u E C’-“([O, l], E). 

Clearly 

D(A) s (D(A), E), G (D(A), E),,, s (D(A), E), E D(A) if 0 < /I < u < 1. 

If in addition A generates a bounded analytic semi-group, the spaces 
WW%e,, and (D(A),E),-,, BE IO, I[, are denoted by D,(8, co) and 
D,(8), and can be characterized in several ways (see Butzer and Berens [3] 
for the case D(A) = E and Acquistapace and Terreni [l] for the general 
case), namely: 

(2.1) 
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DA(e) = 
I 
x E D,(8, co): pim+ ~pQ$Xl~,=O~ 

= 
I 
x E DA(f?, co): ,“y+ ](t’-eAefAx]]E = 0 + I 

(2.4 

= xED,(8, al): p, I IIIIJeMqbqxll,=o I - Ill-+cO 
DA(8, cx,) becomes a Banach space with the norm 

(2.3) 

which is equivalent to the usual norm of (D@(O)), E), -8,m (see [3]). It can 
be seen that there exist co, c’, C” such that 

Hence the quantities in 
addition, 0 E p(A), the 
D*(& co ). 

If 0</3<B< 1 we 

Gc” p;, lIl~le~w4ellE. (2.4) 

(2.4) are equivalent semi-norms on D,(O, co). If, in 
semi-norms in (2.4) become equivalent norms on 

easily get that the inclusions D(A) E DA(B, 03) c 
DA@, co) c D(A) are continuous, i.e., 

II4 G c IlxlID,L%m~ Vx E DA@, a), 

IIXII ~~(4.m) G C IIXllo,ce,~j vx E D,(& a’), (2.5) 

Ilxll o,(e,o0) G c llxhq,4) Vx E D(A). 

Remark 2.2. It is useful to observe that if 0 E p(A), x E E, r > 0 and 

sup pe llARCuT~>xllE < 00 (2.6) 
UcIr,mI 

then x E D,(O, co). Indeed, if (2.6) holds, then it is easily seen that 
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Therefore we will sometimes consider the quantity 

with r > 0; under the above assumptions, it defines a norm on D,(6’, co) 
equivalent to (2.3). 

It can be verified that for each 8 E IO, 1[ DA(e) is a closed subspace of 
D,(8, co) which coincides with the closure of D(A) in the norm of DA(O, a~) 
(see Butzer and Berens [3, Chap. III, Proposition 3.161, or Sinestrari 
[ 12, Proposition 1.81). 

Let us assume, from now on, Hypotheses I and II. In the rest of this 
section, unless otherwise specified, such assumptions will always be 
supposed to hold. We will state some results of general character, whose 
proofs, when omitted, can be found in [2], Martin [lo], and Sinestrari [ 121. 

LEMMA 2.3. There exists C > 0 such that 

llRU,A(I))-RU.A(r))llY,,,~c~ VA E x~,~ - {0}, Vt, r E 10, Tl. 

ProoJ It is sufficient to note that 

R&A(t)) - R&A(r)) = R(U(t))(A(t)A(r)p’ - l>A(r) R&A(r)). 1 

As a direct consequence of the fact that D@(t)) does not depend on t, we 
have: 

PROPOSITION 2.4. For each t E [0, T] and 8 E IO, 1[ we have: 

DA& a)= D,(o,(4 001, DA(t)(e) = DA(o)(e); 

in addition there exist C,, C, > 0 such that ifx E DA&B, m) 

Proof. See Lemma 2.3 in 121. 1 

From now on we shall simply write 

llxlle = I14iDA(0)(f3,m) ve E lo, i [, vx E DA(0)(ey a>. 

PROPOSITION 2.5. Let BE IO, l[. 

(2.8) 
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(i) The following statements are equivalent: 

(4 x E 4dO 
(b) lim 

0, Z-1; 
,-h,+~,A~z~oIJIo IIA(t)R(~,A(t))xlI,=O uniformly in tE 

(c) liml+o+ Fe l/A(t) e bA(f)xjIE = 0 uniformZy in t E [0, T]; 

(d) liml,O+ IlelA(‘) - l/r” x/IE = 0 uniformly in t E [0, T]. 

(ii) The following statements are equivalent: 

(4 g E C([O, TL 4&W 
(b) lim uniform& in 

s, t E 10, Z-1; 
Il14m,AEzs, IV IIA(t)R(~,A(t)>g(s)/l, = 0 

(c) liml,,, <lPe I&4(t) e lA(f)g(s)IfE = 0 uniformly in s, t E [0, T]; 

(d) lim,_,+)l((e”““’ - 1)/r”) g(s)iiE = 0 uniformly irz s, t E [0, T]. 

ProoJ: (i) (a) 3 (b). Let x E DA&B) and let E > 0. By (2.2) there exists 
M, > 0 such that 

1 E q?“, /A/ > M,* IV8 II~(O)~(~~~P))4,< E. 

Since 

A(t)R(~,A(t))-A(O)R(~,A(O)) 

=AR(A,A(t))(A(t)A(0)p* - l)A(O)R(&A(O)) 

it follows that if A E Ee, and I,4 I > M, 

IlIe IPWR@~~W)xII~< (1 + CT? IdIe II~(~)R(~~~(~>)xll, 
< CE Vt E [0, T]. 

(b) + (c). Let E > 0. By hypothesis, there exists M, > 0 such that 

A E .&Jo’ IAl > M,* l~leII~(OR@~~W)-41, < E Vt E [0, T]. 

Now if 6 > 0 we have 

<‘-‘A(t) ezA(‘)x =&J Yc’pB ef*A(t)R(A,A(t)xdA 

1 
III-- 

hi I 
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so that 

hence if r ( l/M, we get 

yqA(l) f?bA(t) vt E [O, 7-l. 

(c) S- (d). Let E > 0. By assumption, there exists 6, > 0 such that 

< < 6,=a y1-e ,,A@) ebA(t) X,lE < E vt E [O, T]. 

Thus if { < 6, we get 

(d) 3 (a). Obvious. 
(ii) (a) 3 (b). If g E C((0, T], D,(,,,(8)), for each E > 0 there exist 

s, ,..., s,,~ E [0, T] such that 

min II g(s) -iT(Si < E l<i<n, 
vs E [O, T]. 

For each i, 1 < i < n,, we have by (i) 

lim 
I.u+m 

IAle IIA(t)R(n,A(t))g(s)ll, = 0 uniformly in t E [0, T]; 

~E~eo 

hence there exists M, > 0 such that if A E ZeO and 1 A ( > M, we have 

,jpm IAle IIA(t)R(12,A(t>)g(s)ll, < E + ,,tym lLle IIA(t>R(I1,A(t)>g(si,>/l, 1 -a 
aezeo aeLeo 

< 2E vs E [O, T] 

provided i, = $(s) is such that 11 g(s) - g(Si,)I)e < E. 
(b) S- (c) * (d) S- (a). These implications are proved similarly. 1 

PROPOSITION 2.6. Let 0 E 10, l[. 

(i) If x E D,(,,(I~) then limt,,+ (1 (etAo) - 1) X/Is = 0 Uniformly in 
s E [O, T]. 
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(ii) If g E C([O, T], D,(,,(@) then lim,,,, II (efAcs) - l)g(r)ll, = 0 
uniformly in 5, r E [0, T]. 

ProoJ: (i) Let E > 0; by Proposition 2.5(i) there exists 6, > 0 such that 

lltl-eA(s) erAcs)xllE < e, ~~e~A~;(J’ XiiE<C vt E 10, J,[, vs E IO, Tl. 

Hence for each t E 10, S,[ we have Vs E [0, T] 

Il<‘-eA(s) e6A(s)(efA(s) - l)& 

< IJefA(s) - 1 JlycE) I/(‘-“A(s) etAA(‘)xllE < Ce if <<I 

< II 06) ebAcs) YcE) ‘I II 

e’A’“’ _ 1 
re x II < Cc if f!j>t 

E 

and the result follows. 
(ii) For each E > 0 there exist I,,..., rnEE [0, T] such that 

,$i& II &T(r) - g(ri)lIo < E Vr E [0, T]. 

Taking into account (i), the result follows easily. 1 

PROPOSITION 2.7. We have: 

(i) D@(O)) = {x E E: t + etAtS)x E C( [0, T], E)} 
= {x E E: lim,,,, Ile fA(s)X -XII, = 0) vs E [O, T]. 

(ii) D@(O)) G {x E E: t b ((etAcs) - 1)/t) x E B(O, T, E)} 
={xEE:t-,A(s)e fA(s)~ E B(0, T, E)} Vs E [0, T]. 

(iii) Define D = {x E D@(O)): A(0) x E D@(O)) }; then 

D= xEE:t+ 
I 

= x E D@(O)): lim 
I 

= {xEE:t-+A(O)e fA(o)x E C([O, T], E)} 

= 
I 
x E D@(O)): ft~+ IIA(O)e”“‘x -A(O)xll, = 0 . 

t 

Proof: See Lemma 2.5 of [2]. I 
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By Proposition 2.1 we see that the definitions of the spaces D,(,,(d, co) 
and D,(,,(tY) are meaningful for 8 = 0 and 8 = 1 also: when 0 = 0 we get 
D,(,,(O, co) =E, D,&O) = D(A(0)); when ~9 = 1 we get D,(,,(l) = 
kerA(0) = {0}, while the space D,(,,(l, co is intermediate between D(A(0)) ) 
and fL~o,lIDAdO 

However, in order to simplify notations and statements, from now on we 
shall adopt the following convention: 

CONVENTION 2.8. D a(o# 00) =E D,o,(O) = W(O)), D,(o,(L a> = 
W(Wy and DA(,) (l)=D={xED(A(O)):A(O)xED(A(O))}. 

The following definition is useful, too: 

DEFINITION 2.9. For each 0 E IO, 1[ we set 

D,&8 + 1, co) = (X E D(A(O)):A(O)x E D,&@ co)}, 

D,(,,,(8 + 1) = {X E D(A(0)): A(0) X E D,d@I. 

LEMMA 2.10. We have: 

(i) IIA(s)“e’A(S) /I iP(EJ < c,/t” vs E [0, r], Vt E 10, Tl, Vn E N. 
(ii) 11 A (r) efACS) II i”(~,(o,(D,m),y < cp vr, s E IO> TIT vt E 10, Tl, 

VP E IO, 1 I. 
(iii) IJA(s)“e’A(S)II yJ(n,,o,(&~),,y) < cny vs E 10, a vt E 10, *I, 

V/?i[O, 11, Vn E N. 

Proof(ifi(ii). See [2, 10, 121. 
(iii) If x E D,(,,,(,d, co), /I E [0, 11, we can write 

11 A(s)“etA(S’ XIIE G lIA@Y ’ efA(s)‘z IIiPcEj II44 e’A’S”2 Il~~DA~~,~~,m~,E~ II4 
c c 

G ($t)“-’ ($)‘-5 ---“-llxll+xl,. 1 

LEMMA 2.11. For each t, r E [0, T] and s E IO, Tl we have: 
(i) 

IO, 11, 
II eSA”’ - esACr) I~IP(~,(~,(~,~),D,(~,(B.~~)) G C(lt - rlalsB+‘) ve, P E 

(ii) llA(t) esA(” -A(r) esAcr) IliP(o,o,(D,m),~,,o~(~,~)) 
,<~(lt--l”/~i+e-o)v,e,p~ [o, 11. 

ProoJ We will just prove (ii) in the case 8, /I E IO, 1 [, since (i) and the 
other cases of (ii) are quite similar (and even simpler). 



MAXlMAL SPACE REGULARITY 181 

Let 0,pE IO, l[ and take xED aCOj(,/3, co). Then obviously (A(t) esACt) - 
A(r) esAtr)) x E D@(O)) G D,(,,,(@; taking into account Remark 2.2, we have 
to estimate the quantity 

SUP 
LLEfZ,ool 

#p(t) R@, A(t))(A(t) esacr) -A(r) esAcr))x/IE. 

Now if ,D E [ 2, co [ 

pe [IA(t) R@, A(t))(A(t) eSA”’ -A(r) esA(“)) xjiE 

where we have used the estimate 

(2.9) 

to prove (2.9) observe that if A f y and p > 2 we have IA - ,u/ > @ - 1) V IAl, 
so that 

Hence we have 

)I (A(t) esact) -A(r) esAfr)) xlje < C# lIx/Is Vr, r E [O, TIP VS E 109 Tl 

and the result follows. 1 

Finally we have the following inclusion property: 
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PROPOSITION 2.12. For each PE IO, l] and 8E [O,P[ 

C([O, Tl, E) nB(O, T, Da(o)@ a~)) G NO, Tl~4,o,PN 

with continuous inclusion. 

Proof. Let g E C( [0, T], E) n B(0, T, DAcO,(p, co)) and take E > 0. There 
exists 6, > 0 such that ]] g(t) -g(r)]], < E provided ] t - r] < 6,. Hence if 
It--r1 <d,we get 

which implies 

II g(t> - dr>II, = 41) as (t-r(+O. I 

Remark 2.13. In the next sections we shall use the following property: If 
u E B,(]O, T], D,(,,(8, co)), p E [0, l[, 0 E IO, l[, then the function 
t-, II u(t>lle can always be assumed Lebesgue measurable (and therefore 
integrable over IO, T]). Indeed, the real function t + IIu(t)IIE is obviously 
Lebesgue measurable; on the other hand, it is easily seen that another 
equivalent norm in D,(,,(B, co) is given by 

I/XII* = ;tp~ ne II~P>W,AP))xll~, x E h(,,(e, 4: 

now t-i liu(t)ll* is a measurable function, since it is the supremum of a 
countable family of real measurable functions. 

3. BASIC LEMMATA 

This section contains a list of technical results which analyze in detail the 
operators and functions appearing in the integral equation (0.2) and in the 
representation formula (0.3) of the Introduction. We follow the same lines of 
Section 3 in [ 1,2], where a similar sequence of statements is given. 

Throughout this section, unless otherwise specified, Hypotheses I and II 
are assumed. We also recall Convention 2.8 about the symbols DAo,(B, co) 
and D, (o,(e) for 0 = 0, 1. 

(a) The Function t -+ L(t, 0) x = A(t) etA(‘)x 
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LEMMA 3.1. We have: 

(i) Ifx E E, then L(., 0) x E Ca(]O, T], D@(O))); 

(ii) L(., 0) E 9(DAo,(R co>, B,-e+,(O, T DAcO,(~, ~1) VcE LO9 43 
tree [O, 11; 
ox E gi) L(., 0) E Y(D, C([O, T], E)) and in particular L(0, 0)x =A(O)x 

(it) L(., 0) E 9(DAc,,(B + 1, a>, BP, C DA&Q)) VeE PA aI; 
cv) L(-, 0) E 4ap,(,,(e + u cm n 4dw) ve E 10~ 4 

(vi) L(., 0) E .q&,)(e + 1, CO), P([O, T], -9 Ve E 10,4; 
(vii) L(., 0) E 9(D,&‘+ l), he([O, T], E)) VBE 10, a[. 

Proof. (i) If x E E and t E IO, T] then evidently L(t, 0) x E D@(O)). 
Moreover if 0 < E < r < t < T we have: 

IlL(t, 0) x -WY O)4cA(o)) 

< 114) e fan -A(r) e’A(‘)xIID(A(Ojl 

+ llhr) e fan -A(r) erA(r)xIID(A(Ojj 

(3.1) 

where we have used Lemma 2.11 (ii) in the case 0 = 1, /3 = 0. 
(ii) We just consider the case 8 E IO, 1[, 0 E IO, 01, since the others are 

even simpler. By (i), L(t, 0)x E D,(,,( r~ ) f or each t E IO, T] and in addition 

(iii) Let x E D. By (i) and (ii) (with B = 1, (T = 0) we only have to show 
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that lim ,,,+lIL(t,O)x--A(O)xll,=O; by Lemma 2.11(ii) (case S=O,p= 1) 
and Proposition 2.7(iii) we have as t + O+ 

ll~(t)e’“‘~~x-~(O>x~l~~ll~(t)e’A”’x-~(~)e’A’o’xll~‘~~~~o~~,~~llxll~~~~~~~ 

+ 11 (P’O) - l)A(O)xll, < ct= II~(o)xllE + O(l). 

(iv) Again, we omit the (obvious) case 8 = 0. Let x E D,‘,,(8 + 1, co), 
0 E IO, a]. For each t E [0, T] 

llA(t) e’A’f’xll, < II efA”‘(A(t)A(0)-’ - l)A(O)x(l, + ~Ie’A”‘A(0)xl10 

< sup )l{‘peA(t) e (~+*‘““‘(A(t)A(O)-’ - l)A(O)xll, 
I>0 

+ ;u,{ lIFeA e’5+“A”)A(0)xIIE 

gcl’-e a 
5+It Il~(O)xllE+CIl~(O)xlle<w(0)xlle. 

(v) Let 8 E IO, a[. By (i) and (’ lv we only need to prove that lim,, + ) 
IIL(t, 0)x--A(0)xlle= 0. By Lemma 2.1 l(ii) (case 8 E [0, a],/?= 1) and 
Proposition 2.6(i) we get as t + O+ : 

IV(t) e ta’f)x -A(O) xll, < llA(t) P”) -A(O) efA”) Il~‘D~A~O~~,D,~~,~B~~IIxIID~A’o~~ 

+ 1) (efA’O) - l)A(O)xl(,< Ct”-’ IIA(0)xllE + o(l). 

(vi) LetxED,~,,(0+1,oo),0E]0,a].1f0~r<t~Twehave 

l/A(t) etA’t)x - A(r) erA’r)xIIE 

< \lA(t) etA’l)x -A(r) efA@) x/I, + lt A(r)’ e”“‘xds~~ 
/I r E 

G IV(t) etA”) -A(r)e’A”‘lIrP(D’A(0)),E) llxllD’aco,, 

/II 

t 
+ A(r)‘esA”)(A(r) A(O)-’ - 1) A(0) xds 

I II 

l/I 

t 
+ 44 e r 

s”‘r)A(0)xds,,E<C /(t-r)a+,:fdsi IIA(0)xllE (3’2) 

.ci’ ds ~l140)xlle<C(t-r)” llA(O)xll,+ C(t-r)” llA(0)xllo. 
rS 
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(vii) Let x E D,(,,(B + l), 8 E IO, a[. By (i) and (vi) we have to show that 
ifO~r<t,<T,thenIJL(t,O)x-L(r,O)xJJ,=o(t-r)Bast--YO’.Asin 
(3.2) we check 

lIA (t) efA(‘)x - A(r) erA(r)~J(E < C(t - t)” (IA (0) x/lb 

+ 
/(I 

t A (r) esAcr) A (0) XdS ; 
r II E 

now by Proposition 2.5(i) we have as t - r --) O+ : 

II j 

I 
A(r) esacr)A (0) xds 

r II I; 

I 

I 
<C 

ds 
r (s - r>Ipe 

o(1) = o(t - r)B, 

and the result follows. 1 

(b) The Operator Lg(t) = I‘; A(t) e(‘ps)A(r) g(s) ds 

LEMMA 

(9 

(l;;; 

(iv> 

(VI 

(4 

(vii) 

3.2. We have: 

L E LF(B,(O, T, D,(,,(& 00))) V/3 E [O, I[, Vf? E IO, I[; 

L E L@(C,(]O, T], D,(o)(@)) VP E 1% I[, V6’E 10, l[; 
L E Y(C([O, T], DAJ6))) V6’E IO, 1 [; in particular Lg(0) = 0 
Vg e C([O, Tlv 4(0,@9); 
L E Y’(B(O, 7’3 D,,(,,(& co)), Ce@, Tl,E)) Ve E 10, ali 

L E y(C([O, T], D,(o)(e)), he@), Tl, El) V6’E 10, a[; 

zf g E z&(0, T, D,(,,(e, co)), P E IO, I[, 6’E 10~4~ then Lg E 
C”(]O, Tl, E); 
zf g E C,(]O, Tl, 4,,,(e)), P E LO9 1 L BE IO,4 then Lg E 
he@, Tl, E). 

Proof(i) For each < > 0 and t E IO, T] we have 

~(t)2~(d+l-S)A(t)~(~) ds 
II E 
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II gll Bi)(O,T*D~(~)(e,m)) 

I 

t ds 
t/2 (r+t-s)‘- 

x II gll B5(0,T,Da(o)(e,03)) 

G c II &A B5(o.7-,~,(,)(e,~))* 

(ii) By (i) we have only to show that Lg E C(]O, T], D,&8)) whenever 
g E C,(]O, T], D,(,,(8)). Let us first prove that Lg(t) E DA,,,(O) for each 
t E IO, 7’1; we have 

lim Ilr’-eA(t) e”(“Lg(t)I/, 
t+o+ 

l/j 

I 
< lim 

t-o+ 0 
rl-eA(t)2e([+l-s)A(I) (g(s) -g(t)) ds 

II E 

+ /$+ I(~l-eA(t)e”A’f’(e’A(” - 1) g(t)ll,. 

The second term on the right-hand side is zero since g(t) E D,(,,(8); let us 
verify that the first term also vanishes. Take E > 0; for each q E IO, t[ there 
exists B(E, q) E IO, t - q[ such that /I g(s) - g(t)/Ie < E provided s, t E [q, T] 
and [t--s\ < 6. Hence 

2 e(t+t-s)a(f)( g(s) - g(t)) ds 
II E 

Gc j; ((+t-g-e I 
ce 

II g(s) - g(t) Ile ds 

Fe 

+jI-8 (<+&q-e II Al c(l~.u,DA,o)(e))ds 

+Jt t-s (t+:z:)z-e IIP(S)-g(f)lledS\ 

<C 
Fe 

(r+r-q)2-e I “%gll 
0 s4 

C~(IO,TJ,D”(lJ,(e)) 

+ c (c i’s):-e (f - 6 - V> II 8lIcu, 7-l o,,o,(e)) , * 

+C&c’-e L- 
L (1-e (5+k)‘” ’ 1 
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which implies 

limsyp 
l/r 

fr1-e~(t)2e([tr-s)A(1)(g(s) -g(t))& < CE YE > 0. 
0 E 

Next, we have to show that if 0 < q < r < t < T 

sup IIr'-eA(t)e~~A'f'(Lg(t)-Lg(r))(I, = o(l) as t--r+O+. 
I>0 

We write 

Lg(t)- Lg(r)=~fA(t)e'f~S'"'f)(g(s)-g(t)) ds + (e”-“A(t) - 1) g(t) 
r 

+jr (A(t) e(f-s)A(f) -A(r) ecf-s’A(r))g(s)ds 
0 

+ ~~~rf~~A(r)2 e"""'(g(s) -g(r))dqds 

+ (er.w) _ l)(e(f-rM(r) - 1) g(r)=A, +A, +A, +A, +A,. 

We estimate each term as follows: 

5>0 I 
1 

,< c sup (Fe 
I (r+t-s)2-e 

II g(s) -g(t>ll& = o(l) ast-r-to+, 

since g E C([% Tl, DAco,(4); 

Mle = 41) ast-rdO+ (Proposition 2.6(i)); 

= c 

<C 

X 

<c 
I 

r (t-r)= 1 
t _ s 7 ds II gllc,~lo,Tl.D,,,,(~)) 

/;y2 a-. +j.;,2 .a. dsl II gllc,(lo,=l,o,,,,ce,, 

! 
; (t - r)” loq’, $ + & (t - r>” 1% ( 1 + A) 

II dl c,(lo,rl,DA(o,ce,~ = 41) ast--rot, 
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where we have used Lemma 2.11 (ii): 

J(A& < ;yg 
II 

“^‘iev ’ (erAcr) - l)(e”~“A(r) - 1) g(r)/j 
E 

< C IJ(e”-“A(r) - l)g(r)]], = o(1) as t-r+O+ 

by ‘Proposition 2.6(ii). 
Finally to estimate A, let E > 0 and choose 8(s, q) E 10, jq[ such that 

II g(s) - d~>Ilo < E P rovided s E [q, T] and ] r - s I < 6. Then we have 

+ cepe fr L 
1 1 

‘r-S (r-S+()*-e - (t--s+)*- ds I 1 

< C(q, E)(f - 4 + Cc, 

and consequently IIA,l(o = o(1) as t-r-r 0’. 
This shows that Lg E C([Q T], D,(,,(t9)) and the result follows. 

(iii) The proof is similar to the proof of (ii), but simpler, and we omit it. 
(iv) Let 0 < r < t < T. Then 

IILg(t) - Lg(r)II, Q 
II 
it A(t) e(t-s)A(t) g(s) ds 
r II E 

+ 
/I 
1: (A(t) ettpsJAtt) -A(r) e(‘-S’A”‘)g(s) dsil 

E 

+ II ,,‘I’-: A(r)* eqA(“g(s) dqdsiiE, (3.3) 
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which implies 

189 

+ 
II 
j:j:I: A (r)’ eqAcr)g(s) dqds /lB. (3.4) 

The first term can be rewritten as 

A@) e(t-sMu) (g(s) -g(t)) ds + (e(‘-r)A(‘) - 1) g(l) 
II 

; (3.5) 
E 

now as t-r-+0+ 

and by Proposition 2.5(ii) we have )I (e’f-“A(‘) - l)g(f)(J, = o(t - r)’ as 
t--r-+0+, so that 

A(t) e”-S’A(‘)g(s) ds 
II 

= o(t - r)” as t-r-+0+. (3.6) 
E 
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Finally the third term in (3.4) becomes 

r-a t--s 

111 J 

A(r)2 eqAcr) 
0 r-s 

g(s) dqds + I:_, j:I: A(r)’ f+@)( g(s) - g(r)) dqds 

+ (esAcr) - l)(e(t-r)A(r) - l)g(r) 
II 

, (3.7) 
E 

where 6 = 8(c) is such that 1) g(s) - g(r)II, < E as 1s - rl < 6. Now we have 

A(r)* e@“’ g(s) dqds 
E 

/II 

r-6 

J 

t-s 
= AW 

(t--sM(*) A(r)e’4-*+s)A(*) 
g(s) ws 

,c; J 

r--s E 

r-a ] t-s 1 
0 

G r--s (q-r+s)l-e IIk--+~Yw9 

X e(q-r+s)a(r)g(s)IIE dqds 

< c $ o(t - ?y = o(t - ry as t--r-+0+, 

r 

IIJ J 

t--s 

A(r)* eqA”‘( g(s) - g(r)) dqds 
r-a t--S E 

/I g(s) - gWll, ds < Cs(f - r>” ift - r < 6, 

and by Proposition 2.5(ii) 

II (e 
&A(r) _ l)(e’t-r’A(r) 

- 1) &9lI, = 00 - 4” ast-r-+0+. 

Hence we have 

.I t--s 

l/J J 

A(r)* e4R(r’ g(s) dqds 
0 r--s Ii 

= o(t - r)” ast-r-O+. (3.8) 
E 

By (3.4), (3.6) and (3.8) we finally check 

II Wf) - QYW IIE = O(f - rY ast--r-t+. 
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(vi) Let E < I < t < T. As in (iv) we get (3.3); from (3.3) we derive 

+C 
t-r 

I r12 f!F II Al (+c)2-o ‘0 SD B~(O,T,D,,c,,(-9.~)) 

I 
+c 

J [ 
1 1 

c,2 cr _ ,)1-e - ct _ ,>I-0 
I 

11 glle(c/=.T.D,,~,(8.oa,, 

< C(c)(t - r)‘. 

(vii) Let q < r < t < T. We start from (3.3); since g E C( [r,r, T], D,,,,(B)), 
the first term on the right-hand side of (3.3) can be estimated as in (v), so 
that (3.6) holds. The second term can be treated as in (vi), obtaining 

(A (t) e(t-S)A(f) -A(r) e(f-s)A(r))g(s) ds 
!I E 

< c(t - r>a J; ct _ s$Os, 11 gll=,(lO,Tl,D,,,,(e)) 

= o(t - r)” as t-r-+0+. (3.9) 

To estimate the third term in (3.3), we split it as in (3.7), where now 
6 = d(E, v) E IO, fr[ is such that 11 g(s) - g(r)II, < E as IS - r/ < 6 (this is 
possible because g E C([fq T], DAcO)(0))). The three terms in (3.7) are 
estimated as follows: 

A(r)’ e’@“‘g(s) dqds 
E 

I 
r-6 

<C t - r 0 ’ 11 glIC~(IO,T,,DA(O,~B)) = ‘@ - r)” (QrpO so as t-r+O+, 
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r 

Ill J 

t-s 
A(r)* eqAtr)( g(s) - g(r)) dqds 

r-S r--s II E 

Gr 
I I 

t-sdqI/g(s)-g(r)l/eds<C~(t-r)e if t-r-cd, 
r-6 r--s 4 

II (e 6.4 (r) _ l)(eu-rMw _ 1) g@)II, = et - 4” as t--r-+0+. 

This gives (3.8). By (3.6), (3.9) and (3.8) we get the result. 1 

(c) The Operator Hg(t) = J”b A(t) e”-S’A’t’(l -A(t’)g(s)ds 

LEMMA 3.3. We have: 

(i) HE LP(B,(O, T, E), B,(O, T, DA(o)(a9 a)))> VP E LO9 I[; 

(ii) If g E B,(O, T, E), /3 E [O, l[, then Hg E C”(lO, Tl, E) 
VUE ]O,a[; 

(iii) If g E B,(O, T, E) n C”(]O, T],E), /3 E [0, l[, 6 E 10, l[, then 
Hg E Ca(]O, T], E); 

(iv) HE ~(Cq(lO, Tl, El, C,(lO, Tl, oA(,,(8)> VP E LOT 113 VeE 
IO, aI; 

(v) H E 9(B(O, T, E), C”( [0, T], E)) Vu E JO, a[; in particular 
Hg(0 I = 0 Vg E B(0, T, E); 

(vi) HE Y(P([O, T], E), Ca([O, T], E)) V8 E IO, I[; 
(vii) HE Y(C([O, T], E), C([O, Tl, DA(o)(e>>> Vd E LO, ai. 

ProoJ (i) For each r > 0 and t E IO, 7’1 we have 

I( t4t’-aA(t) e~A”“‘Hg(t)IIE 

II 1 
t = pp A(t)* e(t+t-S’A”‘(l --A(t’)g(s)ds 

0 II E 

t < c topa 
s 

@ - ‘)” \ (r + t-s)* 
)I g(s& ds 

0 

(ii) We have to show that if g E B,(O, T,E) and E E IO, T[ then 
Hg E C”([~, Tl, E) f oreachoE]O,a[.NowifE<r<t<Twehave 
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IWd~) - fw)IlE 

l/j 
I 

< ~I(t)e(‘-~)~(‘)(l -A(t’)g(s)ds 
r I/ E 

r 

+ 

l/j 

A(,)ecf-s’a’f’(l -A(t’)A(r)A(s)-‘g(s)ds 
0 /I E 

III 
r + (A (0 e”-S’A(f)-A(r)e(f-S)A(‘))(l -A(r’)g(s)ds 

0 II E 

+ A(r) ’ eqAcr)(l -A(r’)g(s) ds 
II 

. (3.10) 
E 

Hence, using Lemma 2.11 (ii) we get 

II Wf) - f@(r) IIE 

I 
I 

,<c ds 
r (t _ s)l --a II glIBmE) + 

+ (Jt - r)* i, r @ - sY ds II gllBB(o.T,E) (t - s) sfl 

fC 

) 
I 
(t - r)” + (t - r)” log ( &)I =Q(t-rY 1 + ast-rrO+. 

(iii) Let E < r < t < T. As in (ii) we obtain (3.10) and similarly we 
deduce : that 

Ilfw - fwr)lI, 

i 
t 

<C 
ds 

r @ _ q--(2 II gllBk,T,E) 

+ A(f) ec*-nacf’(l -A(r) A(r)-‘) A(r) A(s)-‘g(s) ds 
E 

+c II 
r t--s (r-s)” dqds ,, g,, 

0 r--s q* sb B,dO,T,E) 
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< C(E)@ - r)” 

+ //I ‘A(t) e r ( +@)(l -A(t) A(r)-‘) A(r) A(s)-‘( g(s) -g(r)) ds 
0 II E 

+ ‘A(t)e(‘+‘(‘)(1 -A(t’)(A(r)A(s)-’ - l)g(r)ds 
/I 0 II E 

+ 11 (efAcf) - e(f-r)A(f))(l -A (t)A(r)-‘) g(r)/lE 

< C(E)(I - r)= + 11 !j”’ +I’ 1 A(c) e(‘-S’A”)(l -A(t) A(r)-‘) 
0 E/2 

xA(r)A(s)-‘(g(s)-g(r))ds II E 

= O(t - ry ast-r+O+. 

(iv) Since B(E, T, D,,,, (a, 4>n C([E, Tl, E) E C([G TIT &,,W) with 
continuous inclusion for each 0 E IO, a[(Proposition 2.12), the result follows 
by (i) and (ii). 

(v) The proof is similar to the proof of (ii) (but simpler) and we omit it. 
(vi) Similar to (iii). 
(vii) The result follows by (i) (with ,8 = 0), (v) and Proposition 2.12. 

(d) The Operator (1 - H)- ’ 

LEMMA 3.4. We have: 

(i) (1 - H)-’ E .Y(B,(O, T, D,o,(B, a))) VP E [0, l[, t/8 E [0, a]; 
(ii) (1 -H)-’ E 5!(C,([O, T],D,,,,(e))) VPE [O, 11, VeE [O,a[; 

(iii) (1 - H)-’ E LP(C( [0, T], E)); in particular (1 - H)- ’ g(0) = g(0) 
Vg E C([O, Tl, ~9; 

(iv) (1 -H)-’ E P(C([O, Tl, DAcOj(@)) V/3 E LO, al; 
(v) (1 -H)-‘E~P(C~([O,T],E))VBE]O,~]; 

(vi) (1 -H)-’ E 4O(h’([O, T], E)) VB E 10, a[. 
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ProoJ (i) Suppose first 8 = 0. Define 

clearly 

cbT II gll B~(o,T,E) < 11 glib 4 /I gllB~W.E) Vg E B,(O, T, El, 

and in addition 

ilHglib = tz;Pr, l(ilieb’ 0) e(f-s)a(f’(l -A(t’)g(s)ds 
II E 

i 

t e -*(t-s) ds 
,< c sup 

fClO,T] 0 (t - S)l-aSb 
11 glib. 

By Lebesgue’s theorem we deduce that ]lZ-Zg]lb < + ]] g/l, for large b, and this 
implies that (1 - H) - ’ E Y(Bo(O, T, E)). 

Suppose now BE IO, o]. If h = (1 - H)-‘g, we know that, in particular, 
h E B,(O, T, E) and 

h-Hh=g. (3.11) 

By Lemma 3.3(i), HI E B,(O, T, ~,~o~(~~ a>> and lI~~llBa~O,r,oAco,~a,~~~ G 
C llhll Bfl(0.T.E)’ and by (3.11) we conclude that h = Hh -g E 
B,(O, T, D,(,,(R ~0)) and 

II4 B,(O,T,D,,o,(e,co)) G c lI~~ll~~~O,T.D~(o,~n.~~~ + II ~llB~~o,T,D~,o,~e.oo~~ 

< c II .!?I1 B/3(O,T,Da(o)(e,m))’ 

(ii) As in (i) it is easily seen that (1 - H)-’ E Y(C,(jO, T], E). Thus if 
BE IO, a[ and g E C,(lO, TIT DAod4) we have h=(l-H)-‘gE 
C,(]O, Tl,E); h ence by Lemma 3.3(iv) we obtain Hh E C,(]O, T), DAo,(8)), 
and (3.11) yields the result. 

(iii) Quite similar to (i). 

(iv) If g E NO, TIT DAco,(@) we have h E C([O, T], E) by (iii); thus 
Lemma 3.3(vii) and (3.11) lead to the result. 

(v) Let g E C”([O, Tl, ~9; as h E C([O, T], E), Lemma 3.3(v) gives 
Hh E C”( [0, T], E) f or each u E ]O,a[, which implies h E C”“‘( [0, T], E) for 
each u E ]O,a[. By Lemma 3.3(vi) and (3.11) we get h E Ce([O, T],E). The 
estimate for (1 - H)-’ follows also easily. 

(vi) Similar to (v). I 
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4. STRICT AND CLASSICAL SOLUTIONS 

It is proved in [2] that under Hypotheses I, II Problem (P) has a unique 
strong solution U, provided x E D@(O)) and fE C( [0, T], E). We want to 
prove now that if x and f are more regular then u is a strict, or classical, 
solution of (P). 

First of all we will show that formula (0.1) necessarily holds for a strict 
solution; next, we will verify that (0.1) really is the required solution. In this 
section, as usual, we will always assume that Hypotheses I and II are 
satisfied. 

We recall the definition of the space D, given in Proposition 2.7(iii) (see 
also Convention 2.8): D = {x E D@(O)): A(O) x E D@(O)) }. 

We have: 

THEOREM 4.1 (A priori representation formula). Let x E D and 
fE C( [0, T], E) f~ B(0, T, D,(,,(& co)), 13 E IO, a]. Then if u is a strict 
solution of (P) the following formula holds: 

u(t>=A(t)-‘{(l -H)-‘(Lf(*)+L(*,O)x)(t)}, tE [0, T]. (4.1) 

Proof: We repeat here the argument used in the Introduction, which is 
now perfectly justified. Fix t E IO, T[ and let 

u(s) = e(t-s)Act) u(s), s E [O, t]. 

As u is a strict solution, u is continuously differentiable on [O, t] and 

u’(s) = -A(t) e(t-s)A(t) u(s) + ect’s)A(t)(A(s) u(s) +f(s)), s E (0, tl; 

hence, integration over [0, t] yields 

I 

t 
u(t) = etAcf)x + e(‘-“‘A”‘(l -A(t’)A(~)u(~)ds 

0 

+ r e(‘-S)A(t’f(s) ds, (4.2) 
JO 

which implies 

I 

t 
A(t) u(t) =A(t) etAtt)x + A(t) e(t-s)A(t)(l -A(t’)A(s) U(S) ds 

0 

+ 
I 

t A(t) ect-s)A(f)f(s) ds, 
0 
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.4(t) u(t) - H(A(*) u(*))(t) = Lf(t) + L(t, 0) x. (4.3) 

Now observe that L(-, 0) x E C([O, T], E) by Lemma 3.l(iii), Lf E 
C’([O, T], E) by Lemma 3.2(iv) and H(A(.) u(.)) E C”([O, T], E) for each 
u E IO, a[ by Lemma 3.3(v); hence by Lemma 3.4(iii) we can write 

A(t)u(t)= ((1 -H)-‘(Lf(.)+L(.,O)x)}(t), t E [O, Tl, 

and (4.1) follows. 1 

THEOREM 4.2 (Existence of the strict solution). Let x E D and 
f~ C( [O, T], E) n B(0, T, D,(,,(8, co)), 8 E IO, a]. Then the function u given 
by (4.1) is the unique strict solution of (P), and moreover 
u’ E B(O+, 7’3 D/&e, co)) and A(.) u(.) E B(O+, T, DAo,(O, ~0)) n 
C”(lO, Tl, El. K in addition, f E C([O, T], D,,,,(B)), 0 E 10, a[, then 
u’ E C(]O, Tl,DA~O~(~)) and A(.) 4.1 E C(lO, Tl, DAcO@))n he@, Tl, ~9 

Proof. Uniqueness is proved in [2, Theorem 4.11. 
Define f outside [0, T] by 

f@)=f(O) if t < 0, 

=fGT if t>T. 

The convolutions 

f,(t)=(~“*f)(t)=j+~~,(t--s)f(s)ds. -m 

where q,, n E N, are mollifiers, belong to Lip([O, T], DAc,,(8, 03)) and 
converge to f in C([O, T], DAcOj(o)) for each u E IO, e[ (since f belongs to 
such spaces by Proposition 2.12). Let v, be the strict solution of 

v;(t) -A(f) v,(t) =fnW, t E 10, 7-1, 
v,(O) =x, 

which exists by Theorem 4.3 of 121. By Theorem 4.1 we have 

d~)=4-'{(1 -W'(Lf,(*)+ L(*,O)x)(t)}, 1 E [O, Z-1, 

and consequently (Lemma 3.2(iii) and Lemma 3.4(iii)) as n -+ 03 we get 

v,+U=A(*)y{(l-Hy(Lf(.)+L(.,O)X)(.)} in C([O, Tl, J9; 
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in particular, u E C([O, T],D(A(O))) and u(O) =A@-‘{(1 -H))‘(Lf+ 
L(., 0) x)(O)} = x (L emmata 3.l(iii), 3.2(iii) and 3.4(iii)). Hence 

v:,=A(.)v,(.)+f,~(l-H)-‘(Lf+L(.,O)x)+f 

=A(*) u(-> +f in C([O, T], E). 

This shows that u E C’( [0, T], E) and u’(t) = A(t) u(t) +f(t) Vt E [O, T], 
i.e., u is a strict solution of (P). 

To prove regularity we first note that L(., 0)x E C([O, T],E)n 
B(O+, T, D,,,,(a, co)) for each u E IO, l[ by Lemma 3.l(iii)-(i); hence 
h&l-H)-‘(L(.,O)x)EC([O,T],E) (L emma 3.4(iii)), and consequently 
Hh, E B(0, T, D,(,,,(a, 00)) by Lemma 3.3(i). The equality h, = Hh, + 
L(., 0)x then gives h, E B(O+, T, D,(,,,(a, co)). On the other hand we have 
Lf E B(0, T, D,(,,(I~, co)) by Lemma 3.2(i), so that h, = (1 - H)-‘LfE 
W4 T, 4,,,@, ~1). As A(.)u(.)=h,+h,, we get A(.) 
B(O+, T, D,(,,(& co)); as u’ =A(.) u(.) +f, the same holds for u’. If, in 
addition, f~ C( [0, T], D,<,,(8)), 0 E IO, cr[, then by Lemmata 3.2(iii) and 
3.4(iv) we have h, E C(]O, T], D,0,(8)); the same is true for h, by 
Proposition 2.12, and thus we obtain A(.) u(.), u’ E C(]O, T], DAo,(B)). 
Next, as L(., 0) x E C([O, T], E) f’? Ca(]O, T], E) (Lemma 3.l(iiik(i)), and 
h, E C([O, Tl, E) (L emma 3.4(iii)), we get Hh, E C”([O, T], E) for each 
oE ]O,a[ by Lemma 3.3(v); since h, = H/z, + L(., 0)x, we deduce 
h, E C([O, Tl, E) n C”(]O, T], E) f or each u E IO, a[, and consequently 
Lemma 3.3(iii) yields Hh, E P(]O, T], E). Thus we check 
h, E Ca(]O, T],E). On the other hand LfE C”([O, T],E) by Lemma 3.2(iv), 

that Lemma 3.4(v) implies h, E C’([O, T], E). This gives 
y(e) u(‘) E C”(]O, T],E). If, in addition, fE C([O, T], D,o,(8)), 8 E 10, a[, 
then the same is true for h, by Lemma 3.2(v) and Lemma 3.4(vi), and as 
h, G C=(]O, T], E) this implies A(.) u(a) E h’(]O, T], E). The proof is 
complete. I 

Let us consider now classical solutions. About existence we have: 

THEOREM 4.3 (Existence of the classical solution). Let x ED@(O)) 
and f~ C,(]O, T], E) n B,(O, T, D,&% 00 )), P E [O, I[, 0 E IO, ~1. Then 
Problem (P) has a unique classical solution u, and moreover 
u’ E B(O+, w&(,)(4 mo)) and A(+(.)EB(~+, T,~,~,,(4 an 
C”(lO, Tl,E). If, in addition, fg C,(]O, T], DA&B)), ,8 E [0, l[, 0 E IO, a[, 
then u’ E cw7 Tl, 4dw and A(*) 4.) E C(lO7 Tl, 4,,vm f-3 
he@, Tl, El. 

Proof. Uniqueness follows by Theorem 5.1 of [2]. 
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Let u be the classical solution of 

! 

v’(t) -A(t) v(t) = 0, t E IO, q, 
u(0) =x, (4.4) 

which exists by Theorem 5.4 of [2]. If we are able to find the classical 
solution w of 

1 
w’(t) -A(t) w(t) =f(t), t E 10, Tl, 
w(0) = 0, (4.5 ) 

then the classical solution of (P) will be given by u = 2) + W. Hence it is 
enough to solve (4.5). 

For each n E N consider the functions 

f,(f) =f(lln> if O<t< l/n<T, 

=f (t) if l/n < t < T. 

Clearly f, E C([O, T],E) nB(O, T,D,(,,(8, co)) for each n E N, and in 
addition it is easily seen that as n + co 

fn -s in C@, Tl, E) VY E IPT 1 I. 
Let W, be the strict solution of 

i 
a4 - ‘4 Cl> w,w =fn(G f E [O, Tl, 
w,(O) = 0. 

By Theorem 4.2 W, exists and is given by 

w&)=/4(t)-‘(1 -H)-‘Lf,(f), t E [0, T]. 

By Lemmata 3.2(i) and 3.4(i) we get as n + co 

w,-A(.)-‘(1 -H)-‘Lf in C,@, T], E) ‘JY E IA 11 (4.6) 

and 

A(.) wn(.) = (1 - H)-‘Lf,-+ (1 - Z-l-‘Lf in CJ]O, T], E) Vy E l/3, l[. 

This implies that 

w:, =A(.) wn(*) +f,- (1 -I-I-‘Lf +f in C,(]O, Tl, E) v?J E IA I[. 
(4.7) 

By (4.6) and (4.7) it follows that the function w =A(.)-‘(1 - H)-‘Lf (.) is 
in C’(]O, T],E) and is the classical solution of (4.5). 
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Let us prove regularity. We have u = v + w, where u and u solve (4.4) 
and (4.5), respectively. In [2], Theorem 5.4, it is proved that 
A(*) 4’) E Ca(]O, Tl, E), and we will show in Lemma 4.4 below that 
A(.) u(.) = U’ E B(O+, T, D,O,(a, co)); thus it suffices to verify the required 
regularity for w. We have h = A(.) w(.) = (1 - H))‘Lf now, by Lemma 
3.2(i)-(vi) we get LfE B&4 T, D,(,,(4 a>> n C”(]O, T], E), so that 
h E B,(O, T, D,(,,(B, co)) (Lemma 3.4(i)). Lemma 3.3(ii) then yields 
Hh E C”(]O, T], E) f or each c E IO, ar[; hence h = Hh + LfE Ce ““(lo, T], E) 
for each u E IO, cz[. This gives Hh E C”(]O, T],E) (Lemma 3.3(iii)) and 
finally we conclude that A(.) w(.) = h E C”(]O, T],E). If, in addition, 
.E C,(lO, T], D,(,,(W, 0 E IO, a[> th en we have LYE C,(]O, T], D,0,(8))f7 
hs(lO, Tl, E) (L emma 3.2(ii)-(vii)) so that by Lemma 3.4(ii) we derive 
h E c,m Tl, ~.4Ki,(~)) and, as before, A(.) w(.) = h E he(]O, T], E). The 
proof is complete (except for Lemma 4.4 below). I 

LEMMA 4.4. Let x E D(A(0)) and let v be the classical solution of (4.4). 
Then u’ E B(O+, T, D,O,(a, co)). 

ProoJ Let E < t < T. We proceed as in the proof of Theorem 4.1: the 
function z(s) = e(t-s)a(‘) v(s) is in C’([$, t],E) and 

z’(s) = e(‘-s)a(r)(l -A(t) A(s)-‘) A(s) u(s), s E [$, t]. 

Integrating over [fs, t] and applying A(t) to both members, we get 

A(t) v(t) = A(t) ectpE’2)A(‘)u($e) 

+ f A@) e(t-s)A(‘)(l -A(t) A(s)-‘) A(s) v(s) ds, t E [E, T]. 
J2 

Now we have 

A(t) e”- E/z)a(f) u 

a 
C 

G @ _ l# lIA(-) wlC~IJ2,Tl,E~ G CC&) Vt E [e, Tl, 

t 
(t i24f) e - ‘jact)( 1 -A(t) A(s)-‘) A(s) u(s) ds 

/I a 

< c sup i ’ I’0 E/2 
y1-a(t - ‘I= ds llA(.> 4)II,(,c,2,rI,~) < C(E) (r+t-s)2 

Vt E [E, T], 

so that A(.) v(.) E B(E, T, D,(,,(a, co)). As u’ = A(.) v(e) in 10, T], the result 
follows. I 
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5. GLOBAL SPACE REGULARITY 

In this section we will prove some global regularity results for strict 
solutions of (P). These results are quite similar to those of Sinestrari [ 121 
relative to the autonomous case. As usual, Hypotheses I and II are always 
assumed to hold. 

THEOREM 5.1. Let Xw4(0,P+ 1, =J) and j-E C( [O, T], E) n 
B(0, T, D,,&B, a)), 0 E 10, a]. Let u be the strict solution of(P); then 

(9 u’,A(-) u(.> E WA T, D,J& 00)); 
(ii) A(.) u(a) E C”( [0, T], E). 

ProoJ We know that u is given by (4.1), and therefore 

AC-1 4’) = WA(*) U(‘)) + Lf+ L(*, 0)x. (5.1) 

As xED A(OJ(B+ 1, co), by Lemma 3,l(iv)-(vi) we get L(-, O)XEB(O, T, 
D,J& a)> n C”(P, Tl,E); as f~ C([O, 7’1, E) n V, T, D,,&% @>, by 
Lemma 3.2(i)-(iv) we have LfE B(0, T, D,(,,(B, co)) f’l C”([O, T] E). As 
At.1 4.1 E C([O, Tl, El, k mma 3.3(v) yields H(A(-) u(.)) E C”([O, T], E) 
for each UE ]O,a[; thus from (5.1) we derive that A(.)u(-) E 
CeAu( [0, T], E) f or each c E 10, a[, and Lemma 3.3(vi) then implies that 
H(A(-) u(.)) E C”([O, T], E). On the other hand by Lemma 3.3(i) we know 
also that Z&4(.) u(.)) E B(0, T, Da&a, co)). Again by (5.1) we finally 
obtain A(e) u(e) E B(0, T, DA&B, 00)) n Ce([O, T], E). 

To complete the proof we just need to observe that U’ = 
AC.1 ~(‘1 +fE WX T, 4c,,(e, ~1). I 

THEOREM 5.2. Let x E D A&e + 11, fE NO, Tl, Q,&W~ 0 E 1% a[* 
Let u be the strict solution of(P); then 

(i) u’,A(.) 4.1 E C([O, Tl, DAco,(e)); 
(ii) A(-) u(e) E h’([O, T], E). 

ProoJ The proof is similar to the preceding one. The function u is given 
by (4.1), so that (5.1) holds. By Lemma 3.1 (v)-(vii) L(e, 0) x E 
C([O, T], DA&B)) n h@([O, T], E); by Lemma 3.2(+-(v) Lf E C(IO, Tl, 
DAc,,(8)) n he([O, T], E). On the other hand, as in the preceding proof, 
we obtain H@(a) u(.)) E B(0, T, D,(,,(a, co)) n Ca([O, T], E) G C([O, T], 
D,.,&~)) n he([Oy TIT Eh h ence by (5.1) we conclude that A(-) u(m) E 
C([O, Tl, D/,&Q) n he([O, Tl, El. 

Finally, u’ =A(-) u(e) +fE C([O, T], D,(,,,(e)). 1 
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We finish this section with the following remark: With a slight change in 
the argument which leads to the representation formula (4. l), it is possible to 
check another existence and space regularity theorem, where it is not 
necessary that both the data x,f are regular: what is really needed is 
regularity of a suitable function of them. Namely, we have: 

THEOREM 5.3. Let x E D@(O)) and ffZ C([O, T], E), and suppose 
moreover that the function t --f A(0) x +f(t) belongs to B(0, T, D,,,,(B, a)), 
0 E 10, a] (resp. C([O, T], DA&B)), 0 E IO, a[). Then Problem (P) bus a 
(unique) strict solution u, such that 

(0 u’, A(-) u(-) -A(O)x E B(0, T,D,(,,(8, a,)) (rev. C([O, T], 
4(O,vm 

(ii) A(.) u(n) E C’([O, T], E) (resp. he([O, T], E)). 

If in the hypotheses we replace A (0) x +f(.) with A (a) x +f(. ), then the 
same conclusion holds, with A(.) u(e) -A(O) x replaced by A(.)(u(.) - x) in 
(9. 

Proof: We proceed as in the proof of Theorems 4.1 and 4.2. Suppose 
first that a strict solution u of (P) does exist; then we easily get (4.2), which 
can be rewritten as 

u(t) = efAcf)x + i te(‘-“‘A(“(l -A(t’)A(s)u(s)ds 
0 

+(le (f--s)A(f)(f(s) + A(0) x) ds - (etAcf) - l)A(O) x. 
0 

Thus applying A(t) to both members we obtain the integral equation 

A(0 U(f) -WA(*) u(*))W 
=x4(0)x +L(f+A(O)x)(t) + e”“‘(A(t)A(O)-’ - l)A(O)x, (5.2) 

and consequently 

u(t) =A@-‘((1 -z-I-$4(0)x + Ldf+A(O)x) 

+e”“‘(‘4(t)A(O)-’ - l)A(O)x)(t)}. (5.3) 

Note that the function t + etA (‘)(A (t) A (0) -’ - 1) A (0) x belongs to 
CLI( [0, T], E) n B(0, T, DAo,(a, ~0)) since 
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llefA(‘)(A(t)A(0)-’ - l)A(0)x-erA”‘(A(r)A(O)-l - 1).4(0)x]lE 

< Ile’A”‘(A(t)A(r)-’ - l)(A(r)A(O)-r)A(0)~l\~ 

+ 1) (e” (I) -e’““‘)(A(r)A(O)-’ - l)A(O)xJJ, 

+ I:A(r)e 
II 

“““‘(A(r) - l)A(O)xds 
E 

< C(t - ry ifO<r<t<T, 

and 

yf II Y’-aA(t> e cr+f’“‘f’(A(t)A(0)-l- l)A(O)x(l,< C ;uqJG llA(Wll,. 4 

Next, we want to prove that the function (5.3) indeed is a strict solution of 
(P). As in the proof of Theorem 4.2, let v, be the strict solution of 

u;(t) - A(f) vn(f) = g,(t) - A (0) x, t E (0, Z-1, 
U”(0) = x 

where g, E Lip([O, T], D,(,,(8, co)) and, as n + co, g, -f(s) + A(0) x in 
C(lO9 Tl, %,o,W) f or each u E IO, ~9[. Such a strict solution exists by 
Theorem 4.3 of 12). Then vn(f) is given by (5.3), i.e., 

v,(t)=A(t)-‘{(I --If-‘(A(O)x+Lg,+e ‘A’f’(A(f)A(0)-* - 1),4(0)x)(t)}. 

As n + 00, we easily get that ZI, + u and A(.) v,(a) + A(.) u(.) with u given 
by (5.3), so that u is a strict solution of (P). 

Regularity can be deduced by (5.2) as in the proofs of Theorems 5.1 and 
5.2, since t -+ etAcf)(A(t) A(O)-’ - 1) A(0) x belongs to Ca( [0, T], E) n 
WA T DA&a, co>>. 

Replace now in the hypotheses f(a) + A(0) x with f(.) + A(.) x. Then 
evidently u is a strict solution of (P) if and only if v(t) = n(t) -x is a strict 
solution of 

! v’(t) -A(r) v(t) =f(t) + A(f) x, t E 10, Tl, 
v(0) = 0. 

Hence the conclusion follows by Theorems 4.2, 5.1 and 5.2. In particular, u 
is given by 

u(t)=x+A(t)-‘{(l -H)-‘L(f+A(.)x)(t)}. 1 
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6. AN EXAMPLE 

In this section, unless otherwise specified, all functions are assumed to be 
complex valued. We define 

Ck([O, 11) = {U E C([O, 11): u is k times differentiable and uck) E C( [0, l])}, 

kEN, 

C”*“([O, 11) = {u E Ck([O, 11): UCk) E C”([O, l])}, k E N, 8 E IO, 1 [, 

hkJy[O, 11) = {u E Ck([O, 11): UCk) E hO([O, l])}, k E N, 0 E IO, l[. 

Set E= WA ll), IME = ~~~~~~~~~~ 1 u(x)l, and define for each t E [0, T] 

1 
D(A(t)) = {u E C([O, 11): a,u(O) -PoU’(0)= “,U(l) +/3,24’(l) = O}, 
A(f)U = a(*, t) u” + b(*, t) u’ + c(*, t) u - coou, 

(6.1) 

where 

ai,Pi>o, ai + pi > 0, i=o, 1, (6.2) 

and 

w,ER a, b, c E C([O, 11 x [O, T], R) inf 
IO.11 x ro,n 

a(x, t) > 0. (6.3) 

Obviously D@(t)) does not depend on t; in addition we have: 

PROPOSITION 6.1. Let {A(t)},,Io,,, be defined by (6.1) and suppose (6.2), 
(6.3) h&f. Vu0 > maxIo,llxto,,l lc(x, ?>I, then 

(i) o(A(t)) G ] - 00, 0[ Vt E [0, T], 

(ii) there exist A4 > 0 and B. E ]fn, n[ such that VA E Coo 

IIAW’II P(E) < M vt E 10, q. 

If, in addition, we assume that 

I a(x, t) - a(x, r) ( + 1 b(x, t) - b(x, r> 1 + (c(x, t) - c(x, r) I< B / t - r ia 

vt, r E [O, T], vx E [O, 1 I 

for some constants a E 10, 1 [ and B > 0, then there exists K > 0 such that 

(iii) 11 1 -A(t) A(r)-’ 11 ip(E) <K It-rla Vt,rE [0, T]. 
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Proof: See 12, Remark 1.2 and Propositions 8.1, 8.31. [ 

Thus we can apply the results of the preceding sections to the problem 

u, - a(-& 4 u,, - b(x, t) u, - c(x, t) u + Au =f(x, t), (x, t> E IO, I] x 10, TJ, 

~ou(O,t)-p,u,(O,t)=a,u(l,t)+p,~,(1,t)=o, t E [O, Tl, 

44 0) = g(x), XE [O, 11 

where 1 E C,fE C([O, I] x [O, T]),gE C([O, 11). 
We have only to characterize the spaces DAfoJ(f?, co) and D,{,,(8) in this 

concrete case. In the case of Dirichlet conditions, i.e., /3,, = /3, = 0, it is 
known (see Da Prato and Grisvard [5] and Lunardi [9]) that 

D,((& Go) = {“f-E Cze([oY 1l):.m =f(l) = 01 ifBE]O,f[ 

= {fE c’v2e-‘([o, l]):f(O) =f(l) = O} ifeE ] 4, l[ 
and 

D,&l,(@ = LfE hY0~ 1 l>:fK9 =f(l> = 01 ifeE ]O,i[ 
= {f(g h’Je-1 (IO, 1 WfP) =fU> = 01 if BE 14, I [. 

Suppose now that a, b, c E Ca([O, l] x [0, T], R). Then in addition it is 
known that 

DAc,,(e + 1, ~0) = {.tx c2Je(p9 w-(o) =.m = I4wi(o) 

= PPml) = 0) ve E 10, +a[, 

DAo,(e + 1) = u-e h27[0, 1 w-(o) =fu) = bwmo) 

= PP)fl(~) = 01 ve E 10, fa[. 

Let us consider now the general case of (6.2), i.e., PO + p, > 0. We have the 
following result: 

THEOREM 6.2. Let {~I(t)l,,,,,,~ be defined by (6.1) and suppose (6.2), 
(6.3) hold. Then we have: 

4de, 03) = cvo, 11) ifeE 10, $[ 

=(fEC ‘,2e-‘([o, 1 J>: %J-(0) - Pof’(O> 

=aLf(~)+P,f’(l)=O~ ifBE Ii, l[, 

b,,(e) = h2’@, 1 I) ifeE ]O,j[ 

={fEh 1*2e-1([0, 11): a,f(O> -/&f’(O) 

= aIf +P,f’(l) = 01 if BE 14, I[. 

S80/60/2-6 
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IA in addition, a, b, cE P([O, l] X [0, T],R), then 

Q4(,,(0+ 1, 03) = {fE C2*2e([09 11): %f(O> -P,f’P> 
= aJ-(l) +Plf’(l) = 01 VB E IO, +a[, 

P4(o,(e -t- 1) = U-E ~2’2e(P~ 1 I): a0.m - Pof’(O> 

= a,f(l) t Plf’(l) = 01 VI9 E IO, ja[. 

Proof: We confine ourselves to the characterization of the spaces 
4co,Py 4 and bto,(~ t 1, 00) since the proof in the remaining cases is 
quite analogous. Let f be a function such that 

.t-E CZe([o, 11) ifBE IO, j[ 

E{gEC ‘,2e-‘([0, 11): aog(O) -Peg’(O) (6.4) 

=a,dl)+P,g’(l)=Ol iff3E 14, l[. 

We shall construct an extension off to R, in such a way that its regularity is 
preserved as well as the conditions at y = 0 and y = 1, if they exist. Set 

F(Y) = 0 if y<-1 

= r(~)f(-Y) - f,” exp ( + F (Y - s)) f(-s) v(s) ds 
0 Y 0 

if -1 <y<o 

=f (Y) if O<y<l 

= rl(y)f(2 -Y) - pjy exp ( - 7 (Y - ~1) f(2 - s> v(s) ds 
1 1 1 

if l<y<2 

= 0 if 2 < y. 

where q E P(R, R), 0 < q < 1, q EZ 1 in [-1, j], and the support of q lies in 
[-1, 21. Note that the case /I, = 0 (resp. /I, = 0) is also covered: one has 
only to replace the corresponding integral by its limit as PO + O+ (resp. 
p, -+ 0 +), namely, -27r( y)f(-y) (resp. -2q( y) f(2 - y)). It is easy to verify 
that F has the same regularity as J; and that if 

aof - Pof’W = QV) + PJ’Q> = 0 (6.5 1 

then the same holds for F. 
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We want to construct now a function t--t u(t, a) such that ~(0, .) =f and 

First of all, let rp E P(R) be a non-negative, even function with support 
contained in ] - 1, 1 [ and satisfying JR q(y) dy = 1, and let 
q,(y) = E -’ p( y . E -I), E > 0, be the corresponding mollifiers. Let us consider 
the function u(t,~) defined by the convolution between ~1, and F, with 
parameter s = t “‘: 

Finally, let w E Cm( [0, co [, R) b e such that ~(0) = 1 and 0 < v/ < 1, with 
support lying in [0, $ [, and define the function 

46 *> = 44 .)l,O,l] * m tE [O, 031. 
It is clear that ~(0, .) =f; we will prove that t--f u(t, .) satisfies (6.6): by 
Definition 2.1, this will imply fE D,(,,(0, a,). 

We start with verifying that u(t, .) E D@(O)) for each t E 10, co [: as 
a *) E Crn([O, 1 I>, we have only to show that u(t, .) satisfies (6.5). A 
tedious but easy calculation yields 

W(kY) -Pll~y(GY) = --a,44 -Y> +PdJy(4 -Y> near y = 0, 

~l~(t,~)+B1~y(t,~)=--a,~(~,2-y)-B,~y(~,2-~) neary= 1, 

so that (6.5) is satisfied. 
Next, we prove that A(0) u(t, .) and u’(t, .) belong to CiP,(]O, co [, E): 

since 

lM(O> 46 .>llE G C~ll~,,(~> .)llE + II~,(~~ *>II, + lla NE/ 3 

it is enough to estimate the C,-,(]O, co [, E)-norms of z.+(t, a), ~,,(t, e), 
u,(t, .) and u(t, e), i.e., the C,-,(]O, b], E)-norms of vl(t, ), uy,,(t, .), v,(c, .) 
and v(t, a). 

Consider first the case 19 E 10, f[. For each y E R and t E IO, a] we have 

It’- u(t,y)I < lu(t,~)I < SUP IF(y)1 < Cllfll~~~,,,,,~ 
YCR 

(6.7) 

P’(z>F(Y - I/% cfz G c Ilfllcc,o,w (6.8) 



208 ACQUISTAPACE AND TERRENI 

(t’-eUyy(t,y)I = t-e (d’(z)F(y- fiz)dz I j R 

= t-e 
I j cp”(zP’(~ - \/I z> -F(Y)) dz 

R 

(6.9) 

<C I R 
IV(z)l blze dz ,ssy, 

finally 

(tl-e&Y)I 

= / t’-e [-ft-3/z jRq (7) F(x)dx 

-tt, I,@ (y)(y -.)J’(x)dx]) 

R 
q(z)F(y+z)dz+j q’(z)zF(~-\/iz)dz (6.10) 

R 

R (q(z) +zrp’(z))(W - &I -F(y)) dz < C Ilfllcwm~ 

Let us see now the case 0 E I+, 1 [. The estimate (6.7) can be proved in the 
same manner. About u&t, y) we have 

I t’-%,(t, y)) = 
I j 
Pe v’(z>F(y - fi z> dz 

R 

= ti-e 

I j 
R~‘(z)(~(~ - 4 z> - W)) dz 

G c Ilf’ /Icw]). 
Similarly 

(tl-%,,(t,y)~ = t”z-e 
I j 

@(z)F’(y - &z>dz E C Ilf’ lI~~~-wo,~,~~ 
R 

and finally, as z -+ zp(z) is an odd function, 

R 
q(z)zF’(y-fiz)dz) 

p(z) z(F’(y - fi z) -F’(y)) dz 
R 

< c Ilf’ I/c~wNw~* 
Thus we have shown that fE D,(,,(8, CO). 
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Let us verify now the reverse inclusion. Let fE D,(,,(I~, co): by definition, 
fE (D(A(O)),E),-,,, c (C*([O, I]), C([O, l])),-e,co; hence (see Triebel [I% 
Theorem 2.7.2/l (a)]) 

fE CY[O, 1 I> if0E ]O,j[ 

E c’Je-‘([o, 11) ifBE ]j, l[. 

It remains to show that if 8 E ]t, 1[ thenfsatisfies (6.5). Choose p E If, 8[; 
as f~ DAc,,(t9, oo) G Daco,@?), there exists {fnJnENs D@(O)) such that 
I]f, -f]jD+ 0 as n + co (see Section 2). For each n E N, f, satisfies (6.5) 
and moreover 

D,J/J)e (C*([O, I]), C([O, l]>)l-o,cc = C’.2B-‘([0, ll)G c’@, 11) 

with continuous inclusions. Hence in particular we get& *fin C’([O, 11) as 
n + co, and therefore f satisfies (6.5) too. 

The first part of Theorem 6.2 is proved. Suppose now that u, b, 
CE P([O, I] x [0, T], R). Then we have for each BE 10, $z[ 

and as.!” = a(., t))’ s (A(O)f- b(., t)f’ - c(., t)f+ w,J), we deduce 

fE D,(,,,(@ + 1, co) *fE D(A(O)),f" E C’“([O, 11) ORE CzqzB([O, I]) and 
(6.5) holds. 

Theorem 6.2 is completely proved. I 
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