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The linear non-autonomous evolution equation u’(t) — A (t) u(t) =f(t), t € [0, T},
with the initial datum u(0)= x, in the space C(|0, T}, E), where E is a Banach
space and {A(?)} is a family of infinitesimal generators of bounded analytic semi-
groups is considered; the domains D(A(¢)) are supposed constant in ¢ and possibly
not dense in E. Maximal regularity of the strict and classical solutions, i.e.,
regularity of u’ and A(-)u(-) with values in the interpolation spaces D, (¢, ©)
and D, () between D(A4(0)) and E, is studied. A characterization of such spaces
in a concrete case is also given.  ©1985 Academic Press, Inc.

Let E be a Banach space, and {A(f)},c(o.ry @ family of closed linear
operators on E. We consider the linear non-autonomous Cauchy problem

u'(t)—A@u@®)=f1, t€[0,T],
u(0) =x, (P)
x€E, feC(0,T],E)prescribed,

where C([0, T, E) is the space of continuous functions [0, T'] » E. We are
concerned here with the parabolic case: in other words, we suppose that for
each ¢ € [0, T] A(¢) is the infinitesimal generator of an analytic semi-group
{e*¥},., (not necessarily strongly continuous at 0), and its domain D(4(¢))
does not depend on ¢ and is possibly not dense in E. In a recent paper
(Acquistapace and Terreni [2]) existence of strict and classical (i.e.,
continuously differentiable) solutions of (P) is proved under the same
hypotheses of Tanabe [14] and Sobolevskii [13], provided the data x, f are
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sufficiently regular. That paper also contains several time regularity results
“of maximal type” for such solutions, namely, if f/ belongs to a suitable
subspace of C(|0, T], E) (i.e., f is Holder continuous), then u’—and conse-
quently 4A(-) u(-)}—belongs to the same subspace.

The aim of the present paper is to prove, under the same hypotheses,
existence and “maximal” space regularity results for strict and classical
solutions of (P), by making use of the intermediate spaces D, (6, co) and
D ,0)(6) between D(A(0)) and E: namely, if fis continuous or bounded with
values in any of such spaces, then the same holds for u’ and A(-) u(-).

Results of this kind are known in the autonomous case, i.e., A(f) = A4 (see
Sinestrari [12]). In the non-autonomous case, other space regularity results
had been proved in Sobolevskii’s classical paper [13] by using the domains
of the fractional powers of —A4(¢). More recently Da Prato and Grisvard [5]
proved results similar to ours under the stronger assumption that
D, (8 + 1) = constant for some & € |0, 1] (here D,,,(0 + 1) = {x € D(A(t)):
A()xE€D,,(8)}); in addition Sobolevskii’s condition, namely Holder
continuity of ¢— A(t) with values in the space & (D(4(0)), E) of bounded
linear operators from D(A(0)) into E, is replaced in [5] by the assumption
that £ — A(¢) is continuous with values in ¥ (D (64 1), D ;,(0)).

As in [2], our method does not require the construction of the
fundamental solution; it is based instead upon a representation formula for
the solutions of (P), and all our results are obtained by a careful analysis of
it. The formula that we used in [2] is different from the present one: the
former required suitable time regularity assumptions on f, while the latter is
meaningful provided f has suitable space regularity properties. Of course if f
is assumed to be regular both in time and in space, then both formulas apply
and in fact they coincide.

Our representation formula can be derived by the following heuristic
argument: if u solves (P), fix ¢t € |0, T] and consider the function

v(s)=e""91y(s),  se€[0,¢];

the first derivative of v(s) is

0'(s) == A(t) e“~ " Ou(s) + eV (A(s) u(s) +/(5))
— e(t—s)A(t)(A(s) —A(t)) u(s) + e(t‘S)A“)f(S).

Integrating over [0, t] we get

u(t) _ etA(t)x — jt e(t«s)A(t)(l —A(t)A(S)_l)A(S) u(s) ds +,(t e(t~s)A(tV-(s) dS,
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and applying 4A(¢) we obtain an integral equation for A(¢) u(¢):
A(t)u(t) — J(:A(t) =910 — 4() A(s)" ") A(s) u(s) ds
=A(t) e Dx + Jot A(t) e"=94Df (s) ds.
Denoting by H the integral operator
Hg(t)= J:A(t) e =910 — A1) A(s) ™) g(s) ds, te [0, T,
we check

A ut)=(1—H)™! (A(t) eWx +J(:A(t) el =940 £(g) ds) ,

or
u(t) = A1)~ (1 — H)"'(L(-, 0) x + Lf)(®)) 0.1)
where
L(t,s)=A(t) e!'=940), 0<s<tgT,
Lg(r) =JtL(t, s) g(s) ds, te [0, T].

This procedure is quite heuristic and we need to give some sense to it. We
will see that the integral operator H is of Voiterra type with integrable
kernel, and that the operator L is well defined on the space of bounded
functions with values in some D (6, cc). Thus if we take fin such a space
and x suitably regular, formula (0.1) will turn out to be perfectly meaningful
and will give the desired representation of the solutions of (P).

Let us describe now the subjects of the next sections. Section 1 contains a
list of notations, definitions and assumptions; in Section 2 we establish some
preliminary results. In Section 3 we derive the basic technical background
which is needed to prove our main theorems. In Section 4 we discuss the
existence of strict and classical solutions. Section 5 is devoted to space
regularity results. Finally in Section 6 we illustrate an example where an
explicit characterization of D (6, o) and D ,(8) is given, when A4 is a second
order ordinary differential operator with Neumann boundary conditions in
the space of continuous functions. A similar characterization in the case of
several variables and more general boundary conditions will be given in a
forthcoming paper.
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1. NOTATIONS AND ASSUMPTIONS

Let us list some notations. If 4 is a linear operator on a Banach space E,
we set:

D(A4) = domain of 4, R(A)=range of 4,
p(A) = resolvent set of 4, 0(A) = spectrum of 4,
R(A,A)=(1—A)"" foreach i€ p(4).

If X, Y are Banach spaces, we denote by ¥(X, Y) (or simply ¥ (X) when
Y = X) the Banach space of bounded linear operators with domain X and
range contained in Y, with the usual norm

|| Bx||y

u .
xex—(oy |lx|ly

HB“sf(X,Y) =

Let Y, E two Banach spaces, with ¥ continuously imbedded into £. We shall
make use of the following Banach spaces of functions:

(a) By(0,T,Y)={u:]0,T]>Y:u is strongly E-measurable and
SuP,ejo,ry Ilu(1)lly < 0o}, with norm

Hu”BB(O,T.Y): sup ”tﬂu([)”y;
te10,7)

when f = 0 we shall simply write B(0, T, Y) instead of B,(0, T, Y).

(b) C4(J0,T],Y)={u€ByO,T,Y):u:]0,T| > Y is continuous},
pe[0,1[, with the norm of By©0,7,Y), and its closed subspace
Cy([0, T], Y)={u € Cy(]0, T}, Y): 3lim,_o. tPu(t) € Y}; when S=0 we
shall write C(J0, T}, Y) instead of Cy([0, 7], Y).

() C%[0,T],Y)={u€ C([0,T], Y): [|u(t) — u(r)lly = O(t ~r|®) as
[t—r[-0%}, € ]0, 1], with norm

u(e) —ur)|
Hu”CB([o,T].Y) = “u”C(IO,T],Y) +sup —————%— E
t#r lt - r!

and its closed subspace h°([0, 7], Y) = {u € C°([0, T), Y): [lu(t) — u(r)|ly =
o(lt—r|®)as|t—r[- 0%}

(d) Lip([0, T, Y)= {u€ C([0, T], ¥): [|u(®) —u(r)|, =O(t—r|) as
[t —r|— 0%}, with norm

p [[u(8) — u(r)lly

l#llLipco.21.1) = l #llco. .y + SU
t#r [t—r]
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(e) CY([0,T],Y)={u€C(0,T), Y):u is differentiable and u’'€E
C([0, T}, Y)}, with norm

I uHCI([O,T],Y) = ||u“C([0,T],Y) + [fu’ lcqo,r1,1

We shall also consider the following spaces of functions:
) BO*,T.Y)=cejo.r B, T, Y) and
) C([0,T],Y), €°(]0,T],Y), A°(]0,T],Y)(8€]0,1[), Lip(]0,T},Y),
c'(Jo, 7}, ),
which are defined similarly. We observe explicitly that C(]0, 7'}, Y) and

C,(]0, T], Y) are different spaces.
Now we list our assumptions.

HyporhEsis I. For each t€ [0, T} A(f) is a closed linear operator on
the Banach space E, with domain D(A(¢)) = D(4(0)) independent of ¢, which
is the infinitesimal generator of a bounded analytic semi-group (e} £30
More precisely:

(i) there exists §,&] 7/2, 7[such that
pAM) > ={z€ C:larg z| < §,} U {0}, vee [0, T[;
&

(ii) there exists M > 0 such that

M

7 VA€ Zg— {0} A®)  Nyw <M VIE [0, T).

IR, A ey <
HypoTHEsis II. There exist @ € |0, 1| and K > 0 such that
I1-A@OAT) | gw <K |[t~7% v, re o, T|.
Remark 1.1. D(A(0)) is not supposed to be dense in E; however, if
Hypothesis I holds and E is locally sequentially weakly compact (e.g., E is
reflexive) then necessarily D(4(0)) = E (see Kato [6]).

Let us recall our definitions of solutions of Problem (P) (see [2]):

DEFINITION 1.2. Let f€ C([0, T], E), x € E; a function u € C([0, T|, E)
is a strict solution of (P) if u € C'([0, T), E), u(t) € D(A(0)) V¢t € [0, T] and

W)~ A u@)=¢ in[0,T], u©)=x.

DeriNiTION 1.3, Let f€ C(]0, T), E), x € E; a function u € C([0, T], E)



MAXIMAL SPACE REGULARITY 173

is a classical solution of (P) if u€ C'(]0, T|, E), u(t) € D(A(0)) Yt € 10, T
and
w' () —A@) u(t)=1() in |0, T, u(0)=x.

In [2] a weaker type of solution is also considered, namely the strong
solution. We will not study such solutions here: we just recall their definition
and some related properties.

DEfFINITION 1.4, Let f€ C([0, T, E), x € E; a function u € C(|0, T, E)
is a strong solution of (P) if there exists {u,},.n< C'(|0, T, E) such that
u,(t)E D(A(0)) Vi€ [0,T] and n € N, and

U, U in C([0, T, E)
u,—AC)u,()=f,~»f inC([0, T}, E)
u,0)=x,-x inkE.

Remark 1.5. By definition it is clear that a strict solution is a classical
and a strong one. It can be seen also that a classical solution is a strong one,
provided /€ C([0, T], E) and Hypotheses I, II hold ([2, Remark 6.7]). In
[2] the following necessary conditions are proved under Hypotheses I and II:

(a) if Problem (P) has a strict solution, then x & D(4(0)) and
A(0) x +/(0) € D(4(0));
(b) if Problem (P} has a classical (resp. strong) solution, then
x € D(A(0)). In addition, the strict (or classical, or strong) solution is
unique.
About existence, under Hypotheses I, II the following properties are

known ([2]):

(c) if fE€C?|0,T),E), x€ D(A(0)) and A(0)x +/(0) € D(4(0)),
then a strict solution exists (Theorem 4.3);

(d) if f€C,(]0,T],E)YNC?]0,T),E) and x €& D(A(0)), then a
classical solution exists (Theorem 5.4);

(e) if f€C(|0, T],E) and x € D(4(0)), then a strong solution exists
(Theorem 6.4).

2. PRELIMINARIES
Let A be a closed linear operator on the Banach space E, satisfying

Hypothesis I; then the bounded analytic semi-group {e*'‘”},. , can be
represented by a Dunford integral

1
e =5 [ e#R@,4)dh, >0,
Y

580/60/2-4
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where y=y"Uy* Uy, and

YW=1{z€C:|z|=1,|arg z| £ 6},
yE={z€Ciargz=16,|z| > 1},

with 6 € |n/2, 8,[. The operator e méps E into (), nD(4") for each &> 0
and

1
A"e“=2—mj,1"eMR(x,A)dx VREN,  &>0,
Y

the integrals being absolutely convergent.

If A is a closed linear operator on E, then its domain D(A4), equipped with
the graph norm, is itself a Banach space continuously imbedded into F. It is
then possible to construct the interpolation spaces (D(4),E), ., and
(D(A),E),, 0€ 10,1, as follows (see Lions [7], Lions and Peetre [8],
Butzer and Berens [3]):

DefFINITION 2.1. Let x€E; we say that x€ (D(A),E),, (resp.
(D(A), E),) if there exists u: ]0,1]— D(4) having first derivative (in the
sense of distributions) u’: |0, 1] - E, such that

(i) u', AueC,(]0, 1], E) (resp.C,([0, 1], E) with lim,_,. ||t ()=
lim,_,.[|t°Au(t)|; = 0)
(i) u(0)=x.
Condition (ii) is meaningful because from (i) we easily deduce that

ue C'-°([0, 1], E).
Clearly

D(4)< (DA),E), < (D(A),E), , = (DA),E);cDA) if 0<f<o<l

If in addition 4 generates a bounded analytic semi-group, the spaces
(D(A),E),_g.o, and (D(4),E),_g,0€ 0, 1{, are denoted by D,(6, c0) and
D ,(6), and can be characterized in several ways (see Butzer and Berens (3]
for the case D(4)=E and Acquistapace and Terreni [1] for the general
case), namely:

tA_l
I

D,,(6, ) =

x€ E:sup <oo§
t>0

E

(2.1)

xE E:sup|[t'"%4e" x| < °°§
t>0

x€EE: sup |||,1|9AR(A,A)x||E<oo§,
A€p(4)
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t4

~o|

X € D,(6, ®): lim ‘ e

D6 = T
E
(2.2)
={x€ D, o) tlirgl+ ¢! ®Aetx|, =0
={x€D,6,): lim [|A|°PAR(,A)x|;= Og .
Leo(d)
JAl =40
D (6, o) becomes a Banach space with the norm
4 1
%15 6,000 = X[l + sUp || —5—x|| , (2.3)
>0 t E

which is equivalent to the usual norm of (D(4(0)), E), 4., (see [3]). It can
be seen that there exist ¢ ¢/, ¢” such that

tA__l
7

sup [[]A|° AR(A, 4) x|l < c° sup
Aeo(4) t>0

<c'supl[t'%4e" x|,

E >0

<e” sup [[|A|°4R@A, 4) x| (2.4)
Aeold)

Hence the quantities in (2.4) are equivalent semi-norms on D (6, o). If, in
addition, 0 € p(4), the semi-norms in (2.4) become equivalent norms on
D (6, ).

If 0<f<68<1 we easily get that the inclusions D(A)= D (0, ©)c
D (B, 00) S D(A) are continuous, i.e.,

[xlle < C”x“DA(B.oo) Vx € D B, ),
[ XMlp 48,00 S CNXlp 6,000 VX € D 4(6; ), (2.5)
HXHD,,(B,oo) <C ”'x”D(A) Yx € D(4).

Remark 2.2. 1t is useful to observe that if 0 &€ p(4), x EE, r > 0 and

sup u®||AR(, A) x|z < 0 (2.6)
uelr,ool

then x € D ,(, o). Indeed, if (2.6) holds, then it is easily seen that

sup [1|°|AR(A, A) x|l < C sup u®[ARu,A) x|
A€p(4) uel0,00[

<C(r) sup [#B AR, A) x| ;-
uelr,co
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Therefore we will sometimes consider the quantity

sup [,u9||AR(,u,A)x||E, x € D (8, o) (2.7)

uelr,o

with r > 0; under the above assumptions, it defines a norm on D, (6, o)
equivalent to (2.3).

It can be verified that for each 8€ 10, 1[ D ,(f) is a closed subspace of
D (6, o) which coincides with the closure of D(4) in the norm of D,(#, )
(see Butzer and Berens [3, Chap.III, Proposition 3.16], or Sinestrari
[12, Proposition 1.8]).

Let us assume, from now on, Hypotheses I and II. In the rest of this
section, unless otherwise specified, such assumptions will always be
supposed to hold. We will state some results of general character, whose
proofs, when omitted, can be found in [2], Martin [10], and Sinestrari [12].

LemMA 2.3. There exists C > 0 such that

je—rl®

1RG4 0) = RO A sy < €7

VA E L, — {0}, V1, r €0, T},

Proof. It is sufficient to note that
R(AL,AM)— R4, A1) =RA,ANAMBAF) "= 1)A(r)R(A, A(r)). 1

As a direct consequence of the fact that D(A(¢)) does not depend on ¢, we
have:

ProposITION 2.4. For each t € [0, T] and 6 € |0, 1[ we have:
D (0, ©) = D 4)(0, ), D 4 y(0) = D 40,(0);

in addition there exist C,, C, > 0 such that if x € D ;,,(f, )

eﬁA(O) —1 elA(t) —1 e{A(O) —1
sup || ———xi| <C,sup |——7—x| <C,sup|———x
| e <, <] < T,
Proof. See Lemma 2.3 in [2]. §
From now on we shall simply write
||x||9 = ”x“.DA(O)(g'OO) Vg e ]0’ l[a Vx € DA(O)(B’ ). (2.8)

ProposITION 2.5. Let §€ 10, 1].
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(i) The following statements are equivalent:
(a) x €D, 0);

(0) 1M 31z, |1° [ RO AW) X =0 uniformly in 1€
[0, T];

(c) lim,_o, &' 7| A(t) e x|z =0 uniformly in t € [0, T'|;

(d) lim,_q. [|€¥*" —1/&° x||p = O uniformly in t € [0, T).
(ii) The following statements are equivalent:

(a) g€ C(10,T], D 6));

(b) lim 3 o ses, [A1° 1) RA, A() 8(s) |z =0  uniformly in
5,1 €0, T];

(¢) lim,_,. &' "9l A(r) e Vg(s)|y = O uniformly in s,t € [0, T|;
(d) lim,_o.][((e***” — 1)/&°) g(s)ll = O uniformly in s, t € [0, T'|.

Proof. (i) (a)= (b). Let x € D, ,,(f) and let € > 0. By (2.2) there exists
M, > 0 such that

LEZg,  [AI>M = A" |A0)R(A A0) x[ <&
Since

A(t)R(A, A(t)) — A(O) R(A, A(0))

=AR(A, A(1))(A(t) A(0) "' — 1) A(0) R(A, A(0))
it follows that if 1 € Xy and |A| > M,
[A1°I1A(6) R(A, A1) x|l < (1 + CT*)|A]° || A(0) R(4, A(0)) X
< Ce vte [0, T).
(b)= (c). Let & > 0. By hypothesis, there exists M, > 0 such that
AEL,, A > M, = A |A@)RQA,A@0) x|z < e vie 0, T].

Now if £ > 0 we have

1
1-8 £A) o 1-6 ,iA
&A@ e x =5 Lc e A() R(A, A(t) xdA

1

6
2 le z/§ey) f

AR (% A(t)) xdz

f = AR (Z’A(’)) xdz.

27tt
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so that

-6 ¢ 1 e |2 o z .
e W ennxl, <[ e |2 140 R (5.40) wlelesl

hence if & < 1/M, we get
eRez
&0 A() eH x| < Ce | Tlel<ce e [0, T7.
Y

(c)= (d). Let & > 0. By assumption, there exists , > 0 such that
E<O,=>E0A() e x|y <e  VIE[O,T]
Thus if &€ < 56 we get

fA(L) 1

68

e

x vte [0, T].

A(t) e**Ox ds
== J ®) <a
(d) = (a). Obvious.
(i) (@)= (b). If g€ C([0,T),Dy(8)), for each &>0 there exist
Syseees Sp, € {0, T such that

min | g(s) ~g@)le <& Ys€[O, T

1<ign

For each i, 1 <i< n,, we have by (i)

hm |4]° ||A(t)R(A A(1)) g(s)||z = O uniformly in t € [0, T';

Aezeo

hence there exists M, > 0 such that if 1 € Zy and 4| > M, we have

Jim AP 114 R@A, A1) g()llz <& + lim 21° [ 4(2) R(A, (1)) 8(5;,)
AeZy, A€y,
<2 ¥s€ [0, T]
provided i, = i(s) is such that || g(s) — g(s;,)lls < &

(b) = (c) = (d) = (a). These implications are proved similarly. |

ProposiTION 2.6. Let 8€ 10, 1].

(i) If xE€ D, (0) then lim, .| (" —1)x|o=0 uniformly in
se[0,T).
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(i) If gE€C(0,T],Dy)(0)) then lim, . [ (e“ —1)g(r)lo=0
uniformly in s,r € [0, T.

Proof. (i) Let ¢ > 0; by Proposition 2.5(i) there exists d,> 0 such that
e[A(s) -1
60
Hence for each ¢ € |0, 6,| we have Vs € [0, T}

181 =°A(s) e x| < &, x

<eg YEE 10,0, Vs € [0, T).

E

1604 (s) et (e — 1) x|y
<N — 1y €A (s) e x| < Ce if <

etA(s) —1

ée

X

< IEA(s) e | ey

< Ce if &>t

E

and the result follows.
(ii) For each ¢ > O there exist r,,..., 7, € [0, T| such that

min [ g()—grlo<e  ¥re[0.T)

Taking into account (i), the result follows easily.

ProposiTiON 2.7. We have:
(i) D)) = {x€E:t-»e"“"Yxe C([0,T|, E)}
= {x€E:lim,_,,|e*®x —x|;=0}Vs€ [0, T].
(ii) DMAO)S{xEE:t ((“® —1)/t)x € B(0, T, E)}
={xEE:t-A(s)e"x € B(0, T,E)} ¥s€ [0, T].
(iii) Define D = {x € D(A(0)): A(0) x € D(A(0)) }; then

£4(0) _

D= xEE:t—»—e—t—xeC([O, T],E)%

t40) _

—~A0)x

x € D(A(0)): 'ligl+ ‘

=0§
= {x EE: 1~ A(0) e"©x € C([0, T], E)}

x € D(4(0)): tlirg1+ |4(0) e @x — A(0) x|z = O% .

Proof. See Lemma 2.5 of [2]. §
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By Proposition 2.7 we see that the definitions of the spaces D, (6, o)
and D, () are meaningful for §=0 and 6 =1 also: when =0 we get
D, )0, 0)=E, D,,(0)=D(4(0)); when =1 we get D,,(l1)=
ker A(0) = {0}, while the space D, (1, o) is intermediate between D(4(0))
and Mgejo,11 Daco)(0)-

However, in order to simplify notations and statements, from now on we
shall adopt the following convention:

CONVENTION 2.8. D, (0, 0)=E, D, (0)=D(4(0)), D, (1, 0)=
D(A(0)), and D, (1) =D = {x € D(A(0)): A(0) x € D(A(0))}.
The following definition is useful, too:

DEFINITION 2.9. For each 6 € |0, 1| we set

D0+ 1, 0) = {x € D(A(0)): A(0) x € D, (,(6, )},
D)8+ 1) = {x € D(4(0)): A(0) x € D, ,,(6)}.

Lemma 2.10. We have:

(i) [|A(s)"e" | g < C,/t" ¥sE [0, T, V€ ]0,T], Yn € N.
(i) 140" | op,0.00.0 SC/H'7E Vrs€[0,T], VI€10,T],
vBe [0, 1].
(iit) 14(5)"€" |, o0 ;r S Caft"™ " YSE|O,T], VL€ |0, T},
vpi[0, 1], Yn €N.
Proof ()~(ii). See [2, 10, 12].
(ili) If x € D, (B, ©), BE [0, 1], we can write

||A(s)netA(S)x||E < HA(s)n_l etA(sW“y(E) ||A(s) etA(S)/z”.(t”(DA(O,(B,oo),E) ”xHB

C,
ST

LEMMA 2.11. For each t,r € [0, T| and s € |0, T] we have:
[ ](i) | 4@ — 54 ||y(pm,(a,w),n,,(o,(e.oo)) < C(|t—r|a/s976) Ve, B €
0, 1],

(i) 4@ ettt —A(r) em”||sfwm,(zs,oo),DA[o,(e,oo))
£C(t— r|"/s”"“’) v, e [0, 1]

Proof. We will just prove (ii) in the case 6,8 € ]0, 1], since (i) and the
other cases of (ii) are quite similar (and even simpler).
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Let 6,4€ 10, 1[ and take x € D, (B, o). Then obviously (A4(¢)e**"" —
A(r)e**”) x € D(A(0)) < D ,,(8); taking into account Remark 2.2, we have
to estimate the quantity

sup #C A R, A@0))A@) e —A(r) &) x5
Now if u € 2, oo
1O A R, A())(A(D) 1 — A(r) ) x

4 ?;7 J Ae A() R, A()(R(A, A(1)) — R(L, A(r))) xdA

E

=’ %{—J A(D) R(‘"A(’)z:R(A’A(’)) e (A A~ 1)
Y

XF;'TW"A(r)R(l,A(r))di

E
14| 1
LC| ub ———e B [t —r|® ——|di||x

_ o |t —r|*
<O [ 1= r|® 2] ¥y < C gy 1,
¥
where we have used the estimate

[
U C
< -
[A—ul = AP0

VAEy, YU E [2, 0; (2.9)

to prove (2.9) observe that if A€ yand g > 2 we have |4 —u| > (¢ — 1) V |4],
so that

e 1<(#)"1<C
A—ul  [A—ul® [A—p""% S\u—=1/ A" ° S AP
Hence we have
t—r|®
1A e — a0y e el < € ST e vire [0, 7, vs € Jo.7)

and the result follows. §

Finally we have the following inclusion property:
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PROPOSITION 2.12. For each f€ 10, 1] and 8 € [0, B|
C([Oa T]s E) mB(Oﬂ T9 DA(O)(ﬁ9 CD)) < C([O’ T]a DA(O)(Q))

with continuous inclusion.

Proof. Let g€ C([0,T), E)YNB(0, T, D,,(f, ©)) and take & > 0. There
exists d,> 0 such that || g(t) —g(r)||z < ¢ provided |t —r|<d, Hence if
|t—r| < d, we get

€704 0) ()0 < g7+ < C&~° ite> e

<2889 81150, 7.0 408,000 S CeP~% ifé<e,
which implies

I gt) —gllg=0(l) as jr—r|->0. N

Remark 2.13. In the next sections we shall use the following property: If
u€ By(]0,T], D, o)), BE[0,1[, 6€]0,1[, then the function
t—|u(t)l|y can always be assumed Lebesgue measurable (and therefore
integrable over ]0, T]). Indeed, the real function 7- ||u(¢){; is obviously
Lebesgue measurable; on the other hand, it is easily seen that another
equivalent norm in D, (6, o) is given by

Ix[1* = sup n° [4Q) R(1, A©) xlss X € D06, 0):

now t-»|u(t)||* is a measurable function, since it is the supremum of a
countable family of real measurable functions.

3. Basic LEMMATA

This section contains a list of technical results which analyze in detail the
operators and functions appearing in the integral equation (0.2) and in the
representation formula (0.3) of the Introduction. We follow the same lines of
Section 3 in [1, 2], where a similar sequence of statements is given.

Throughout this section, unless otherwise specified, Hypotheses 1 and 1I
are assumed. We also recall Convention 2.8 about the symbols D, (6, o)
and D (@) for 6=0, .

(a) The Function t— L(t,0) x = A(t) e““x
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LEMMA 3.1. We have:

(i) If xEE, then L(-,0)x € C*(]0, T], D(4(0)));

(ii) L(-,0)E L (D00, ), B, 4.,0,T, D40, 0)) VoE [0, 6],
vae [0,1];

(iii) L(-,0)e f/(D, C(|0, T, E)) and in particular L(0,0)x=A4(0)x
Yx & D;

(iv) L(-0)E L(Dy0)0+1,0), BO, T,D,(8)) VOE [0,al;
(v) L(0) € LD, + 1), C([0, T], D4 )(8))) YO E |0, a[;
(Vi) L(-,0)€ LD, )6 + 1, 20), C°([0, T], E)) YO € |0, al;

(vii) L(-,0) € LD )6 + 1), B°(|0, T}, E)) YO E 10, al.

Proof. (i) If x€E and 1€ )0, T| then evidently L(z, 0)x € D(4(0)).
Moreover if 0 < e <r <t < T we have:

IIL(z, 0) x — L(r, 0) x”D(A(O))
< | At) e Px — A(r) e Xl pacon

+[|4(r) e“"x —A(r) erA(r)x”D(A(O))

< 4@ et —A(r) et ”?(E,D(A(O))) x|

+ HA(O)fA(r)2 4" xds (3.1)
<G 1l + 1A A iy | [ A e x|
<Sa—rrislercf Bise<e | ma-n+ 5 a-nf Il

where we have used Lemma 2.11(ii) in the case §=1,5=0.
(i) We just consider the case 8 € |0, 1[, g € |0, 6], since the others are
even simpler. By (i), L(¢, 0) x € D, ,,(0) for each ¢ € ]0, T] and in addition

tl 6+0 HL([ O)XH sup tl 6+aél 2] ”A(t)z e(!+t)A(t)x||

tl O0+o0 kl—0o

<SUP_(Z}_‘t)—2"’9—“x”9

<Cllxllg-

(iii) Let x € D. By (i) and (ii) (with = 1, o = 0) we only have to show
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that lim,_,. | L(f, 0) x — A(0) x||; = 0; by Lemma 2.11(ii) (case 6 =10, = 1)
and Proposition 2.7(iii) we have as t > 0"

[4(2) e“Px — 4(0) x| < [ A(r) e “x — A(0) eM(o)x”y’(uu(on £l x oo

+ (€ — 1) 4(0) x| < Ct* | 4(0) x| + o(1).

(iv) Again, we omit the (obvious) case #=0. Let x € D, (6 + 1, ),
6 € 10, a]. For each ¢t € [0, T]

4@ e O xllg < [le(A(£) 4(0) ™" — 1) A(0) x5 + [[€*A(0) x|

<sup [0 A() e P04 4(0) T = 1) 4(0) x
{>0

+ sup HCI_BA(I) e(£+t)A(t)A(0) x“p
£>0

él@

£C
&+t

11 4(0) x|l + C[|4(0) x[lp < C|4(0) x[l-

(v) Let 6€ ]0,af. By (i) and (iv) we only need to prove that lim, .
| L(t,0) x — A(0) x||=0. By Lemma 2.11(ii) (case € [0,a],f=1) and
Proposition 2.6(i) we get as > 0" :

14(2) e Px — A(0) x[|o < [ A(2) €4 — A(0) ¥ “.’/(D(A(O)),DA(O,(G))“x“D(A(O))

+(e"® ~ 1) 4(0) x[lg < Ct*~° | A(0) x|l + o1).

(vi) Letx€D,,@+1,0),0€]0,a]l. f0Lr<t<T we have

HA([) etA(t)x__A(r) erA(r)xHE

t
< HA(t) etA(t)x —A(r) etA(r)x“E + A(r)l esA(r)xds
r

E

<4@) et — A(r) e HY(D(A(O)),E) Hx“D(A(O))

" A(r) eI (A(r) A(0) — 1) A(0) xds

E

(3.2)

tra
<cla—nr+ [ Sas] 14@x,
E r S

|t ey

+ €[ SE514(0) xlo < Clt = )" [4©) Xl + Ct— ) 140) w1,
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(vii) Let x € D, (@ + 1), 6 € 10, a[. By (i) and (vi) we have to show that
ifOLr<t<T, then |L(,0)x —L(r,0)x|,=o0(t—r)? ast—r—0%. Asin
(3.2) we check

14 () e Ox — A(r) €™ x|l < C(t — )7 | A(0) x|,

+

5
E

t
j A(r) ") 4(0) xds

now by Proposition 2.5(i) we have as t —r— 0" :

{
J A(r) e 4(0) xds

-
ds

t
=™ | (s—=n""%4(r) e "M 40) x ————
(s—r)-¢

E

gcf:(s—_fi:T—a—o(l)zo(t—r)g,

and the result follows. |

(b) The Operator Lg(t) = [} A(t) e 94" g(s) ds

LEMMA 3.2. We have:

(i) LELBy0,T,D, 06, ) VBE[0,1], YOE |0, 1[;
(i) L€ L(Cy10,T] Dyo(8) VBE [0, 1], YOE 0, 1];

(iii) L€ ZL(C(0,T], D,,/(8))Y8€E 10, 1]; in particular Lg(0)=0
Vg € C([0, T], D ,0)(0))s

(iv) LeZ(BO,T, D, (0, 0)), C”([O, TI,E)VEE |0, al;
(v) L EL(C([0, T], Dy0)(68)), %[0, T], E)) YO € |0, af;

(vi) If g€ B0, T, D, )0 ), BE 0, 1], OE |0, a], then Lg€E
C%(]0, T, E);

(vii) If g€ Cy(]0,T], Dyy(#), BE [0, 1], 6€ ]0,a|, then Lg€E
h(]0, T|, E).

Progf (i) For each £ > 0 and ¢ € |0, T] we have

1281 =04 (1) e Lg(®) |l

tﬂél—ﬂJtA(t)Ze(£+t~s)A(t)g(s) ds
0

E
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g S P
= oG+ 1—5) 0P &1i84(0.7.D4(0)(8,0))
1 2 ds 1 ds
< Ctﬂél—e . @
= (é+ %t)z—e jo SB (%t)ﬂ J'/Z (c_'_ t _s)z—e

X |l g”BB(O,T,DA(o)(B,co))

<C| g”BB(o,T,DMO,(o,oo))'

(i) By (i) we have only to show that Lg € C(]0, T|, D ,(8)) whenever
8 € C4(]0, T), Dy(o)(8)). Let us first prove that Lg(t) € D,,)(6) for each
t € 10, T']; we have

lim [[£'=%4(2) e Lg(1)

£-0+
t

< {lirgl J’ EV-84 (1) 4+ =940 g(s5) — g(t)) ds
=0+ 0

+ lim 181704 (@0) 4O 1) g0

Y/

E

The second term on the right-hand side is zero since g(¢f) € D, (,,(6); let us
verify that the first term also vanishes. Take ¢ > 0; for each € |0, ¢ there
exists d(¢,n7) € |0, ¢ — n| such that || g(s) — g(¢)||s < & provided s,t € [n, T}
and |t — s| < J. Hence

Hjot EI-OA(t)2 e+ =940 o(s) — g(1)) ds

E
2]

n {1‘
<C MO i e | g(s) — g(®)llg ds

t—-8 fl_ﬂ
* J'ﬂ W ” g“C(["vTLDA(m(B))dS
t 61_6
+ ———57 18(s) — &) lo ds
J,_a Er1_s5)70 lg(s) — ()l
¢ ° n ds
<C WL 5 1 &llesa0.m104000m
5179
te _(—675_)2_—9 = o=mll g“C(["'T]-DA(O)(G))
1 1
1-9 B
+C€é [él—vo (é+5)1_9:|’
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which implies

limsup
£-0+

Ut EVOA(f)2 e+ -4 (g(s) — g(t)) ds

£ Ce Ve > 0.

E

Next, we have to show that if 0 < r<t T
sup | & ~0A(r) e (Lg(t) — Lg(r))ll; =o(1)  as t—r—0".
£>0

We write

Lg(t) — Lg(r) = | 4(0) 940 (g(s) — g(0)) ds + (e~ — 1) g(1
+ fr (A(1) e“=94D _ A(r) =940 g(s) ds

r qf—s
+[ [ a0 e (g(s) - g(r)) dads
0r—s
(€ — 1) 1) gr) = A, + Ay + Ay + A, + 4.

We estimate each term as follows:

gi-o fA(t)2 et =910 (g(s) — g(1)) ds

[14,4]lg < sup
£>0 E
0

<Coup [ty 86~ glgds=o(1))  ast—r=0,

£>0
since g € C([1, T], D 4(0)(6))s

[42llg=0(1) ast—r-0* (Proposition 2.6(i));

,
143l <J‘0 1 4(2) elt=o® —A(r) e(t_S)A(r)”.‘/(DA(U)(G,OO).DA(O)(O)) | g(s)llgds

r (t_ r)a 1
< CJ'O t—s s—B ds ” g”CB(]OvTLDAw)(G))
n/2 r
=C e .o ds
Uo j,,/z I g”Ca(IO'Tl.DA(m(e))
1 /2 ds 1 T
<Cj_t—ra _+*’—r“103<1+——)€
X %’7 ( ) '(0 SB (%’7)1} ( ) P

X| 8llcy10.71,0 40 8m = 0(1) ast—r-07,
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where we have used Lemma 2.11(ii);
M _
éﬂ
<ClE" ™7 = 1)gr)llg=0(1) ast—r-0*

“ASHO < §l>l]3 H (erA(r) _ 1)(e(t—r)A(r) —1)g(r)

E

by Proposition 2.6(ii).
Finally to estimate 4, let ¢ >0 and choose d(¢, ) € |0, 317 such that
| g(s) — g(r)|ly < € provided s € [#, T] and |r — s| < 4. Then we have

’élgjr“[l*sA(r)3e(0+§)A(r)(g(s)-g(r))dqu

r—

[4,4llo < sup
£>0

E

r .t—s 1
< Csup é“"J'O J‘rrs CrYid || g(s) — g(r)l|o dgds

£>0
-0 [J’Oﬂﬂ +J':/_: +J’:76 ds”

EC(t—r)

= Csup

>0

< CEE% C(n) _—(%’7 IR [ g”c,,uo,r].n,,w,(e))
& 0—r)
+C 6T & ° I gHC([n/z.T],DM,(o))
" 1 1
Ce&'—* [ - J d
rew Jr—a r—s+r? (-stor 7%

LC,e)t—r)+ Ce,

and consequently |4, =0(1) as t —r—>0".
This shows that Lg € C([1, T}, D,;,,(6)) and the result follows.

(iii) The proof is similar to the proof of (ii), but simpler, and we omit it.
(iv) Let 0<r<tgT. Then

I Lg(®) — Le(r)lls <

t
J’ A(f) e4=910 g(s5) ds

E

n Ur (A(1) €491 — A(r) e4=94D) g(s) ds
0 E
r st—s

[ [ 40y e g(s) dgas| | (3.3)
0%r—s E
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which implies

| Lg(t) — Lg(r)|e

t 1
< CJ =)o 186l ds
+ Jo I4(t) e~ — A(r) e(t_S)A(r)“Y(DA(O,(G.OO),E) I g(s)lle ds

+ Cf[,rj:::a‘;‘_]—o|| g)llpds < C g(,_,)e ey L?*%l_eﬁ

*Jor[(r—;)‘-" - (t~;)'-9 ]"’S

<C@—r)?| g”B(O.T,DA(o,(O‘oo))'

[ g”B(O,T,DA(o,(O,oo))

(v) Asin (iv)wegetfor 0<r<tT

ILg(t) — Lg(r)llx <

-l
’ A(t) e(t~s)A(1)g(s) ds

E

e ds
+C(t~r) Jo m I 8ll50.7.0,40y8. 000

r ~l—s
([ [ 40 e g(s) dads (3.4)
0 r—s E
The first term can be rewritten as
t
f A(t) e 940 (g(s) — g(t)) ds + (™M — D g®)| 3 (3.5)
r E

nowast—r—-0"

[[ 40 e 066) g0 d5| <[ =] 86) gl

=o(t—r)?,

and by Proposition 2.5(ii) we have |[(e“ "4 — D)g(®)|z=o0(t—r)° as
t—r—- 07, so that

=o(t—r)° ast—r—0"%. (3.6)
E

t
J’ A1) =40 g(5) ds

580/60/2-5
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Finally the third term in (3.4) becomes

[J, [ awr e sodaas s || [ ey e ato) g0 s

+ (eGA(r) _ 1)(e(t—r)A(r) _ 1)g(r) y (37)

E

where & = d(¢) is such that || g(s) — g(r)|l, < & as |s — 7| < 6. Now we have

r—48 .t—s
f J A(r)? e g(s) dqds
0 r—s

E
H

r—38 -5
j A(r) e(r—s)A(r)j A(r) e @7+ AN g(s) dgds
0 s

r—

£
r=8 1 t—s

1
ngO r-sf,,s (g—r+s)° I

X 974D g(s) || dads

~r+5)'7%4(0)

T
<C-5—o(t-r)9=o(t~r)" ast—r-0%,

J f A(r)? e (g(s) — g(r)) dgds

E

é[r f{_sq%i?—e{l g(s) —g(Nllgds < Ce(t —r)°  if1~r<d,

“r—-87r—s

and by Proposition 2.5(ii)
1€ — DE™M7 1)) =o(t=r)'  ast—r-0*.

Hence we have

|

By (3.4), (3.6) and (3.8) we finally check

ar Jl—s
J f A(r)’ e g(s)dqds|| =o(t—r)® ast—r-0*. (3.8)
07r—s

E

ILg(®) — Lgr(Nllz=o(t~r)®  ast—r-0*.
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(vi) Let e<r<t<T. Asin (iv) we get (3.3); from (3.3) we derive

1L80) = el <€ [ sy 6l ds + Cle—1*

r

1 r -5
| e le@lads [ [ i)l ds

s

<C@—r)?| g”B(c,T,DA(U,(G.OO))

r ds
+C(t—r)® J’o __(t Y | g”B[,(O,T,DA(o)(O,oo))

+C _—(%8)2__0 ! B I gHBB(O,T,DA((,,(B,OO))

t—r [‘/2 ds

r 1 1
+ Cj./z [ 5" - (—s) 0 ] [ g||5(e/z.r.om,(e.oo))
< Cle)e—r)°.

(vii) Let n<r <t T. We start from (3.3); since g € C([#, T}, D ;,,(9)),
the first term on the right-hand side of (3.3) can be estimated as in (v), so
that (3.6) holds. The second term can be treated as in (vi), obtaining

er (A(r) e~ 91D — 4(r) e“=940)) g(5) ds

E

r ds
L Ce—r)® fo m [ g||c3(1o,r1.DA(o)w))

=o(t—r)® ast—r-07, (3.9)

To estimate the third term in (3.3), we split it as in (3.7), where now
6 =0(e,n) € 10,4n[ is such that || g(s) —g(r)|, <& as |s—r| < J (this is
possible because g € C([37, T), D 0)(8))). The three terms in (3.7) are
estimated as follows:

r—8 .t—s

j f A(r)? €% g(s) dgds
0 r—s

E

<C =8 t—r ds _ o o+
= J’o WS—B”g”CB“‘)'T]vDAw)(@))_O(t—r) as t—r=U7,



192 ACQUISTAPACE AND TERRENI

frr_af t_- CA(r)? e (g(s) — (7)) dads

E
r t—s dq 0 .

<f f 5l g(s) —g(P))|eds < Ce(t—r)® if t—r<§,
r—8/r—s 4

[P — 1) " — D g(r)|z=o0(—r)?® as t—r-0".

This gives (3.8). By (3.6), (3.9) and (3.8) we get the result. [
(c) The Operator Hg(t)= [4 A(t) "'~ (1 — A() A(s) ") g(s) ds

LEmMA 3.3. We have:

(i) He y(BB(O’ T, E)’ BB(O’ T, DA(O)(a’ 00))) Vﬁ(—: [09 1[;
(i) If g€By0O,T,E), pel0,1], then HgeC°(|0,T]E)
Yo € 10, a;
(iii) If g€ B0, T,E)NC*(]0,T},E), B [0, 1], 6€]0,1[, then
Hge C*(]0, T}, E);
(v) HELCy0.T)E). Cy10.T]. D) VBE[0,1], voE
[0, af;
(v) HE¥(B(0,T,E), C°(0,T),E))Vo€ |0,a|; in particular
Hg(0|=0VvVge B(0,T,E);
(vi) He Z(C%0,T],E), C*(|0, T),E)) Y6 € |0, 1];
(vii) He€ L (C([0, T}, E), C([0, T], D4 0(8))) VO E [0, al.

Proof. (i) For each £> 0 and ¢ € |0, T] we have

151~ A () e O Hg (1) e

£~ [ A MO - AW AE) ) 8(5) ds

E

[l el ds

af ds
< C ! fo m l g”BB(O.T,E)

< C tﬂél—a

12 ¢
=CrP¢ e et cods || gllgy0,r.ey < Cl g“BB(O,T,E)‘
0 12 b

(i) We have to show that if g€ B0, T,E) and ¢€ 10, T[ then
Hg € C°([¢, T], E) for each 0 € |0, a[. Now if ¢ <7 <t T we have



MAXIMAL SPACE REGULARITY 193
(| Hg(s) — Hg(r)lls

tA(t) W] — A A(s) V) gls) ds

E

+ frA(t)e("s’A"’(l—A(t)A(r)“)A(r)A(s)“g(s)ds

E

+ f (A1) 9O _ 4(r) MDY — A(r) A(s) ") g(5) d

E

roat—s

+ H A(r) eMO(1 —A(r) A(s)™ ‘)g(s)ds (3.10)

Hence, using Lemma 2.11(ii) we get

| Hg(t) — Hg(r)l|

f—(t—)l—a—[[g[]me“;)#—C(t—r)"f (t [}”g”BB(OTE)

d.
+ C(t — r)"‘j ((t ss)) sas lg ”EB(OTE)
+CI J’l S(r_S) ds”g”BB(OTI:)

<Ce)

(tﬁr)a+(t—r)“10g(l+%>§:0(,_r)a ast—r—0".

(i) Let e<r<t<T. As in (ii) we obtain (3.10) and similarly we
deduce that

| Hg(t) — Hg(r)l|x

t ds
< Cfr *(t—_——s),—_;- I &llace,r.5)

+ ”jrA(t) e =MW1 — A1) A(r) ") A(r) A(s) " 'g(s) ds
0

E

r(r—s)*ds
'(t_m_ [l 3”35(0 T,E)

+CJ‘ JJ s (r ——qs):ﬂdqu

+CE—r)"

[F:4 “BB(O,T,E)
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<CE)t—n)*

+ .U(:A(l‘) e MO — A1) A(r)~") A(r) A(s) " '(g(s) — g(r)) ds

E

+ rA(t) 'O — A A(r)" WA A(s) ' — V) g(r)ds

E

I = M) (1 — 4@ A 80
<CENt—r® + ” Ug/z +jr s A() e MO (1 - A A(r)™)
i} &/2
X A(r) A(s)~"(g(s) — g(r)) ds

+ C(t—r)"‘f o —s)”

r
o I—S§

E

ds | gllpe,r.ey + ClE— 1) I gllscer.e)

o (% ds
<= +Ce=nr |7 s Slaoran

f g“C5([s/2,T],E)

r o (r—s)°ds
+J;/2 t—s

=0(t—r)° ast—r-0"%.

(iv) Since B(e, T, D, (@, )N C([e, T}, E) < C([e, T], D4 (0)()) with
continuous inclusion for each 8 € |0, a|{(Proposition 2.12), the result follows
by (i) and (ii).

(v) The proof is similar to the proof of (ii} (but simpler) and we omit it.

(vi) Similar to (iii).

{vii) The result follows by (i) (with f=0), (v) and Proposition 2.12.

(d) The Operator (1 —H)™'

LEMMA 3.4. We have:

() (1—H)™' € LBy0, T, D,y o(6: @) VEE [0, 1, YO € [0, als
(i) (1—H)™ € L(Cy([0. T} Dyo(6) VB E [0, 1], VOE [0, a;

(i) (1—H)"'€£(C({0, T), E)); in particular (1 — H)~' g(0) = g(0)
vg € C([0, T, E);

(iv) (1—H)'€L(C(0,T], D (0))) YO E [0, af;
(v) (1-H)"'e£(C%[0,T),E))VOE |0, al;
(i) (1—H)"1€ £LHh%[0, T),E)) YO E |0, al.
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Proof. (i) Suppose first § = 0. Define
|l glls = Sup [Pe~" g(t)c,  8E By, T,E),b>0;

clearly
e T g”BB(O,T,E) <lgls <l g”BB(O,T,E) Vg € By(0, T, E),

and in addition

{Be—bt ’['A(t) =MW1 — A(t) A(s)" ') g(s) ds

| Hgll, = sup
tel0,7]

E

—-b(t s) ds
<C sup J (l )1 as[} Hg”b

te]o, T]

By Lebesgue’s theorem we deduce that ||Hgl, < 3| gl|, for large b, and this
implies that (1 — H)~' € £(B,(0, T E)).

Suppose now §€ |0,a]. If h=(1 —H)'g, we know that, in particular,
h € B0, T,E) and

h—Hh=g. (3.11)

By Lemma 3.3(i), Hh € B4(0, T, D, g)(a; ©0)) and ([HhAlg,0.7.0,0ya.c0n <
Cllhlsyo.7r,y» and by (3.11) we conclude that h=Hh—g€
B;(0, T, D (8, ©)) and

HhHBB(O.T,DMO)(B,oo)) <C HHh“BB(O T.D 4(0)(@,0)) + g“BB(O T,D4(0)(8,0))

< C ” g”BB(O.T,DA(())(B,w)) ‘

(ii) As in (i) it is easily seen that (1 — H) ™' € £ (C,(]0, T}, E). Thus if
6€10,al and g€ Cy(|0,T],Dyy(8)) we have h=(1—-H) ‘g€
C;(]0, T], E); hence by Lemma 3.3(iv) we obtain Hh € C4(]0, T), D 40,(6)),
and (3.11) yields the result.

(iii) Quite similar to (i).

(iv) If g€ C([0, T], D )(0)) we have he C([0, T], E) by (iii); thus
Lemma 3.3(vii) and (3.11) lead to the resulit.

(v) Let geC®]0,T),E); as h€ C(|0,T),E), Lemma 3.3(v) gives
Hh € C°([0, T}, E) for each ¢ € ]0,a[, which implies # € C°"°([0, T], E) for
each ¢ € ]0,z[. By Lemma 3.3(vi) and (3.11) we get # € C°([0, T], E). The
estimate for (1 — H)™! follows also easily.

(vi) Similar to (v). 1
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4, STRICT AND CLASSICAL SOLUTIONS

It is proved in [2] that under Hypotheses I, II Problem (P) has a unique
strong solution u, provided x € D(4(0)) and f€ C(|0, T), E). We want to
prove now that if x and f are more regular then u is a strict, or classical,
solution of (P).

First of all we will show that formula (0.1) necessarily holds for a strict
solution; next, we will verify that (0.1) really is the required solution. In this
section, as usual, we will always assume that Hypotheses I and II are
satisfied.

We recall the definition of the space D, given in Proposition 2.7(iii) (see
also Convention 2.8): D = {x € D(4(0)): A(0) x € D(A(0)) }.

We have:

THEOREM 4.1 (A opriori representation formula). Let x€ D and
SEC(0, TL,EYNB(0,T,D )0, 0)), 8 € |0,]. Then if u is a strict
solution of (P) the following formula holds:

u(@=A0)" {1 -H) W) +LE0) X)), t€[0,T]. (4.1)

Proof. We repeat here the argument used in the Introduction, which is
now perfectly justified. Fix ¢ € 10, T[ and let

o(s) = e MV y(s), s€0,¢]
As u is a strict solution, v is continuously differentiable on {0, ¢] and
v'(s)=— A(t) e 91Oy (s) + e(t—‘s)A(t)(A(s) u(s) +/(s)) se[0,¢];

hence, integration over [0, ¢] yields

u(t)=e""x + f eI —A() A(s) ") A(s) u(s) ds

!
+ [ e (s) ds, (4.2)
0
which implies

A u@@)=A(t) e Ox + J" A() " =911 — A A(s) ") A(s) u(s) ds

t
+ [ 4@ e =4 f(5) ds,
0
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or
AQ) u(t) —HAC) u(: () =LA+ L, 0) x. (4.3)

Now observe that L(-,0)x&€ C([0,T],E) by Lemma 3.1(iii), Lf€
C%([0, T), E) by Lemma 3.2(iv) and H(A(-) u(-)) € C°(|0, T}, E) for each
0 € 10, a| by Lemma 3.3(v); hence by Lemma 3.4(iii) we can write

A u®)={(1—H)"(LA)+ L0 x)}(e), € [0,T],

and (4.1) follows. §

THEOREM 4.2 (Existence of the strict solution). Let x€D and
SEC(O, T),EYNB(0, T, D, (8, ©)), 8 € |0,a]. Then the function u given
by (4.1) is the unique strict solution of (P), and moreover
u € BO",T,D, (0 x)) and A(-) u(-) € B(0O*,T,D, (6, ©)) N
C°(0,T).E). If, in addition, f€ C([0,T], D,y (8), 6€10,al, then
u' € C(]0, T}, D, o)(8)) and A(-)u(-) € C(10, T|, D45,(0)) N h°(]0, T], E).

Proof. Uniqueness is proved in |2, Theorem 4.1].
Define f outside [0, T] by

SO =r0) if <0,
=f(T) if t>T

The convolutions

S0 = NO =] 0yt —5) 1) ds,

where ¢,,n €N, are mollifiers, belong to Lip([0, T'], D, (6, o)) and
converge to f in C([0, T|, D ,,,(0)) for each o € |0, §[ (since f belongs to
such spaces by Proposition 2.12). Let v, be the strict solution of

v () =A@ v,()=Lf,(1), €0, T]
v,(0)=x,

which exists by Theorem 4.3 of |2]. By Theorem 4.1 we have
v, () =A@ - H) (L) + L, 0) )0} tE (0, T],
and consequently (Lemma 3.2(iii) and Lemma 3.4(iii)) as n —» co we get

vy u=AC)" {1 - ) LA)+ L 0)x)()}  in C([0, T, E);
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in particular, u € C(|0, T], D(4(0))) and u(0)=A4(0)""{(1 —H) "(Lf+
L(-, 0) x)(0)} = x (Lemmata 3.1(iii), 3.2(iii) and 3.4(iii)). Hence

vp=A)v,(-)+fi > (L —H) (L + L(-, 0)x) +
=A(Yu(-)+f in C([0, T], E).

This shows that u € C'([0, T, E) and u'(t)=A(t) u(t) +f(t) Yt € (0, T,
i.e., u is a strict solution of (P).

To prove regularity we first note that L(-,0)x€ C({0,T],E)M
B(0*,T,D, (0, ©)) for each ¢€]0,1] by Lemma 3.1(iii}-(i); hence
h,=(1—-H) "(L(-,0)x)€ C(|0, T], E) (Lemma 3.4(iii)), and consequently
Hh, € B(0,T,D, (e, ©)) by Lemma 3.3(). The equality h,=Hh, +
L(-,0)x then gives h, € B(0*, T, D, )(a, 0)). On the other hand we have
LfEB(0,T,D (0, ©)) by Lemma 3.2(i), so that h,=(1 —H) 'Lf€
B(0,T, D, ). As A()u(-)=h +h,, we get A()u(-)€
B(0*,T,D, (0, 0)); as u’ =A(-)u(-) +f, the same holds for u’. If, in
addition, f€ C(|0, T], D,(,()), 0 € |0,a[, then by Lemmata 3.2(iii) and
3.4(iv) we have h,€ C(]0,T]), D, (0)); the same is true for A, by
Proposition 2.12, and thus we obtain A(-)u(-),u’ € C(]0,T], D,(8)
Next, as L(-,0)x € C([0, T], E)N C*(]0, T}, E) (Lemma 3.1(iii)}(i)), and
h € C([0,T),E) (Lemma 3.4(iii)), we get Hh, € C°([0, T),E) for each
0€10,a|l by Lemma 3.3(v); since h,=Hh, +L(-,0)x, we deduce
h€C(0, T),EYNC’(]0, T],E) for each o€ ]0,a|, and consequently
Lemma  3.3(iii) yields Hh, €C*(]0,T]|,E). Thus we check
h, € C*(]0, T], E). On the other hand Lf'€ C°([0, T], E) by Lemma 3.2(iv),
so that Lemma 3.4(v) implies h,€ C%(0,7), E). This gives
A()u(-) € C%(]0, T}, E). If, in addition, /€ C([0, T], D ,,(6)), 8 € 10, al,
then the same is true for A, by Lemma 3.2(v) and Lemma 3.4(vi), and as
h,€ C%(]0, T),E) this implies A(-)u(-)€ #°(J0, T], E). The proof is
complete.

Let us consider now classical solutions. About existence we have:

THEOREM 4.3 (Existence of the classical solution). Let x € D(A(0))
and f€ C4(]0, T), E)N B0, T, D)6, ©)),BE [0,1[,60€ |0,a]. Then
Problem (P) has a wunique classical solution u, and moreover
u' € BO*, T, D (6, ©)) and A()u(-)EBO*, T, D (0, ©)) N
C?®(|0, T), E). If, in addition, f€ Cy(]0, T}, D,,,(8)), BE [0, 1[,8 € |0, o[,
then u' €C(]0,T], D)) and  A()u(-)€ C(0, T}, D) (6)) N
h°(j0, T), E).

Proof. Uniqueness follows by Theorem 5.1 of [2].
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Let v be the classical solution of

v'(t)—A@) v(t) =0, te 0,7,

o(0) =, (4.4)

which exists by Theorem 5.4 of [2]. If we are able to find the classical
solution w of

3w’(t) —A@) w(t) =1(), te o, 1], 4.5)

w(0) =0,

then the classical solution of (P) will be given by u =0v + w. Hence it is
enough to solve (4.5).
For each n € N consider the functions

L)y =/0/n) if 0<t<1/nT,
=) if 1/n<t<T

Clearly f, € C([0,T],E)NB(0,T, D, (6, o)) for each nEN, and in
addition it is easily seen that as n— o0

fomf inC[]0,T],E) Yy € 16, 1].

Let w, be the strict solution of

W) =A@ w, () =F,(1),  t€]0,T],
w,(0)=0.

By Theorem 4.2 w, exists and is given by
w,() =A(t)"'(1 — H) " 'Lf,(2), te [0, T
By Lemmata 3.2(i) and 3.4(i) we get as n — o©
w,oAC) (1 - H) LS in C(]0,T],E) Yye 6, 1] (4.6)
and
A w,()=0-H)'Lf,» (1 -H)"'Lf in C(0,TLE) Yy€lp 1|
This implies that

wa=AC)w,()+fo=> (L —=H)'Lf+f in C(|0,T,E) Vy€ s 1.
(4.7)

By (4.6) and (4.7) it follows that the function w=A(-)"'(1 — H)"'Lf () is
in C'(]0, T], E) and is the classical solution of (4.5).



200 ACQUISTAPACE AND TERRENI

Let us prove regularity. We have u =v + w, where v and u solve (4.4)
and (4.5), respectively. In [2], Theorem 5.4, it is proved that
A()v(-)€C*(]0, T],E), and we will show in Lemma 4.4 below that
A()v(-)=v'€B(0*,T,D,,(a, )); thus it suffices to verify the required
regularity for w. We have h=A(-) w(-)= (1 — H) 'Lf; now, by Lemma
3.2(1)-(vi) we get LfE€B40,T, D, (0, 0)NC?]0,T},E), so that
h€ By0,T,D, (0, o)) (Lemma 3.4(i)). Lemma 3.3(ii) then yields
Hh € C°(]0, T], E) for each ¢ € |0, a[; hence h = Hh + Lf€ C°*°(]0, T}, E)
for each o € |0,a|. This gives Hh € C*(]0, T], E) (Lemma 3.3(iii)) and
finally we conclude that A(:)w(-)=h€ C%]0,T],E). If, in addition,
SE C4(]0, T], D)), € 10, af, then we have LfE Cy(]0, T], D, (8)) N
h%(]0,T), E) (Lemma 3.2(ii}-(vii)) so that by Lemma 3.4(ii) we derive
he Cy(]0,T), D 4)(8)) and, as before, A(-)w(-)=h€E h®(]0,T|,E). The
proof is complete (except for Lemma 4.4 below). |

LEMMA 4.4. Let x € D(A(0)) and let v be the classical solution of (4.4).
Then v' € B(0*, T, D, (a, ©)).

Proof. Let € <t T. We proceed as in the proof of Theorem 4.1: the
function z(s) = "~ 94" y(s) is in C'([3¢,¢], E) and

z'(s) = e""91N(1 —A() A(s) ") A(s) v(s), s E [3e, 1]
Integrating over (3¢, ¢] and applying A(¢) to both members, we get
AW O =A@ e 1O u(le)
+j;2A(t) eI —A() A(s) ) A(s)v(s)ds, t€ [e, T
Now we have

1
HA(t) elt— &4, <7 8)

C
P
D

j' A(1) e 94D (1 — A(t) A(s)~") A(s) v(s) ds
€/2

@

14() v(lleqez,r.e < CE) VeE [e, T,

a

l—afs @
ngupft M
£>0/y2 (E+1—5)

so that A(-)v(-) € B(e, T, D 4 oy(@, )). As v’ =A(-) v(-) in ]0, T}, the result
follows. 1

ds||A() v()llequz.r.e < CE) VtE [e, T},
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5. GLOBAL SPACE REGULARITY

In this section we will prove some global regularity results for strict
solutions of (P). These results are quite similar to those of Sinestrari [12]
relative to the autonomous case. As usual, Hypotheses I and II are always
assumed to hold.

THEOREM 5.1. Let x€ D, (0+1,0) and [fEC(O,T|,E)N
B(0, T, D, (8, ©)), 6 € |0, a]. Let u be the strict solution of (P); then

(i) u',A(-)u(-)€B(,T, DA(O)(09 ®));
(i) A(-)u(-)€ C([0, T}, E).

Proof. We know that u is given by (4.1), and therefore
A()u(-)=HA()u(-)) + Lf+ L(-, 0) x. (5.1)

As x€ D, (@ +1,00), by Lemma 3.1(iv)-(vi) we get L(-,0)x€ B(0, T,
D400, ©0)) N C°(|0, T), E); as f€ C([0, T], E)N B(O, T, Dy 4)(6, ®0)), by
Lemma 3.2(i}-(iv) we have Lf€ B(0,T, D (8, 20))NC?([0,T|E). As
A(-)u(-)€ C([0, T], E), Lemma 3.3(v) yields HA(-)u(-)) € C°(|0, T], E)
for each o¢& ]0,a[; thus from (5.1) we derive that A(-)u(-)€
C®"°([0, T],E) for each o € ]0,a[, and Lemma 3.3(vi) then implies that
H(A(-)u(-)) € C*([0, T], E). On the other hand by Lemma 3.3(i) we know
also that H(A(-)u(-)) € B(0, T, D) (a, 0)). Again by (5.1) we finally
obtain A(-) u(-) € B(0, T, D ;p)(6, 20)) N C4([0, T], E).

To complete the proof we just need to observe that u' =
A()u(-) +fE B0, T, D 4(p)(6, ). 1

THEOREM 5.2. Let x€ D, (0+ 1), f€ C([0,T], D, (8), G€E )0, qaf.
-Let u be the strict solution of (P); then

(i) w,A(C)u(-) € C([0, T], D,)(0));
(i) A()u(-)€r’((0, T], E).

Proof. The proof is similar to the preceding one. The function u is given
by (4.1), so that (5.1) holds. By Lemma 3.1(v)}~(vii) L(-,0)x€&
C([0, T}, D40 ()N R®([0, T), E); by Lemma 3.2(iii}~(v) Lf€ C(|0, T),
D, ) @)) N R([0, T], E). On the other hand, as in the preceding proof,
we obtain H(A(-) u(-)) € B(0, T, D (e, 20)) N C*([0, T}, E) < C([0, T},
D,y @) N RO([0, T|, E); hence by (5.1) we conclude that A(-)u(-)€E
C([O’ T]’ DA(O)(O)) M he([os TL E)

Finally, u' = A(-)u(-) + € C([0, T], D4 0,(8)). 1}
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We finish this section with the following remark: With a slight change in
the argument which leads to the representation formula (4.1), it is possible to
check another existence and space regularity theorem, where it is not
necessary that both the data x,f are regular: what is really needed is
regularity of a suitable function of them. Namely, we have:

THEOREM 5.3. Let x € D(A(0)) and f€C([0,T},E), and suppose
moreover that the function t - A(0) x + f(¢t) belongs to B(0, T, D 4,,(6, o)),
6€10,a] (resp. C(|0, T}, D )(0), € )0,a[). Then Problem (P) has a
(unique) strict solution u, such that

() u', A()u(-)—A@©Q)x€ B(O,T,D, (0, o)) (resp. C(|0, T},
D 40)(D));
(i) AC)u(-)€C®]0,T),E) (resp. hé([0, T}, E)).

If in the hypotheses we replace A(0)x +f(-) with A(-)x +f(-), then the
same conclusion holds, with A(-) u(-) — A(0) x replaced by A(-)(u(-)—x) in
).

Proof. We proceed as in the proof of Theorems 4.1 and 4.2. Suppose
first that a strict solution u of (P) does exist; then we easily get (4.2), which
can be rewritten as

u(t) =e"x + Jt e — A() A(s) ") A(s) u(s) ds

t
+f e =MO(f(s) + A(0) x) ds — (" — 1) 4(0) x.
0
Thus applying 4(f) to both members we obtain the integral equation

A u(t) — HAC) u(-)))
— A(0)x + L(f+ A(0) x)(t) + e (4(1) A(0)~" — 1) A(0) x, (5.2)

and consequently

u®) =A@ "1 —H) " A@O0)x+ L(f+ 4(0) x)

+e"O4(t) 4(0) " — 1) A0) x)(1)}. 5-3)

Note that the function ¢-e“?(4(f)A4A(0)"'—1)A4(0)x belongs to
C*([0, T}, EYN B(O, T, D 4)(a, o0)) since
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e (A (@) A(0)~" — 1) 4(0) x — e™ V(A4 (r) A(0) ™" — 1) 4(0) ]|,
<A@ A — DA A(0) ") 4(0) x
+(? — 7Y A(r) A©0) " — 1) 4(0) x|

+ ”j'A(r) e (4(r) A(0)~! — 1) A(0) xds

E
LC(t—n)* if0Lr<tLT,

and

1-asa

sup 181724 (1) e T4 OA (D) 4(0)" = 1) 4(0)x]|; < C sup 14(0) x|l

E+t

Next, we want to prove that the function (5.3) indeed is a strict solution of
(P). As in the proof of Theorem 4.2, let v, be the strict solution of

va() — A v, (1) = g,(1) —A(0)x,  t€[0,T],
v,(0)=x

where g, € Lip([0, 7], D, (,(f, ®0)) and, as n— o0, g,-f(-)+A4(0)x in
C([0, T}, D (o)) for each o€ ]0,0[. Such a strict solution exists by
Theorem 4.3 of [2]. Then v,(?) is given by (5.3), i.e.,

() =A@O)" (1 = H)"(4(0) x + Lg, + " (A1) 4(0) ™" — 1) 4(0) )(1)}.

As n— oo, we easily get that v, > u and A(-) v,(-) > A(-) u(-) with u given
by (5.3), so that u is a strict solution of (P).

Regularity can be deduced by (5.2) as in the proofs of Theorems 5.1 and
5.2, since t- e (A4(1)A(0)"' —1)4(0)x belongs to C*([0,T},E)N
B(0, T, D 4(g)(@, 00))-

Replace now in the hypotheses f{-) +A4(0)x with f(-) +A(-)x. Then
evidently u is a strict solution of (P) if and only if v(f) = u(¢) — x is a strict
solution of

v(t)—A@) v(t) =1() + A(t) x, te 0, 7],
v(0)=0.

Hence the conclusion follows by Theorems 4.2, 5.1 and 5.2. In particular, u
is given by

u() =x+ A0~ 1A -H)'L+AC) )0} B
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6. AN EXAMPLE

In this section, unless otherwise specified, all functions are assumed to be
complex valued. We define

C*([0,1]) = {u € C([0,1]): uis k times differentiable and u® € C([0, 1])},
k €N,
C*e([0,1]) = {u € C¥(|O,1]): u® € C¥(|0,1])}, keN,6€ 0, 1],
1R0([0,1)) = fu € CK([0,1]): u® € RO([0,1])}, kEN,O€ ]0, 1].
Set E = C([0, 1]), ||u|lz = supyejo,1; | #(x)|, and define for each ¢ € [0, T

D(A(1) = {u € C*([0, 1]): aqu(0) — Bou’(0) = @, u(1) + f,u'(1) = 0},
AQu=a(-, )u" +b(,)u' +c(-, t) u —w,u,
(6.1)

where
a;,p; >0, a;+5;>0, i=0,1, (6.2)

and

w, €R, a,b,ce C([0,1] X [0, T],R) inf : a(x,t)>0. (6.3)

[0,1]x[0,T

Obviously D(A(¢)) does not depend on ¢; in addition we have:
PROPOSITION 6.1. Let {A(t)},c 0.y be defined by (6.1) and suppose (6.2),
(6.3) hold. If wy > max, 11« 0.7y 1€(X, £)|, then
(i) o)< ]|—,0] Ve [0,T],
(i) there exist M > 0 and 6, € |57, 7| such that if A€ Z,,

M
IRA, A o) < T 4@ gy SMVLE [0, T

If, in addition, we assume that
la(x, t) —a(x, r)] +b(x, t) — b(x, r)| + |c(x, 1) —c@x, )< B |t —r|*
Vi, re [0, T], Vvx € [0, 1]
for some constants « € |0, 1[ and B > 0, then there exists K > 0 such that
(i) |1 —A@)AE) g, <K |t —r|* Ve,r € [0, T).
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Proof. See |2, Remark 1.2 and Propositions 8.1, 8.3]. 1

Thus we can apply the results of the preceding sections to the problem

U—ax, Du, —bx,)u,—clx,)u+Au=f(xt), (x1He|0,1]x][0,T],
agu(0, 1) = Bou 0, t) = a,u(l, 1) + Byu(1,£)=0, t€[0,T},
u(x, 0) = g(x), x€[0,1]
where 1€ C, f€ C([0, 1] X [0, T]), g € C([0, 1))
We have only to characterize the spaces D, (6, o) and D, ,(6) in this

concrete case. In the case of Dirichlet conditions, ie., §,=8,=0, it is
known (see Da Prato and Grisvard [5] and Lunardi [9]) that

D4 0)(8, ) = {fE€ C¥([0, 1]):f(0) =f(1) = 0} ifg€ 0, 3
={fE€C"*7I([0,1]):f0)=f(1)=0}  iffe]41]
and
D, 0)(0) = {f€ R*°([0, 1]): f(0) =f (1) = 0} ifg € 0, 3|

={fE€R (0, 1]):f(0)=f(1)=0}  ifF€ 5 1].

Suppose now that a, b, ¢ € C*(|0, 1] X [0, T], R). Then in addition it is
known that

Do) + 1, 00) = {f€ CH*%([0, 1]):/(0) =/ (1) = [4(0)S](0)
=[4(0)f](1)=0}  VOE |0,1a],
D0+ 1)={f€ h**([0, 1]):/(0) =f(1) = |4(0).S](0)
=[4©0)f](1)=0}  VOE [0, 1al.
Let us consider now the general case of (6.2), i.e., f, + f, > 0. We have the

following result:

THEOREM 6.2. Let {A(t)};co,ry e defined by (6.1) and suppose (6.2),
(6.3) hold. Then we have:

D 0(6; 0) = C*([0, 1]) ifo€ 10,4
= {f€ CT**7([0, 1]): ¢ f(0) — B,/ (0)

=a, f(1)+ 4,/ (1)=0} ifge |3, 1],

D, (8) =#**((0, 1]) if6 € 10,4
={fE€ R0, 1]): 2o f(0) — B,/ (0)

=a,f(1)+ 4./ (1)=0} ifoe I, 1].

580/60/2-6
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If, in addition, a, b, ¢ € C*([0, 1] X [0, T}, R), then

D)0+ 1, ) = {f€ C([0, 1]): 0, f(0) — Bo.f'(0)
=a, f()+. /' (1)=0}  VYO€]0,1a],

D@+ 1)=1{f€ h*2([0, 1]): a0 f(0) — B0/ (0)
=a, f(1)+4,/'(1)=0}  VI€0,3al

Proof. We confine ourselves to the characterization of the spaces
D, (0, ©) and D,,(6 + 1, 00) since the proof in the remaining cases is
quite analogous. Let f be a function such that

fec*o, 1)) ife 0,4
€ {g€ C"**7([0,1]): @, g(0) — B, &' (0) (6.4)
=a,g(1)+B,¢'(1)=0} ifge 3, 11.

We shall construct an extension of £ to R, in such a way that its regularity is
preserved as well as the conditions at y =0 and y = 1, if they exist. Set

F(y)=0 if y<-1
2a4 ° A .
=1 ) = 52 e (+30 (=) £y as
if —1<y<0
=f(») if 0y«

2 ¥y
=101 7@ =) =5 e (= ZL = 9)) S =) n(s) ds

if 1<y<2

=0 if 2<y.
where n€ C*(R,R), 0< < 1, =1 in [}, ], and the support of 7 lies in
[—1,2]. Note that the case 8,=0 (resp. §, =0) is also covered: one has
only to replace the corresponding integral by its limit as f,— 0" (resp.

B,—07%), namely, —2n(»)f(—y) (resp. —2n(y) f(2 — »)). It is easy to verify
that F has the same regularity as f; and that if

aof(0) = Bof'(0)=a,f(1) + 8,/ (1)=0 (6.5)

then the same holds for F.
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We want to construct now a function ¢ — u(t, -} such that 4(0, -) =/ and

ue Cl_g(]o’ w[’D(A(O)))

w €C,_y(J0, o[, E). (6:6)

First of all, let ¢ € C*(R) be a non-negative, even function with support
contained in |—1,1[ and satisfying [re(y)dy=1, and let
o (»)=¢""o(y € "), &> 0, be the corresponding mollifiers. Let us consider
the function v(t,y) defined by the convolution between ¢, and F, with
parameter £ = t'/*:

v(ty)= —\E/I—J'R 0 (y_\;_x) F(x) dx.

Finally, let v € C®([0, o[, R) be such that y(0)=1 and 0 <y < I, with
support lying in |0, 4], and define the function

u(t’ ) = U(t’ ')|[0,l] ' W(t)’ te [0’ (D[

It is clear that u(0, -) =f; we will prove that ¢— u(t, -) satisfies (6.6): by
Definition 2.1, this will imply f€ D, (6, o).

We start with verifying that u(¢, -) € D(4(0)) for each ¢ € ]0, oo[: as
u(t,-)€ C*([0, 1]), we have only to show that v(s, -) satisfies (6.5). A
tedious but easy calculation yields

ayv(t, ) = By vy (8, ) = —a,v(t, —y) + Bov,(t, —p) near y =0,
o, v(6y) + Byt y) = —a,v(t, 2 —y) = Bv, (6,2 —y) neary=1,

so that (6.5) is satisfied.
Next, we prove that A(0)u(z,-) and u'(t, -) belong to C,_4(]0, 00|, E):
since

140) u(t, e < Clllayy(ts e + Nyt g + 2t )l 5

it is enough to estimate the C,_4(]0, o[, E)-norms of wuydt,-), u,(t, ),
uy,(t, ) and u(t, -), i.e., the C,_g(]0, 3], E)-norms of v (¢, -),v,,(t, ), v,( -)
and v(t, -).

Consider first the case 4 € )0, 1[. For each y € R and ¢ € ]0, ] we have

1170 0. 3) <o) < swp [FON S Cl o (67)

|t"9vy(t,y)| =

0770 | 9@ F(y Vi 2) dz | <Clf ooy (68)
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100,001 = |72 0@V Ry = VE2) d

= f o - via — RO (69)

|F(x) — F(x')|

<Cf 19"z dz sup =

< Cl[ flleroqo.m s
finally
‘tlwevt(ta i2]

oo 15 o

e (y;)(y—xmx)dx]

- \%t (] ot P = ViR de + [ 0@z = Vi) e

(6.10)

=[5 0+ 2 G ViD= FOD | <l e

Let us see now the case 6 € |1, 1[. The estimate (6.7) can be proved in the
same manner. About v (¢, y) we have

10,6l = |0 | @ F(y— Vi) d:

= |i= [ et - Vin-FO)e:
< C ||f’ “C([O,l])‘

Similarly

|1 %,(t, )| = EC|IS" llczo-1qg0.11>

120 @ Fiy—Viz)dz

and finally, as z - zg(z) is an odd function,

0ot y) = | 1770 | @) 2F (=i ds

= |3 | 0@ - Vi - F )
R

<C ”f’ “02941([0,11)-
Thus we have shown that f€ D (6, ).
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Let us verify now the reverse inclusion. Let f€ D, (¢, 0 ): by definition,
fE (D(A(0)), E),_q ., < (C*([0, 1]), C([0, 1)), _g. ; hence (see Triebel [15,
Theorem 2.7.2/1(a)])

fec*(o, 1]) ifee 0,3
e ([0, 1)) ifee )i, 1.

It remains to show that if € |4, 1] then f satisfies (6.5). Choose S € 3, 6];
as f€ D)0, ©) S D,(B) there exists {f,},enSD(A(0)) such that
[ fu—/fllz—0 as n— oo (see Section 2). For each n €N, f, satisfies (6.5),
and moreover

D, y(B) < (CX([0, 1]), €(10, 11)); g, = C"**71([0, 1)) = C'([0, 1])

with continuous inclusions. Hence in particular we get £, - fin C'(|0, 1]) as
n— oo, and therefore f satisfies (6.5), too.

The first part of Theorem 6.2 is proved. Suppose now that a, b,
c€ C([0, 1] X [0, T], R). Then we have for each € |0, 30|

JED, @+ 1,0) = fEDMA0),  A(0)f€ C*([0, 1]),

and asf‘” =a(, )" (AO)f=b(, ) f" —c(,t) f+ wyf), we deduce

SED, (0 + 1, 0) =€ DA(0)),/" € C*([0, 1]) = f€ C***([0, 1]) and
(6.5) holds.
" Theorem 6.2 is completely proved. 1
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