On the Abstract Nonautonomous Parabolic Cauchy Problem
in the Case of Constant Domains (*).

PAOLO ACQUISTAPACE - BRUNELLO TERRENI (Pisa)

Summary. ~ We study enistence, uniqueness and regularity of the strict, classical and strong
solution u e C([0, T, E) of the non-autonomous evolution equation u'(t) — A(8)u(t) = f(t),
with the initial datum w(0) = x, in @ Banach space B, where {A(1)} is o family of infinitesimal
generalors of analylic semi-groups whose domains are constant in ¢ and possibly not dense
in B. We prove necessary and sufficient conditions for ewistence and Holder regularity of
the solutions and their first derivative.

0. — Introduction.

Let E be a Banach space, {A(f)},,r; @ family of closed linear operators on Z.
Consider the following linear non-autonomous Cauchy problem:

w'(t) — A(t)u(?) = f®y, te[0, T}
(P) u(0) ==
vel, feO([0,T], E) prescribed,

where O([0, T], B) is the space of continuous functions [0, I] — B. We treat here
the parabolic case: in other words we suppose that for each ¢e[0, T] A(?) is the
infinitesimal generator of an analytic semi-group {exp [§4(f)]}:=, (ROt necessarily
strongly continuous at 0), whose domain D(A(?)) does not depend on ¢ and is pos-
$ibly not dense in E.

Problem (P) in the parabolic non-autonomous case with constant domains was
first studied by TANAEBE ([32], [33], [34]) and SoBOLEVSKII [31] (see also YOSIDA [37]).
In all these papers a regularity assumption for the function ¢ — A()4(0)~* in the
uniform topology is needed: in the final development of the theory (see [34] and [31])
this function is required to be Hoélder continuous and this assumption has become a
standard one in later advances. These authors assume that D(A(f)) = D(A(0)) is
dense in B and prove their results by constructing the so called fundamental solu-
tion; they find clagsical solutions, i.e. continuously differentiable solutions of the
equation in ]0, 7], for each » € B, and strict solutions (i.e. differentiable solutions

(*) Entrata in Redazione il 19 ottobre 1983.
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in [0, 77) for each « € D(A(0)), provided, in either case, f is Holder continuous. If,
in addition, # = f(0) = 0 TANABE [33] and POULSEN [28] showed that the derivative
of the strict solution is in fact Holder continuous (with an exponent stricly less
than the exponent of f).

A different approach was earried on by DA PrAT0-GRISVARD [11], who studied
Problem (P) as a particular case of their theory about sums of non-commuting
linear operators. They treat evolution both in I*-spaces and in spaces of continnous
funetions, finding only, in the latter case, strong solutions (see Definition 1.5 below)
for each continuous f, provided & = 0. In addition they prove some regularity
results «in the space» for strong solutions, by means of the intermediate spaces
D, )(6, o0) between D(A(0)) and F, showing that such solutions are continuons
with values in D (6, oo) for any 6 € 10, 1[. Other space regularity results had been
proved by SoBoLEVSKII [31] for strict and classical solutions, by using instead the
domains of the fractional powers of — A(t).

Existence and regularity «in time» of gtrict and classical solutions of (P) was
proved by DA PRATO-SINESTRARI [13] whenever f is Holder continuous and e
eD(A(O)), provided # and f(0) satisfy a suitable compatibility condition which
involves the intermediate spaces D (8, 00) and D, (0): their hypotheses essentially
coincide with Tanabe’s and Sobolevskii’s, but their method does not require the
construetion of the fundamental solution, using instead some sharp regularity theo-
rems for Problem (P) in the autonomous case (see SINESTRARI [30]), which prove
existence of the strict solution #, and Hdolder regularity of 4’ with the same exponent
as f, thus improving the resnlts of [33], [28]. This kind of time regularity (i.e. it f
belongs to a suitable subspace of C([0, T, E), then '—and consequently A(-)u(-)—be-
longs to the same subspace) is called «of maximal type » and ig an important tool
in the study of nonlinear equations by linearization methods as well as integral or

delay equations, ete.

In the present paper we assume the classical hypotheses of TANABE [34] and
SoBoLEVSKII [31], without supposing D(A(t)) == F, and prove existence, uniqueness
and regularity of several kinds of solutions, namely strict, classical and strong solu-
tions. In particular we find again Tanabe’s and Sobolevskii’s results, and generalize
those of DA PRATO-GRISVARD [11] to the case 2 = 0. We also weaken the hypotheses
of DA PRATO-SINESTRARI [13], where maximal time regularity of striet solutions is
proved nnder a slightly stronger assumption on # — A(¢) 4(0)~t; in addition we show
that if § iy Holder continuous then the compatibility condition of DA PrATo-SI-
NESTRARI [13] on # and f(0) is in fact necessary and sufficient in order that the
striet solution # has Holder continumons derivative with the same exponent as f.
About space regularity, we do not consider here strict and classical solutions, whose
related properties will be the object of a subsequent paper; results in this direction,
under stronger assumptions, are due to DA PraTo-GRISVARD [12]. We only prove
some sharp space regularity theorems for strong solutions, generalizing the results
of [11], and. an «a priori» estimate for A(f)u(f) in the case of a classical solution u,
which is of interest in the study of quasi-linear problems.
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Our method is mainly inspired by the techniques of [11]: see Section 6 and, in
particular, Theorem 6.7, where however a very general and abstract situation in
considered (see also TANNELLI [17]). We do not construct the fundamental solu-
tion; we obtain a different representation formula for the solutions of (P) and
derive all our results by a careful analysis of it. Our formula is closely related to a
similar one which we used in a recent paper [1] where Problem (P) was studied in
the ease of variable domains. It can be heuristically obtained as follows: given f,
we look for a function ¢, depending on f, such that the solution of (P) can be
written as : :

I3
(0.1) u(t) = exp [tA(0)]o + [exp [(t — 5) A(s))g(s) ds ,
0

If A(t) = A this formula with g =f gives the ordinary mild solution of (P)
(see e.g. KATo [19], page 486); when A(f) depends on t, it is natural to expect
that g has to be suitably modified. Taking the formal derivative of (0.1) we get

[
w'(t) = 4(0) exp [£4(0)] + g(t) + [ A(s) exp [(¢ — 5) A(s)]g(s) ds .

If we want that » is a solution of Problem (P) we need that

w'(t) — A(t)u(t) = [A(0) — A(5)] exp [tA(0)]» + ¢(t) +

i

+[TA(s) — A(t)] exp (¢ — 5)A(5)1g(s) ds = (1) -
0

Henece g must solve the following integral equation:

t
(0.2) o) + [E(t, 9)g(s) ds = &) = K(t, 002, 1[0, T1,
0
where
(0.3) K(t,s) == [A(s) — A(@)]exp[(t — ) A(s)], O<s<i<T.

Denote by K the integral operator defined by
t
Ko(t) = [E(t, $)p(s) ds ;
0
then the representation formula for a solution of (P) is formally given by

&
(F)  w(t) = exp [t4(0)]o + [exp [(t — 5) A(8)I(1 + K)1(f — K(-, 0)a)(s) ds ,
0 tef0, 1.
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The analogous formula in the case of variable domains (see [1]) is different, since
it has a different «kernel »: here we have exp [(f — s)A(s)], while in [1] the kernel
is exp [(t — s)A()]. Indeed, in both sitmations we need the basic property u(i) e
€ D(A(t)), which is guaranteed by the presence of the analytic semigroup exp [(t —
—8)A(#)]; but in the present case of constant domains the replacement by
exp [(t — s)A(s)] does not affect the above property, and moreover it makes it
possible to drop the differentiability assumption on the semi-group ¢ —exp [£A(?)],
which played a crucial role in [1].

Let ns describe now the subjects of the next sections. Section 1 contains a list
of our notations, definitions and assumptions. In Section 2 we establish some
preliminary results. In Section 3 we derive the basic material which is needed to
prove our main theorems. In Section 4 we discuss strict solutions and their maximal
time regularity. Section 5 concerns classical solutions. In Section 6 we study strong
solutions. Section 7 is devoted to space regularity results. Finally in Section 8 we
describe some examples.

1. — Notations and assumptions.

If A is a linear operator on a Banach space F, we denote by D(4) its domain,
and by R(4) its range; o(4) is the resolvent set of A4, ¢(4) its spectrum, and the
resolvent operator (A -— 4)-! is denoted by R(4, 4). If X, ¥ are Banach spaces,
we denote by £(X, ¥) the Banach space of bounded linear operators with domain X
and range contained in ¥, with norm

_ |- Az|,
”A”’:(X’Y)_mesxuﬂo} ”w”x .

When X = ¥ we shall write £(X) instead of £(X, X).
Let ¥ be a Banach space. We ghall make use of the following Banach spaces
of functions:

a) L*(0, T, ¥) = {u: 10, T[ — ¥: u is Bochner measurable and f[[u )T dt <
< + o0}, p 1, oof, with norm

%] 2o, 7,7y = [f“?(””? dt] " ;

and L°(0, T, ¥) = {u: 10, T[ — ¥: u is Bochner measurable and essentially bound-
ed}, with norm

%]z =0,r,7y= ess sup [4(?)|v;
£€10,TL
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b) O(f0, T1, ¥) = {u: [0, T] — ¥ continuous}, with norm

o] oo, 11,7 = SUP lu(t) | v;

€10,

¢) Cy(10, 17, ¥) = {u: 10, T] - ¥ continuous such that ¢ — ®u(t) is bounded
in 10, T1}, 6 €[0, 1[, with norm

|4l garo, 1,1y = [° %) zgo,2,7) »

and its subspace Co([0, T1, ¥) = {u e C,(10, T}, ¥): 1 lim 1°u(t) € ¥}; note that if
u € 04[0, T, Y¥) we can and will consider the function ¢ — u(f) as an element of
0([0, T, ¥): thus in particular we will identify the spaces Cy([0, 77, ¥) and
O([07 1], Y)§

@) C%([0, T1, ¥) = {we O(10, T1, ¥): |u(t) — w(v)|y = O(t — 7)* as t — v — 0},
g €10, 1[, with norm

lu(t) — u(7) |y

w = % su
|l osct0,m1, 10 = 9] oo, 10,0+ T

and its subspace k8([0, T1, ¥) = {u e C5([0, T1, ¥): |u(t) — u(v)|y = o(t — 7)# as t —
—7 > 0"}

e) Lip ([0, T1, ¥) = {ue ([0, T], ¥): |u(t) — u(z)]y = O(t — v) ast — v — 0},
with norm

u(t) —u(r
% ziocro, 71,7y = | %] c(t0,1,7) -+ SUP Ju®) — w(c)]r )”Y;
7 [t — 7

f) CY([0, T1, ¥) = {u € O([0, T}, ¥): Ju'e 0([0, T], ¥)}, with norm

[l ¢xco,m,9y= [#leqco,m, 1y + 1% oo, 773

g) 0v5([0, T, ¥) = {ue CY([0, T}, ¥): u'e 05([0, T}, ¥)}, B €10, 1[, with norm

4]l ce.o00,21,00= % ctc0,21, 1 + 1%/ ooco, 71,7 5

and its subspace h-8([0, T1, ¥) = {w e CY([0, T], ¥): v’ h#([0, T], ¥)}.
We shall also consider the following funection spaces:

0(]()’ T]’ Y) = n C([&‘, T]7 Y) 3
£€10,T'1
and
0s(10, T, ¥), he(lo, T1, ¥), Lip (10, T],¥), €10, T, ¥),

Ol’ﬁ(]oy T], Y) ’ hl’ﬁ(]o, T]7 Y) ’
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which are defined similarly. We explicitly note that C,(]0, T1, ¥) and C(10, T1, ¥)
are different spaces.

Let us list now our assumptions, which are the classical ones of TANABE [34]
and SoBOLEVSKII [31].

HyporuEss I. ~ For each ¢ € [0, T, A(?) is a closed linear operator on the Banach
space E, with domain D(A(t) = D(4(0)) (constant with respect to ?), which gen-
erates an analytic semi-group {exp [£4(f)]}es,; more precisely:

(i) there exists O,€ J/2, #] such that
o(A®) 2%, ={zeC: 2= gexp[if], g [0, 0, 01— 0, 0,[}, Vtc[0,T];
(ii) ther;a exists M > 0 such that
1B(A AW <M/IA], VieZ,—{0};  [AO)ew<M, Vie[0,T].
Hyporarsis II. — There exist ¢ €10, 1[, B> 0 such that
1 — AW A em<Blt—|*, Vi, 7€ [0, 11.

REMARK 1.1. - (@) We do not assume that D(4(0)) is dense in F: this means
that the analytic semi-groups & - exp [EA(H)], t € [0, T, are not strongly continuous
at £ = 0. This is in fact the case in several concrete examples (see ACQUISTAPACE-
TERRENT [1], SINESTRART [30]). However if Hypothesis I holds and E is locally
sequentially weakly compact (e.g. E is reflexive) then necessarily D(A(O)) is dense
in B (see KaTo [18]).

(b) The assumption that 0 e Q(A(t)) for each ¢t e [0, 7] is not really restrictive.
Indeed, suppose that (i) and (ii) of Hypothesis I are satisfied only in X, — {0}, and
replace u(f) by v(t) = exp [— etlu(t): then v(t) solves Problem (P) with A(?) and f(#)
replaced by A(f) — e and exp [— &f]f(f) respectively. As 1 4 ee X, — {0} for each
A€ X, , our weakened assumption yields X, C o(4(f) — &) and [R(A, A(t) — &) lom) <
< M/[IA + ¢| for each Ae2y and tef0, T]. As |Al/|A 4 &|<|A|/|Im A]<1/sin § for
each AeZ,, we deduce that {A(f) — e} r satisfies (i) and (ii) of Hypothesis I
in the whole X, , with M replaced by M/e sin6. :

REMARK 1.2. — We can slighfly weaken Hypotheses I and IT by supposing that
there exists w,> 0 such that:
(i) o(4(®)2{ee C: Rez> wo} U {mo}, Yt € [0, TT;
(i) [B(woy A®)|lcmy <M, [R(A, A®))|gmy< M/|A — wol if Re 4> ay, Vi €[0, T1;
ifi) |1 — (wo— A(2) B(woy A(7))]|pem <Blt — 7|*, ¥, 7 € [0, T].
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Indeed, if this is true, from the estimate of the resolvent one can easily deduce
that o(A(f)) contains in fact a sector X, 4+ w,= {#€C:2— w,e X, } for some
o€ 1n/2, # ; thus, as in Remark 1.1 (b), we can go back to the initial situation by
considering the function v(f) = exp [— w,f]u(?).

Let us specify now what we mean as a «solution » of Problem (P).

DEFINITION 1.3. — Let f e 0([0, T7, E), e B. We say that u: [0, 7] - F is a
strict solution of (P) if we CY([0, T, H), u(t) € D(4(0)) for each te [0, T], and

w'(t) — AW u(E) = f{t) Viel0, T1, u(0) = =.

DEFINITION 1.4. ~ Let fe C(J0, T1, B), xe B. We say that »: [0, 7] -~ F is a
classical solution of (P) if ue O([0, TT, B) N 0*(10, T1, B), u(t) € D(4(0)) for each
te]0, 77 and

w(t)— A)u(t) = f(t)  Vte 10, T, w(0) = .

DeFiNTioN 1.5. — Let fe O([0, T, B), ve E. We say that u: [0, 7] - F is a
strong solution if we C([0, T1, E) and there exists {u,},.~C C1([0, T, E) such that:
ua(f) € D(A(0)), Vte[0,T], ©—AQ@)u.(t)e ([0, T], H), VneN,
tn— A()un(*) =fo—1 in O([0, 7], B) as n -0,

Us(0) =2, -2 in F as n —>o0,

#,—>u in C([0, T], E) as n —>co.

REMARK 1.6. — By definition, a strict solution is a classical and a strong one.
It fe 0O([0, T7, E), it is not obvious that a classical solution is a strong one; we
shall see later (Theorem 6.7) that this is true under Hypotheses I, II. The situation
in the case of variable domains is different (see Remark 6.5 of [11).

REMARK 1.7. — Problem (P) with initial time #,5= 0 can be treated quite sim-
ilarly to the case #,= 0, since in all successive estimates the constants in fact
depend on the amplitude of the time interval, and not on its endpoints.

2. - Preliminaries; -

Let A be a linear operator on a Banach space F, satisfying Hypothegis I. Then
the semi-group {exp [§4]},., can be represented by a Dunford integral along a
curve y € 2, , joining - coexp [— 0] and -4 coexp[if]. For our purposes it is
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convenient to choose from now on the curve y = y*U y*U 9=, where

y = {zeC: || =1, |arg 2| <6}
yE={¢eC: 2 = pexp [+i0], o>1}.

Then we have

exp (4] = .1 f exp [EA1R(, 4)dA, £>0;
. b4

in particular exp [£4A] maps F into D(4~), Vn e N and

(2.1) A" oxp [EA] = %mf/l oxp [EA1R(A, 4) dh, E>0, neN,

the integrals being absolufely convergent.

If A is a closed linear operator on the Banach space E, then the subspace D(A)
of ¥, equipped with the graph norm, is itself a Banach space continuously imbedded
into £. Hence we can define the intermediate spaces (D(A),E)a’w, g0, 1f, as
follows (see Lions [21], LioNs-PEETRE [22]):

DEFINITION 2.1. - If w€ B, we say that v € (D(4), B), ., (resp. (D(A),E)U) if
there exists #: ]0, 11 — D(4) having first derivative in the sense of distributions
': 10, 1] — E, such that:

(i) o, du(-) € 03(10,1], B) (vesp. C,([0, 1], B));

(i) «#(0) = =.

Note that condition (ii} of Definition 2.1 is meaningful since it is easily seen that
condition (i) implies » € C*7°([0, 1], B). It is also clear that

D(4) € (D(4), E),C (D(A), B),uC D(A), Voelo,1].

When A4 is the infinitesimal generator of a bounded analytic semi-group, the
spaces (D(4), B),_, ., and (D(4), B),_, are denoted by D4(0, co) and D,(6) (8 € 10, 1[).
We can characterize D 4(f, co) in several ways (see BUTZER-BERENS [5] for the case
D(4) = B, and Proposition 1.3 and Remark 1.4 of [1] for the general case), namely:

<o} -
E

— {w € H: sup [6-0 4 exp [Af]5]z< oo} = {m € B: sup |AP[AR(, A)]z< oo} .
>0 Ace(4)

exp [tA]x —

DA(G,oo)z{meE’: sup 7o

>0
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D40, =0) is a Banach space with the norm

Y
E

;exp [?] ~1

(2.2) 1] ato,00)= l|2[2+ sup

and moreover it can be verified (see [5]) that the quantities

141 —
sup exp [t4]—1

7 @

, sup |f1=%A exp [tAlx|z, sup |A[®|AR(A, A)z|
>0 Aep(4)

>0 B

define equivalent semi-norms on D40, co). If, in addition, 0 € go(4), they become
equivalent norms on D,(f, co), all being equivalent to (2.2).
If 0 <f<b<1 we have
1] 5 < O]l pags,009 » Vo e D,4(B, oo)
120 54(6,00) < Cl@] 0,00y, ¥ € Dy(6, 00)
1] 46,00y < C[| 42| Yoee D(4).
Here and in what follows we will denote by € any constant arising in our estimates.

It is easy to show that for each § €0, 1[, D,(0) is a closed subspace of D (0, co)
and that the following characterizations hold:

= 0}:

— {m € D40, 00): lim |t1-94 exp [{A]o]s = o} —
>0+

exp [tA]—1

10 “

D 0) = {a} e D40, co): lim

>0+

— {m € D4(0, 09): lim 4] 4B (A A)an} —0.
€Q

[A|=>e0

Finally it is not difficult to verify that D,(6) is the closure of D(A4) in the norm
of D,(0, co) (see [5], Chapter III, Proposition 3.16, or SINESTRARI [30], Proposi-
tion 1.8).

Now we go back to our situation and prove a lemma which will be systematically
used in the following.

LeMMA 2.2. — Under Hypotheses I, II we have:

t— 1)
I’

|B(2, A(t)) — (4 A(7)) legmy < O VieZ, Vi, vel0,T].

ProoF. - It is enough to observe that

R(2, A@®)) — R(4, A(r)) = R(}, A®))(A@) A(z)— 1) A(x)R(}, A()) . [l
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As a consequence of the fact that D(A(#)) does not depend on ¢, we have the
following

PrOPOSITION 2.3. — Under Hypotheses I, I, for each 1[0, T} and 6 € 10, 1] we
have

D,y(8, 00) = Dyy(0, 00)  and  Dyy(0) = Dy)(6) .

In addition there ewist Oy and O, such that if aéeDA(O)((), 0)

sup [SRLEAON =1 | o Jexpled@ =1 )
£>0 5 ] E>0 5 £
< ysup [SREAON =1 ]y g, 7,
E>0 " & B

From now on we will write

exp [EA(0)]—1 -

(2.3) ol = sup P2

since 0 € g(4(0)), (2.3) is a norm on D, (8, co).

Proor. — The equalities follow by definition. To prove the estimates it is suffi-
cient to show that there exists € > 0 such that

exp [£A(H)]—1
£ “led?

Vo EDA(O)(O, o), Ytel0,T].

exp [EA(t)] — exp [£4(0)]
D 20

&

<0[llmﬂe/\sup
E E>0

>0
Now if £> 0 we have:

exp [sA(t)];exp [£4(0)] 211 f exp [£1] éte[1;:(1 A(t)) — B(4, A(0))] di =

k4
21@ exp[ﬂ] R(2, A()(A()A0)—1)A(0)R(4, 4(0)) dA .
Henée

exp [EA ()] — exp [£A(0)]
EB

a 6
<0 f exp [ Re 1] sox!;a]“o LA(0)B(2, 4(0))a]s|dA| <
Y

<Otz sup |1 A0)R(2, 4(0))2]s < CT?a]s .
Aeo(4(0))

x

By reversing the roles of ¢ and 0 we find also, for each &> 0:

exp [EA(?)] — exp [£4(0)]
£ v

exp [A(@)]—1
66

< CT* sup

B E>0

1
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Lemma 2.4. — Under Hypotheses I, I1 we have:
i) lexp [t4A(s)llemy<C, V¢ sel0, T
(ii) | A(z) exp [tA(s ]]IQ(E)<—? Yr,s€[0,T], Yte]o, T].
(iii) |A(7) exp [LA(8)]c(Daey(B,00,8) < tfﬁ Yz, s €[0, T], Vi€ 0, T], VB 10, 1[.
(iv) If weDyp(p), p€10,1], then hmtl—ﬁ”A('r yexp [TA(s)]w|z=0, Yr,se€[0,T].
v) [ A(z) exp [LA($)]e(paco, E)<0 v, s,1€[0, T
(vi) If weD(A( )) then lim sup | A(z) exp [tA(s)]z[z= 0.

{0+ s,7€[0,T]

ProoF. — (i) It can be proved exactly as in the classical theory of analytic semi-
groups (see e.g. MARTIN [24]).

(ii) Similarly (see [24])
[A(x) exp [A(s) ols< | A1) A() Tucer* [ 4(5) exp [EA(6)]o]s= © o]

(iii) We have for @ € D, (B, oo
J4(v) exp [LA{)als < |A(r) A(8) e | 4(5) exp [EA()ola < 7o [

(iv) We have for x € D, (f)

lim [[t*-8A(7) exp [tA(s)]x|=< C 11m [$1-8A(s) exp [tA(s)]z|z= O .

0+

(v) We have for » € D(4(0))
|4 () exp [tA(s)12]| 5 <[ A(v) A(s) [ cm)[ A (5) exp [EA(5) ]| p < O A(0) @] :
this proves (v).

(vi) If o e D(A(O)) the result follows by (v); the general case is a consequence

of (iii). /f/
Lemwma 2.5. — Under Hypotheses I, 11 we have:

(i) D(A(0)) = {weH: ¢ —exp [tA(s)]5 € Co([0, T], B)} =
= {we E: lim |exp [tA(s)lv — 2|z =0}, Vse[0,T].
i—0+

(i) D(4(0)) Q{w eg: ¢~ PRI =10 ¢ g0, m), E)} _

= {we H: 1> A(s) exp [tA(s)]x € C,(10, T1, E)}, Vse[0,T].
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(iti) {# e D(4(0)): A(0)w e D(A(0))} =

exp [tA( )] —1

{ zel:t— meC([O T, B)t =

exp [tA'(O)] -

ll

{er lim

[ndths }

={weH:t->A0 exp[tA ]0060([0 T]’ )=

= {00 € B: lim |A(0) exp [tA(0)]x — A(0)z]z= 0} .
>0t

Nyt

(iv) D(A(0)) = D(A(0)2) = closure of {x e D(A(0)): 4(0)x € D(A(0))} .
ProoF. — (i)-(ii)-(iii) See [30], Proposition 1.2.
(iv) We have D(A(0))2 {w € D(A(0)): A(0)ax € D(A(0))} 2.D(A(0)2) and, by (i),
exp [(A(0)]x —~x, VYo D(A(0)) as ¢t ~>07;

Since exp [t4(0)]x € D(A(0)2), the proof is complete. ///
Set

(2.4) E(t, 5) = (A(t) — A(s)) exp [t — 5) A(s)], O<s<t<T.

Then clearly K(t,s)e£(E) and in particular K(s,s) =0, Yse[0, I'], but ¢ —
— K(t, s) is not continuous in general at ¢ =s. In fact we have:

LeMMA 2.6. — Under Hypotheses I, II the following estimate holds:

1K@ )lem< O<s<t<T.

4
ProoF. — It follows from the equality

Kty 8) = (1 —~ A() A(s)™) A(s) exp [(t — $)A(s)] . []]

3. — Basic results.

This section containg a series of technical lemmata which examine in detail the
operators and functions appearing in the representation formula (F) of the introduc-
tion. We follow the same lines of Section 3 in [1], where a similar gequence of
statements is given; however in the present case we have simpler and more precise
results.

a) The function t — exp [t4(0)]z.
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LeMMA 3.1. — Let s€[0, T]. Under Hypotheses I, II we have:
(i) If @€ B, then exp [tA(s)]z € D(A(s)"), Yne N, Yt e 10, T1.
(ii) If z € E, then t — exp [tA(s)]w € 0°(10, T, E) and

(Edi)n exp [tA(s)]z = A(s)" exp [tA(s)le, VneN, Vte]o, T],

(iii) @ € D(A(0)) if and only if t — exp [tA(s)]z € C([0, T, E), and in this case
[exp [tA(s)]] o = .

(iv) @ € Dyq)(B; 00), BE€ 10, 1[, if and only if ¢ ->exp [tA(s)]x € C5([0, T, H),
and in this case

lexp [£4(5)]] gago,z3,5) < O]l 0] 5 -

(v) @€ Dyey(B), BE€10,1[, if and only if ¢ — exp [tA(s)]a € h#([0, T1, B).
(vi) If » e D(A(0)) then t — exp [¢A(s)]w € Lip ([0, T, E) and

lexp [tA(8)1%] 10,1, < O] 4(0)] 5 -

(vii) » € D(A4(0)) and A(0)x e D(A(0)) if and only if t — exp [tA(0)]z € C([0,
T1, B), and in this case

d
L_Z-t exp [tA(O)]a:} = A(0)x .

(viii) @ € D(A(0)) if and only if

t—

mét(_()ll:l A(0) 1w e ¢([0, T1, E),

and in this case

[Mﬂ_‘_l A(O)-lw] =a.
?

t=0

Proor. - (i)-(ii)-(iii) Basy consequences of (2.1) and Lemma 2.5 (i).

(iv) Let @ € Dyy(f, oo); then by Proposition 2.3
|exp [tA(s) ]z — exp [vA(s)1o]z < C| (exp [(t — 7) A(s)] — 1))z <0 — )2l

where |2|; is defined in (2.3).
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Conversely, if ¢ — exp [tA(s)]= € C4([0, T7, E), then in particular
[(exp [t4(s)] — 1)&|z < O(s)t8,

which implies, again by Proposition 2.3, the result.
(v) Quite similar to (iv).
(vi)-(vii) See [30], Theorem 3.1 (d)-(e).
(viii) It follows by Lemma 2.5 (iii). ///

b) The function t — K(t, 0)x = [A(0) — A(?)] exp [¢A(0)].

LeMMA 3.2. — Under Hypotheses I, II we have;
(i) K(-,0)e£(H, ¢,_,(10, T, B)).
(ii) If w € H then K(-,0)x e C*(10, T, E).

(iil) K(-,0) € £(D 40)(B; 00), C1sp(10, T, B)), V€10, 1 — a].

(iv) If @€ Dy(p), f€10,1—al, then K(-,0)xe C,_, 4([0, T1, E) and
=P K¢, 0)2],_,= 0.

(v) K(-, 0) € £(D 4)(8, 00), C***7%([0, T1, B)), Yp e L — a, 1].
(vi) If m€ Dyoy(B), BN — &, 1[, then E(-, 0)w e 1*TF~Y([0, T, B).
(vil) E(-, 0) € £(D(4(0)), €*([0, T1, B)).

PROOF. — (i) Evidently Lemma 2.6 yields
Kt 000l < 2 fale.
(il) If 4> v>¢ we have
|E (2, 0) — Kz, 0)2]5< |[A(v) A(1)'— 1]A(t) exp [tA(0)]c]z -

+|

i
1 — A(t)A(0)] j A(0)2 exp [¢A(0)]2 do

0 ¢
< (= D#lalst s t— Dlols

(iii) If @ € Dyoy(B, 00), €10, 1 — ], from the characterization of Dyy)(B, o0) we
get

I(t, 0)o]a < 01| A(0) exp HA(O) ol < o o
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(iv) If w € Dy)(B), f €10, 1 — o], from the characterization of D, () we have

lim |t1—>-6K(t, 0 x“E<hm || A(t) —1|lgm|t8A(0) exp [tA(0)]z|z= 0.

>0t

(v) Suppose x € Dy(B, 0), fe ]l —a, 1[; if 1> 7>0 as in (ii) we get
2
— )= d
15t 000 — E(z, 0ols= 0 T ol + 0 ZE ol < 0t — mto-igal.

(vi) Let we Dyq)(B), €Tl — o, 1[. As in (ii), we have as ¢t —7 — 07:

I K@, 0)w — K(7, 0)z]2<

<[ A(T)A®)1— 1 el A2) A(0) g exp [v4(0)]|cim | 4(0) exp[(t — 7)A(0)]2]z+
t

+ 1 — A(x) 4(0)*em] exp [5T4(0) ]Ht(E) | 4(0) exp [1EA(0)]]ecmy-
o(1) 2 d
-] 4(0) exp [}(£ — ) A(0)]z|5 dE< Ot — =t fs T——fl—ﬁ
= ot — 7)*H-1 Of—d—a—o(l) = o(t — 7)*+F 1,
(o— )=

(vii) Let @ € D(A(0)); as in (ii) we have for > v > 0:
I E(t, 0)a — K(z, 0)af ;< C(t —tr)“]lA exp [t4(0)]x| 5 +

+ 07 [ 4(0) exp [£4(0)14(0)a]; & < Ot — 1| A(0)al 5. []]

13
¢) The operator Ke(l) :fK(t, 8)p(s) ds :f[A(s) — A(#)] exp [(t — ) A(s)]e(s) ds
0

LeMMA 3.3. — Under Hypotheses I, 11, we have:
(i) K e £(L"(0, T, B)), Yp €1, oo].
(ii) If ¢ € Cy(10, T0, E), 6 €[0, 1], then Ko € C*(10, T1, H), Y6 €10, of.
(iii) If e Cy(10, T1, E) N €°(10, T, B), 6€[0, 1], 0€10, 1, then Kpe C*(]0, T, E).
(iv) K e £(0,(10, T1, B), Cs_,(10, T1, B)), V0 € [«, 1.
)

(v) K e£(C,(10, T1, B), €10, T}, B)), ¥0 € [0, of, ¥5 € 10, « — 6[; in particular
Kp(0) = 0, Yo & Cy(10, T1, B).

(vi) K ee(c([0, T}, B), C*([0, T, ), Yo 10, 1.

2 — Annali &i Matematica
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PrOOF. ~ (i) If p == co the resnlt ig obvious. If p < co we have by Lemma 2.6

T ¢
» ¢ »
]]ngi}sz(o,T,E)<f(fm lp(s)] 2 ds) dt =
2 0

13

T [1 T
c » ¢ .
([ lesas) a [ [ =S v ]
¢ 0 0 [}

T T -

1
ds #~1 Jo\e-1 [ X i Ta
. (fﬁ:‘?);:‘;) dt<0(—;) f{’qD(S)]]Ef(wt — 3)1—«ds<0"’;h¢“£”<0,ﬂw) ,
0 0 8

where we have used Holder’s inequality and Fnbini-Tonelli’s Theorem.

(i1) Let > r>e. Then

(31) |He® ~K¢('v)liE<f)lK(t, 8)| emlg(s))z ds -+ l f (K (2, 8) — Bz, 8))pls) ds <
< f &, )ealo(o)]z ds + f(l — A1) A(7)~*)A(7) exp [(t — 8)A(s)1p(s) ds : +

T 0z t—g

-+ f(l — A(—t)A(s)-l)fA(&)2 exp [EA(s)]p(s) A& ds
0 -2

E

Hence we can write

[ Kp(t) — mp(z)lgmo[ f (7“?_%% as +

T

&l2 13
+ [ f + f ] 11 — A A ()| A(z) exp [(F — 5) A(s)]p(s)]z ds +

[ 82

7 t—s
+ f 1~ A(T)A(S)‘lns:w)f [-A(s)? exp [E4(s)]g(s)| A5 dS] <
0 T—8

1 — )= b — )% (e]2)1-6 1 — ) PR
<G“¢“Ue(]0,TJ,E)[( EGT) +( 718/2(6/) +((€f2')59) o t—j'/c n
(t—1)-(sf2)8 : 1 1 1
T e Tl(e/z)"[(r-—s)“““(t——s)l—x]d8]<

(t—1)*
&0

{t—1)* T
-+ Y Iog(l + t“’:[) -+

<Clof Ce(JO,T],E)[

+ %%9 +;15(<'r —of2)— (t—e2)" 4 (1~ 1)«)]<

<Ol Ogleao,mmmt —2)°, V310, .



PAOLO ACQUISTAPACE - BRUNELLO TERRENI: On the absiract, eic. 17

(lii) We ean repeat the preceding calculation, with a different estimate for
the second term in the lagt member of (3.1). In fact we have from Lemma 2.2

|-A(s) exp [EA(s)] — A(f) exp [EA(D)]|em < OE—_éilf y VE>0,

and consequently

<

f(l — A@) ATy ) (A(7) exp [(t — s) A(s)]p(s)) ds

(]

<fm—uMWMwﬂmmmuﬂAw4hwr

0
-|[A(s) exp [(¢ — ) A(s)] — A(F) exp [(t — ) A()]Jo(s) | ds +

+fm— A2 g A(2) () — 1] gy
JA) exp [(F — ) A(D)]p(s h@+fm~ (1) A2 g
LA exp L6 — 5) AW elg(s) — p(t) [ ds +

+ |1 — A@) A7) el (exp [tA()] — exp [(t — 7) A (B)]) (D) |z <

< Olof Gs(JO,T],E)[(t — T)“f(—tjl)l_@ ds + (¢ — T)“f ((tf:s‘S;L: ds] +
(i} 0

; das
(t . 8)1-0' +
e/2

+ Ol@loo,m.m(t —1)* <O 19] oo, 11,4 1@l cotrera,m,m) (F — 7)*

+ Clol Ue(IO,TJ,E)[(t ;/—21:)“ (8/2)1_"] + Ol eotterz,m,m(t — 't)“f

In the second step we have used Liemma 2.2,

(iv) Let ¢ € 0,(10, T, E), 6 € [, 1[. Then for each t e 10, 7] we have:

[

10—
Hte—qu)(t)HE<0!(*—ﬁ Il coo,m1,5y= f(l 1—05y0 [#lioocr0,21.59

and (iv) follows.
(v) Take d €10, « — 0, and choose p € Yoo — 6)7 671[; then (1 —a)p'< (1
—a + d)p'<< 1, where p'= p/(p . Henceif t > 7>0 by (3.1) we check as in (i )

[Ke(t) — Ko(t)|z< Cllo| cago,r1,m)°
t

ds (t—7)*ds 1 Tds
.[J‘(t—s)l‘“s" f (t—s)s? +J.( —*) [ —8 t—s] ]<
0

T
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t z T
ds {t—T)%ds (t—1)ds
< CH(P“CG(JO,T],E)[J‘“ _ 8)1_180 +J‘ (t i 8)1—0"{—680 +f (T . s)l—a&(t — 8) Sa] <
T 0

[

t
ds ur'f (ds e
<01|¢||co(10,T1,E){[fm] [fgé;] +-

T T
T

| ds Up'F £ ds[» \ ds !
+(t—r)"[f(5_—s)u—m] ”@] +(‘—")"U(.,__s*——)u——7+w] }<
0 0 0

< Ollolayg0,m1,m](E — 7)*VP(E — )P0 + (8 — 7)d700-rglin=6]
< 0| ¢l o,q0.m1,m)(E—T)° .
(vi) If p e C°([0, T], E) we get, as in (iii)
f(l — A(t)A(r)1)A(7) exp [(t — s) A(s)]p(s) ds

0

<
E

d f T — )2 d
< Clo|cto,mm [(t — 'z)"‘f (T:g)lTa L t— ) ﬁf_(t__s_)ys] n
0 0

F
+ Ol ooto,m,m)( — T)"‘f(t—_‘sg)?a + Clo]ouo,m,zx(t — )* < Cllgf cotro,m,m (T — 7)%;

]

the remaining terms appearing in the last member of (3.1) can be estimated as follows:

t
f |Et 9)lealp(®)s 45 < 0 — o) |@l oo.mm3

r i—s
ds
<Clg| C’(]O,T],E)f f @ds <
E
0 r—38

T T t~s
“f(l — A(T)A(s)—l)fA(s)2 exp [£A(s)]p(s) d€ ds
0 T8 T

1 1
<Clel C‘fO’T]’E)f [('z: sy (i — 3)1—a] ds < O ¢ cqo,m,m(t — 7)*,
0

and the result follows. [//

d) The operator (1 + K)-1.
LevMmA 3.4. ~ Under Hypotheses I, II we have:
(i) (1 + K)-* exists and is in £(L*(0, T, B)), Vp €[1, co].
(i) (1 -+ E)e £(Cs(10, T, B)), VO [0, 1.

(iii) (1 + K)-te Q(O’([O, T, E)) and, in addition, (1 -+ K)¢(0) = ¢(0), Ype
€ 0([0, T1, E). \
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(iv) If 0 € [0, 1 and ¢ € C,(10, T], B) N ¢°(10, T, E), 6 €10, ] (resp. C,(10, T1,
E) N 110, T, B), 6€10, of) then (1 + K)'ge %10, T], B) (resp.
1(10, T1, B)) .

(v) (1 + K)e (%[0, T), B)), Y6 €10, al.
(vi) If ¢ € ([0, T1, B), 6 €10, , then (1 + K)-'¢ € k*([0, T, E).

Proor. — (i) Define a new norm in L#(0, T, E), p € [1, col, setting

lols = llexp [— @tlo( oz » Vo € L0, T, B),

where o > 0 is to be chosen later. Clearly |p|, is equivalent to the usual norm in
I»0, T, F), and moreover it is easily seen that

10t

IlK¢llp<KfM dslol; < EI'(x)o~*|g|;, Vo el»(0,T,E).

Hence if we choose w large enough, we get
|Egl<tlel;, VYoeI(o, T, B),

so that (1 -+ K) has bounded inverse in L2(0, 7, E).

(ii) If @ e Cy(10, T], E) then Kge Cy(]0, T1, E) by Lemma 3.3 (iv)-(v). As
before, define

lolls = lexp [— 0te()cgo,mm Yo € Co(10, T1, B) ;
then it is easy to verify that

149 exp [— ] Kot HE<KH‘P”et°‘f Pl gy, Ve, 1.

za(1 — 20
0 ,

Choose pe 1, 0*A(1 — e)~*[; then
1

[0 exp [— ) Ep(0]s<Klglit| [ exp (—atop1ao]

1
dm 1/p T"‘—
’ [fgg(l—w)v(l — m)op] <C—r ”‘P”G
0

For w large enough, again we can deduce that |Kg|,<}|e¢|5, Yo € Cy(10, 1, B),
s0 that (1 ++ K) has bounded inverse in C,(10, T, E).
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(iii) K e SZ(O’([O, T],E)) by Lemma 3.3 (v); in addition by (i) we get that
(1 + K)te £(L°(0, T, E)). Hence for any g€ C([0, T], E) we have

Il

L+ B)g =g+ 3 (~ Krge o0, 71, B

since K»g e 0([0, T1, E), ¥n € N and the series converges in C([0, T, E) with respect
to the norm ]H[:o In particular ((1 + K)=*g)(0) = ¢(0) by Lemma 3.3 (v).

(iv) Let 6 e [0, 1] and suppose ¢ € Cy(10, 71, B) N (10, T1, B), 6 €10, o] (resp.
Cy(10, T, E) N (10, T1, E), 6 €10, oc[). By (ii) we can set g = (1 4+ K)'¢, so that
g = ¢ — Kg e 04(10, T], E); hence Kge C°(10, T1, B), Yo €10, o[ by Lemma 3.3 (ii).
This implies g € Cy(10, T, B) O €°**(10, T1, E), Yo € 10, af (resp. Co(10, T1, E) N (10,
T, E)) The result is proved if 6 < «, otherwise this in turn gives Kg € 0*(]0, T, E)
(Lemma 3.3 (iii)), so we conclude that g e €*(10, T, E).

(v) Let ¢ %[0, T1, E), 6 €10, «]. As in (iv), we get ge C%([0, T], B) since
Kg e ([0, 11, F) by Lemma 3.3 (vi). Moreover if d €]0,af for each ¢, 7€ [0, T]
we have by Lemma 3.3 (v) and by (iii)

9 —9(0)ls _ lot) —g(o)ls

t—zle T TP

+EG lt—'rla Al 1 I rla Lo Cl9lotto. 1.5 < Ol oo, 11,05

on the other hand if 6 = « we can apply Lemma 3.3 (vi) obtaining

1 g (®) gl

It — TI"‘

= < Olg]ovco,11,8) < Ol 02(10,11,8) < Ol @l 000,189 5

and the result follows.

(vi) It ¢ € ¥¥([0, T, B), é €10, af, then by (v) we have (1 + K)'pe€ %[0, 17,
E); moreover by Lemma 3.3 (vi) K(1 -~ K)~'¢ € C*([0, T, B) € 1*([0, T], E), which
implies (1 + K)-'¢ = ¢ — K(1 + K)2 g e ([0, T1, B). /|

¢) The operator Te(t) fexp [(t — s).A(8)]p(s) ds.

LEMMA 3.5, — Under Hypotheses I, II we have:
i) Tet(L0, T, B), O([0, T], B)) and Tp(0) = 0, Vg € L}(0, T, B).
(i) Teg(Cy(10, T, B), C*~%([0, T1, B)), ¥6 € 10, 1[.
(iii) If @ € Cy(10, T1, B), 0 €10, 1[, then To € C°(10, T, B), Y6 €10, 1[.
(iv) T'e£(Cy(10, T, B), C%([0, T1, E)), ¥4 €10, 1.
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(v) If 0 € [0,1[ and ¢ € C,(10, 71, B) N C°(10, T1, B), 6 €10, o] (resp. C°(10, 71,
B) N 110, T1, E), 6 €10, of), then Tg e €**(10, T), B) (resp. h*(10, T, B)) and

[

(To)' (1) = [ A(s) exp [(t — 5) A()](ls) — g(8) ds +

0 ¢ '

+[(4(s) exp [t — 5)A(5)] — A() exD [(¢ — 5) A(#)]) () ds + exp [LAB] (1),
’ Vielo, T7.

(vi) If 8 € [0, 1[ and ¢ & C,(10, T, B) O\ €°(10, T}, B), 6 €10, ] (vesp. C4(10, 11,
B) n#(10, T, B), é €10, oc[), then To(t) € D(A(0)), Vi€ [0, T, ¢ — A(t)Te(t) € C°(0,
T, B) (resp. (10, T, B)) and
A(t) To(t) = (To)'(t) — o(t) — Ke(t), Vie]0, I7.
(vii) If @ € 0°([0, T1, B), 6 € 10, ], then
(To)(t) — (T9) (z) = 0((? —7)°) 4 (exp [t4(0)] — exp [vA(0)])¢(0) as t —7 — 0%,
(viii) If @ € ([0, T, E), 6 €10, o[, then (To)', A(+)Tep(-) € #°(10, T, E) and

(To)'(t) — (Tp) (v) = o{(t — 7)°) + (exp [t4(0)] — exp [¢4(0)])@(0)  as t—7 — 0.

Proor. - (i) Let t€10, T]; we have

|70z <o) s ds;

it follows that Te(f) =0 as ¢ — 0%, and moreover

sup | To@®)|z< Clelzo,r.5 -
t€10,T1

Let us show that Ty is continnous at each te10, T']. Take ¢&]0,1[; then for
each 7€t — ¢, we have

4 z
1Z90) = Zp(e) 5 < O Igto) ] ds + | [ (exp (16 = ) 4511~ oxp [(x — 5) 4(5)) o) 5] -

In the second term on the right-hand side the integrand goes to 0 as v —t~ for
each s €]0, 7[, due to the fact that & — exp [£4(s)]y is continuouns for & > 0 when
y€ B is fixed; hence by Lebesgue’s Theorem we check To(r) — To(t) as v —1-.
Interchanging ¢ and v we get that the same is true as v — i+
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(ii) If > 7>0 we have

i T i—s

1Top@®) — Tep(z)lz<C| [9(s)] = ds —l—f JIIA(S) exp [E4(s)] ez dElg(s)]z ds <

k4 0 r—s

t—r)ds

< O] cotro,71,5) [(t — )0 —I—flog (1 +- = 3_9] <00) |9 cor0,m1,m(E — )20 .
0

(iii) Let 6 €10,1[. If t> v>¢ we have, ag in (ii)

t &/2 T t—s
| Top(t) — To(r)]z<C nqo<s>nzds+[ f + f ] f | A(s) exp [EA(S)] el p(s) | € ds <
T 0 &/2 T—8

t—t t—7

T . p
<0|]¢lloe(]o,T],E)[7 -+ o2 (e]2)r-0 +f10g (1 -+ -,;_:—E)(a/;)g]<
&2

< O(ey 9| @losao,m.m(E—T)°.
(iv) As in (ii) we find

T

[To(t) — To(z)|z< Clo|z=0,r.5 [(t — 1) +flog 14 i—'—__——z) ds] <

< G(a)II'PHL”(O,T,E)(t —1)¢, VY6elo,1[.

(v) We consider only the case ¢ € C,(10, T1, E) N ¢%(10, T1, E), 6 € 10, a], since
the other is analogous. Let ¢ 10, T], and choose ¢ €10, ¢[. If {> 7>& we can write

[

T«p(t;: g’w(f) - 1 . f exp [(t — 8)A(5))(p(s) — (1)) ds +

T
13

P AB]—
2 [ (e e — o)1 —exp 10— 0.4(00)pt0 22 4- TRUDZOI=S

t—

@) +

2

N fexp [(6— ) A(0)] — exp [(z — ) 4©))
0

p(s) — (7)) ds +

t—7

_]_f[exp [(t —s)A(s)] — exp [(v —s)A(s)] exp[(t—s)A(7)] —exp [(z — S)A(T)]] .

t—1 t—7T

.0

oxp (=AM —1 41 (exp [TA(1)] — 1)p(7) =

"p(7) ds + P .

B;.

i

As 7 — 1~ we deduce that

B,= 0((t - T)i’) » B,= 0((t - T)a) ’
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while

exp [(t — 1) A(#)] —1 A(t)—l—eXp [(t—7)A(r)]—1
t—1 t—1

exp[(t—1)A(T)]—1
t—

B; 4 Bg= [ A(T)_l] o(t) 4

ey (plt) —plr)) + CRUZDADIZL,

~A(7)"t exp [TA(1)]p(7) = O((t — 7)*) + O((t — 7)°) + exp [tA()]p(?) -

+

Consider B,: the integrand converges to A(s)exp [(t — s)A(s)](p(s) — ¢(2)) as
v — -, and is dominated by the functions

Gy(s) = 0{%[0&/2]@)5%1”%@ — @Dz + Zerz.a(s) t_:_L_ - (t—8)0— (v — 3)")} :

Since

)
lim G,(s) = 0{%[0,5/21(3)5—2 lp(s) — @@z + Xterzn(s) (7_—_3—)5:15}’ Vs €10, 1,

T=>{~

and
t

&
. 0
lim | G.(s) ds =f0{lf0,s/21(3)8—7§ lo(s) —@@]z+ Krez.als) (_t—:s_)_l:_ﬁ} ds ,
0

>

we conclude that

1
By= o(1) +[A(s) exp [(¢ — 5) A(s))(p(s) — g(8) ds, a5 T >
0
Finally, the integrand of B; converges to (A(s)exp [(f — s)4(s)] — A(¢) exp [(1 —
— 8)A(®)])p(t), Vs €10, #[, and is dominated by the functions

(t—8)*— (v —8§)*
i—T

F.(s) = 0{%{0,5/21(8);% le() s+ Kierz,=(8) H‘P(T)HE}?

since

z—=>{"

lim F.(s) = C{%m,s/z}(é")e—?“2 le@]z+ Kterz,n(s) (_t:‘?gi:" pr(i)ﬂz}, Vse10, 1,

3

i
) 2
lim | 7,(s) ds = f G{XEO,Smm o5 le®ls+ x[elz,n(s)(-,;:“;@ uq:(t)uE} ds
0
we get
14
By= o(1) +(A(s) exp [(t — ) A(5)] — A() exp [(t — ) AW p(t) ds , a5 T 1.

(1]
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(T

I(T

The case v -+ ig treated similarly, interchanging = and f.
Let us show now that (Tg)'e ¢°(10, T1, E). Suppose t> r>¢; then

D)) — (Tg)( —fA ) exp [(t — 5) A(s))(g(s) — (1)) ds +

+f(A(s)exp[(t—s> A(5)] — A() exp [(£ — 5) A (1) (p(z) — 9(1) ds +

+0 (exp [tA(1)] — exp [(t — r)A(t)])(tp(r) +fA )(exp [(¢ — ) A(s)] —

—exp [(z — 5) 4()1) (p(s) — 9(x) ds +f ) exp [(¢ — 5) A(s)] —

— A(t) exp [(t — $) A(H)])) (1) ds + (exp [1A(7)] — exp[(t — 7) A(r)] — exp [t4(1)] +

+exp [(1 — 7) 4 +f ) exp [(¢ — 5) A(s)] — A(t) exp [(t — 5) 4()])(p(1) —
ds+f[ 5) exp [(t — ) A(5)] — A(z) exp [(t — 5) A(¥)]) —

— (A(s) exp [(v — 5) A(5)] — A(7) exp [(v — 8) A(1)])]p(7) ds + (exp [tA(!)] —
—exp [t4(7)]) (t) + [(exp [¢A(r)]—exp [rA4(z)]) — (exp [tA(0)]—exp [vA(0)])]p(d) +
+ (exp [tA(0)] — exp [v4(0)1) p(t) + (exp [vA(7)] — 1)(p(t) — p(7)) .

Consequently

@) (¢) — (L) (T)| e < Ol @]l coge, 11,1( — 7)° -+
+ Ol@lose, 1,8t — )01+ Olop| ooe,m1,m)(E — 7)° +
t— 1 1
+ Olgloomm b=+ Olelownm | m=5m— G & +

&/2

+ Clo]| Ge(]O,T],E)El?, (t—1)*+ ‘
+ Cllexp [(t — 7)A(7)] —exp [(1 —7)A ]HE(E) 1ol cot0,1,) +

1 1 1
+ Clplorgemmlt— 2% + Clplagom.ers f e

as
+ Ol csqo,m1,8) gffl_a + ZnlPloonnt — 1) + Ol@leenmnlt —7)°<

T

O(e)ll@l oo, 1.8+ 9l cottere,mn,my] (8 — )2 .

(vi) Again we consider only the ease ¢ € 0,(10, T1, ) N ¢°(10, T1, B), 6 €10, «].
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Fix te 10, T]; then

To(t) = [[exp [(t — 5)A(s)] — exp [(t — 5) A()]g(s) ds +
i 0

+[exp [(1— 5) 4)(p(s) — p(1)) ds + A)(exp [tA(1)] — Dol =
0

i

= a0~ [(am a2~ 1) 460 exp [l = 5) A0}l ds+f 5) exp [(t— 3)A(5)] —

0

— () exp [( — ) AD) ds+fA ) xp 11— 5 40N p6) — 910) s -+
+ (exp [14()] — 1)o(0)}

and all integrals are convergent, since

i

ds
< Cf 5= Il ost0,1,) 5
0

(A(t)A(s)"*— 1) A(s) exp [(t — 5) A(9)]p(s) ds

"f ) exp [(t — s).A(s)] — A(?) exp [(t — 5)A())])g(s) ds

<
B

4

ds
< Ofw ”(pn Ce(10,T1,E) s

0
and

& e/2
[ exp 10— 940050 ~g0) 25) <0 f e Plocom e+

0

—+ f @l eoere,m,2) »

/2

where & < 1t. It follows that To(t) € D(4(0)) and
() Tp(t) = f 0 4(5) — 1) A(s) exp [(¢ — 5) A(s)]g(s) ds +
+ f A(s) exp [(6 — 5) A(s)] — A(1) exp [(¢ — 5) A()]) g(s) ds +
0
+ j A(t) exp [(t— 5) A1) () — p(t) ds +(exp [LAW] ~ D)g(t) , Vi€ 10, T1.
;

In particular by (v) we have

A Tpt) — (Tp) () = — ) — f Afs) exp [(t — 5) A(5)lp(s) ds =
= —g¢(t) — Kg(t), Vielo, T];

hence, by (v) and Lemma 3.3 (iii), we conclude that A(-)Typ(-)e O"(]O, T, E).
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(vii) We split (Z¢)'(t) — (Te)'(v) as in (v), obtaining for > 7> 0:

1(TpY (t) — (Te) (2) ]z < O] oo, 0,05 (F — )+ (t— )]+
+ || (exp [£4(0)] — exp [z4(0)]) (1)) 5 < O @] goto, 1,88 — 7)° +
+ |lexp [#4(0)] — exp [74(0)]eer [lo® — 9]z + [9(v) — @(0)]£] +
+ || (exp [£4(0)] — exp [zA(0)1) 9(0)] < €] goto, m,mp{t — 7)° +
+ [ (exp [tA(0)] — exp [7A(0)]) (0)] 5 -

(viii) As in (vii) we get now as { — v —0%:

1(Te) (t) — (Te) (#)]| s < )| @]l gotgo, 21,5 0D — 7)° + (¢ — 2)°1 +
+{ll(exp [£4(0)] — exp [z4(0)]) @(0)lz ,

which implies (Z¢)’e k°(10, T, B). Moreover since
A@) To(t) = (To)' (1) — o(t) — Ko(t), Vie]0, T],

by Lemma 3.3 (iii) and the inclusion C€%(10, T1, E) C#°(]0, T1, E), we deduce
A(-)To(*)e1°(10, T}, B) . []

4. — Strict solutions.

In this section we study the properties of strict solutions of Problem (P) (see
Definition 1.3). We start with a direct proof of uniqueness and of necessary com-
patibility conditions for existence. Next, we prove that the strict solution exists
and is given by the representation formula (F) of the Introduction, provided f is
Holder continuous and the compatibility conditions hold. From the fact that (F)
holds, we will easily deduce an estimate for the strict solution in terms of the
data x, f when f is Holder continuons; a general «a priori» estimate for strict solu-
tions is then obtained for continuous f, by an approximation argument. We note
that a direct derivation of this « a priori » estimate is not possible, since if f is merely
continuous then the function defined by Formula (F) needs not be a strict solution
of (P).

Tinally at the end of this section we will prove maximal time regularity for the
striet solution.

THEOREM 4.1. — Under Hypotheses I, IT Problem (P) with x € E and | € e([o, 11, E)
has at most one strict solution.
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Proor. — Let u be a gtrict solution of Problem (P) with # = 0 and f == 0; fix
te 10, Il. Define

o(s) = exp [(t — ) AW)Tu(s), se[0,7].
For each se10,{ we have:
V'(s) = — A(?) exp [(¢ — s) A(?)]u(s) + exp [(t — s) A(t)]u'(s) =
= exp [(t — ) A()1(4(s) — A1) u(s);

As the right-hand side is continuous and bounded in [0, #[, by integration we find
i
w(t) = [exp [t — ) ABIL — ADA) Al)uls) ds
[
which implieg

14
fA(t) exp [(t — s)A(1)](1 — A(@)A(s)"2) A(s)u(s) ds

0 11

< Of(—L— | A(s)u(s)|zds .

i —s8)i

|A@) u(t)]|e=

<
E

0

By a well-known generalization of Gronwall’s Lemma (see e.g. AMANN (3], Corol-
lary 2.4) we deduce that A(#)u(t) =0 in [0, T]; this in turn gives #'(3) =0 in [O,i.’l’],
or u(t) =u(0) = 0. [/

About existence of the strict solution, we have an evident necessary condition
on the initial data:

THEOREM 4.2. — Under Hypotheses I, 11, if u is a strict solution of Problem (P)

with @ € B and f e C([0, T, E), then &€ D(A(0)) and A(0)z + f(0) € D(A(0)).

Proor. — By definition, # = u(0) € D(A(0)). Moreover, u(t) — 2z € D(A(0)), Vte
€ [0, T, so that

u(t) —

A(0)x 4 f(0) = %'(0) = lim

lim eD(A0)). [{f
The above condifion is also sufficient for existence, provided j is a little more
regular. In fact we have:

THEOREM 4.3. — Under Hypotheses I, II suppose xe D(A(0)), f € €°([0, T, E),

o €]0,1[, and A(0)x +- f(0) € D(A(0)). Then the function u(t) given by Formula (F)
of the Introduction is a strict solution of (P) and belongs to C-°*(10, T1, B). If in
addition { € k°([0, T1, E), ¢ €10, of, then w e h-°(10, T, E).
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PrOOF. — By Lemma 3.1 (iii) and Lemma 3.5 (i) we have u e O([0, T], E) and
#(0) = #. Lemma 3.1 (ii) implies that ¢ — exp [tA(0)]x € C~(]0, T, B); on the other
hand by Lemma 3.2 (vii) we have K(-, 0)x e C*([0, T], B), so that the funetion g =
== ((1 +K)‘1(f—K(-,0)m)) is in C°"*([0, T], B) by Lemma 3.4 (v); therefore
Tge *°*"*(10, T, E) (Lemma 3.5 (v)). Summing up, we find »e 0*°"*(10, T, E)
and

14
w'(t) = A(0) exp [t4(0)]» +fA(8) exp [(t — ) A(s)](9(s) — g(?)) ds +
i}

t
+f(A(8) exp [(t—s) A(s)] — A(t) exp [(¢ — 5) A(1)]) g(t) ds + exp [LA®)Ig() ,  Vi{e 10, T]

If in addition f € ke ([0, T, E), 6 €10, of, then g € 19([0, T], E) by Lemma 3.4 (vi),
hence Tge h*(10, T1, E) by Lemma 3.5 (viii) and finally u € h*°(10, T1, B).

Next, by Lemma 3.1 (i) and Lemma 3.5 (vi) we have u(t) € D(A(0)), Vi e [0, T]
and

A(0)z ift=0,
i

¢
A@)u(ty = | A(f) exp [14(0)]z + % exp [(t — 5)A(s)]g(s) ds — g(?) —JK(% 8)g(s) ds
0 0 it 1€]0, T].
Let us show now that w'e C([0, T], E). As t 0% we get
w'(t) = exp [t4(0)]4(0)x + O(t""*) + O(t%) + exp [tA(0)]g(0) =
= 0(t"") + exp [14(0))(4(0)x + #(0)) ,
and since A(0)z -+ f(0) € D(A(0)), we find that
lim #/(t) = 4(0)a + (0) .
Hence

Ju'(0) = A(0)x + f(0) = lim «'(?) ;

>0+
this means '€ C([0, T1, E) and
w'(t) — Al)u) = 1), Viel0, T].

80 that « is a striet solution of (P). ///

Our next goal is to prove an «a priori» estimate for gtrict solutions. We first
agsume f to be Hoblder continuous.
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THEOREM 4.4. — Under Hypotheses I, I1 let u be a strict solution of (P) with x €
€ D(4(0)) and fe Co([0, T, B), 0 €10, 1[; then

(11) [uls < Oflalls + 1) 5 as},  Veelo, 71;
(4.2) A u(®)|z <O AO)allg + [fleogo,mr,m} >  VEEL0, T].

PROOF. ~ The first inequality is an immediate consequence of Formnla (F), which
holds in this case by Theorems 4.2, 4.3 and 4.1, and the fact that (1 - K)-le
e £(LY(0, t, H)), V[0, T]; the latter property can be proved as Lemma 3.4 (i).

To verify the second estimate, we repeat the argument used in the proof of
Theorem 4.1, obtaining now:

A)u(t) = A( ) exp [tA(t)]« +fA ) exp [(¢ — 8) A(1)](1 — A(t)A(s)™) A(s)u(s) ds -

+fA ) exp [(¢ — ) AW@)](f(s) — /(1)) ds + (exp [tA()]— 1) (1), Vee[o, T].

Hence

[4(s)uis)]x ds -

l—d

t
1400015 < CLA0)e]s+ Ol et O 7=
0

Again, a Gronwall-type argnment (see Corollary 2.4 of [3]) leads to theresult.  [//

THEOREM 4.5. — Under Hypotheses I, II let w be a strict solution of (P), with
x e D(A(0)) and fe C([0, T1, E). Then

o)< fols + [[F6) ]z ds},  VeeTo, 71

Pror. — We remark that we cannot use Formula (F) directly, as in Theorem 4.4,
since f is not Holder continuous. Let ¢> 0. Consider a function ¢ € C°(R) with

1
support contained in [— 1, 1], such that ¢>0 and fqo(s) ds =1, and define @,(f) =
—1

= np(nt). Since w'(t) — A@)u(t) = f(t) in [¢, T — ¢], we have for each n > ¢1:

(@ ) (1) — (Pux AC)u)E) = @ur (w/— AC)u())(O) = (gux )(t), Viels, T—e].

where
i+1/n
{(@u % v)(t) =f<pn(t —s)o(s)ds, VYve O([0, T], E) .

t—1/n
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Note that ¢, % u e C°([e, T — ], E);in addition (@, u)(t) € D(A(0)), Vie[e, T — ],
A()p.% ue O[e, T —¢], E) and
t+1/n
A@) (@u® w)(t) = f Palt — ) A(tyu(s) ds, Vtels, T—e].

t—1/n

Hence ¢, % 4 is a striet solution of

(@u ) (1) — AB)(@n# u)(B) = (@ak () + (pax A(-)u)(E) — A@)(@as w)(?) ,
) tele, T—¢],
(pa u)(e) = (@a* u)(e) .

The right-hand side of this equation is in C%([e, T — &), B): indeed, @, % f€
€ 0°([¢, T — ¢], B) and moreover, denoting by y,(t) the function (g, A(-)u)(t) —
— AN @nx u)(t), we have

‘ t+1/n
palt) =[galt — 8)(1 — A1) A(5)7) A(s)u(s) ds

t—1/n
which implies for ¢ > ¢

t+1/n

[92) — pu(D)a < [nlp(ntt — ) — pnlz — )L — A0 A6 gon A (5)0(5) |5 05 +

t—1/n
z+1/n

+ [ngplntz — )]t = A0 A@) el A A6 el Als)u(s)] 5 ds <

z—1/n
t+1/n

<n¥ 9" o1, (¢ — 7)Kflt — s|*[ A(s)u(s)]| g ds + n|@] 1,1 EE — ) C-

T—1/n

: f | A(s)u(s)| 5 ds < O(n)(t — 7)* sup || A@)u()| 5 -

tel0,71

Then we can apply Theorem 4.4 (recall also Remark 1.7), checking that

13
(@ @ls<O{l@ar WE@)a+[I@x D) + palollsds},  Veele, T—e].

Now as % —>0o We have @, % % —>u, p.% f —f and v,~0 in O([¢, T — &l, E),

since
t+1/n

0 <lplecso | T A< s 40401
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hence as n —oo we conclude that
i
< Cfjuies+ [1f6) s s}, Ve, T—e].

and letting ¢ — 0% we get the resnlt. [//

REMARK 4.6. — In Theorem 4.3 it would be sufficient to suppose that f e ([0,
T1, E) and there exists t°c ]0, T] such that the oscillation () of f satisfies
40
(4.3) f 9—?—) dr <co.

0

This assumption, together with ze D(A(0)) and 4(0)x + f(0) € D(A4(0)), still
guarantees that u(f), defined by Formula (F), is the unique strict solution of Prob-
lem (P) (but, of course, it is no longer Hdolder continnous). We omit the proof,
which needs a series of preliminary lemmata similar to those of Section 3, in order
to verify that condition (4.3) in fact assures the convergence of all integrals involved.
This generalizes a result of CRANDALL-PAZY [10] relative to the autonomous case,
and is in perfect analogy with the case of variable domains (see [1], Remarks 4.3
and 5.2). Note that it is not possible to assume f is merely continuous (without
condition (4.3)): for example if H is reflexive and A(f) = 4 ¢ L(E) then there exists
a continuous f such that Problem (P) has no continuously differentiable solution
(see BATLLON [4], TRAVIS [36], DA PRATO-GRISVARD [121).

We conelude this seetion with the study of maximal time regularity of the strict
solution of (P).

THEOREM 4.7. — Under Hypotheses I, II let x € D(A4(0)), f € 0°([0, T, E), ¢ € 10, «],
and let u be a strict solution of (P); then ue CV°([0, T), E) if and only if A(0)z +
+f(0)e 'DA(O)(U7 00).

PROOF. — By Theorems 4.2, 4.3 and 4.1 «(?) is given by Formula (F). If in addi-
tion w e 0“°([0, T, E), then in particular

w'(t) — u'(0) = O(t°) as t —0F;
but from the proof of Theorem 4.3 we know that
w(t) — w'(0) = O(t9) + (exp [tA(0)] — 1)(A(0)x + f(0)) a8 £ — 0%,

hence (exp [tA(0)]—1)(A(0)x + f(0)) = O(#°) as t >0%, i.e. A(0) + f(0) € D yqy(0, c0).
Suppose conversely that A(0)x -+ f(0) € Dy(o, o0), and let % be a strict solution.

3 - Adnnali & Matematica
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of (P); then u(?) is given by Formula (F) and
u'(t) = exp [tA(0)]A(0)z + (Tg)'(H), Vie[0, T],

where g = (1 + K)~}(f — K(-,0)x). Since ge Co([0, T], B) (Lemma 3.2 (vii) and
Lemma 3.4 (v)), by Lemma 3.5 (vii) we have as { — v — 0%

u'(t) — w'(v) = (exp [14(0)] — exp [7.A(0)])(4(0) + g(0)) 4 0((t — 7)°) =
= exp [7.A(0))(exp [(t — 7) 4(0)] — 1)(4(0)z + £(0)) -+ O((t — 7)) = 0((t— 7)),

hence w'e C9([0, T, E). /||

THEOREM 4.8. — Under Hypotheses I, II let x e D(A(0)),feho([0,T], E), o€
€10, af, and let u be a strict solution of (P). Then ue h°([0, T1, E) if and only if
A(0) + 1(0) € D ypy(0)-

PrOOF. — If ueb"’([0, T], E), by (F) we get
w'(t) —u'(0) = o(t°) as ¢t >0,
and from the proof of Theorem 4.3 we have
w' (1) — w'(7) = o(ts) + (exp [24.(0)] — 1)(A(0)ac -+ 7"(0)) as ¢ —07;

these two facts imply A(0)2 - f(0) € Dy)(0). If conversely 4(0)x + f(0) € D, (o),
again by (¥) we check

w'(t) = exp[tA(0)]A(0)x + (Tg)'(t), Vielo, T,

where g = (1 + K)(f — K(-, 0)z) € ke ([0, 11, EB) by Lemma 3.2 (vii) and Lem-
ma 3.4 (vi); so by Lemma 3.5 (viii)

w'(t) — u'(v) = (exp [tA(0)] — exp [z4(0)])(4(0)x + ¢(0)) + o((t — 7)) =
=o((t—7)°) ast—0",
hence u'e he([0, T1, B). |||

REMARK 4.9. — The necessary and sufficient conditions 4(0)x -+ £(0) eD(A(O))
and A(0)x + f(0) € D, (0, o) of Theorems 4.3 and 4.7 do not differ from those
holding in the case of variable domains. In that case under the stronger hypothe-
ses I, IT and IIT of [1] one obtains

d

(4.4) A(0)x + f(0) —[ﬁA(t)"l]tzoA(O)w e D(4(0))
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or

(4.5) 0)z 4 f(0 [gtA(t)—l]thoA(O)w € Dyoy(a, o) .

Now, suppose D(A(t)) ED(A(O)) and ¢ — A(t)™* continuously differentiable in
£(H); then it is immedjate to verify that the range of the operator (d/df)A(t)-* lies
n D(A(0)) for each t€[0, T], so that condition (4.4) reduces to A(0)x —{—f
€ D(A(0)).

Suppose moreover that (d/dt)A(t)~1e €([0, T, L(E)), 5 €10,1[, and take o <nAx
n (4.5) (here « is the number defined in Hypothesis IT in Section 1). Then assum-
ing again D(A(t)) = D(A(0)) we have for each y e E and te[0, T7:

exp [EA(0)]—1[d , .
— [ZﬁA(” ”]

pie

<
E

exp [EAO)]—1[d , . A(t+ & '—A@)

< ——63—-‘—[%44(75) - 3 ]?/ E+
&

n “;é_ fexp [TA(0)] (A(O)A(Sﬁf £)-1— A(0)A(t)™) y i <

3
< Olexp [EA(0)] — sanérlyls-+ § [ lexp (74O g v
0

K& A0)AD)em|yls<Olyls£72-° if £€]0,1],
while obviously

exp [£4(0)]—14d _
= G Ay

<Olyl= it &>1;

this means that the range of (d/df)A(t) lies in D, (nAx, co), and therefore condi-
tion (4.5) reduces to A(0)x - f(0 )EDA(O)(O', 00).

REMARK 4.10. — Replace Hypothesis II in Section 1 by the following stronger
one:

(4.6) 1 — A0 A@) Y em= o —z[*)  as [t — 7| —07;

then we can improve the results of Theorems 4.3 and 4.8 as follows:

(a) if @ e D(A(0)), f € h*([0, T1, B) and A(0)x + f(0) € D(A(0)), then the strict

solution « is in B“*(10, T, B);

( B);
(b) if @ e D(A(0)), f € *([0, T], B) and A(0)2 + f(0) € D(A(0)), then the strict
solution # is in B"*([0, T1, E) if and only if A(0)x 4 £(0) € Dygy().
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We omit the proof, which does not differ from those of Theorems 4.3 and 4.8;
it requires some further statements in Lemmata 3.2, 3.4 and 3.5, which however
can be easily proved according to the same lines used in Section 3.

5. — Classical solutions.

This section is devoted to the study of classical solutions of Problem (P) (see
Definition 1.4). As remarked in the Introduction, most of the results of this sec-
tion were first proved by TANABE [34] and SoBOLEVSKII [31], who supposed however
D(A(0)) to be dense in E. As in Section 4, we start with uniqueness under general
assumptions on f (i.e. f e €10, T1, E)), with a little more regularity of f, namely
f e Cy(10, T1, B), we get an «a priori» estimate for classical solntions as a conse-
quence of the similar one relative to strict solutions. Next, we deduce an easy
necessary condition for existence; finally we will see that existence (and time regn-
larity))is guaranteed by adding more regularity on f (i.e. f € Cy(10, T, B)n 0s(10,
T, E)).

THEOREM 5.1. — Under Hypotheses I, IT Problem (P) with » € E and f € €(10, T, B)
has at most one classical solution.

PROOF. —~ Let u, » be two classical solutions of (P) with « € E and f € 0(10, T, E);
then for each £e10, T[ the function  — v is a strict solution of (P) in [e, T'] with
data u(e) — v(e), 0. Hence by Theorem 4.5 we have (recall Remark 1.7)

lu(®) — o)z <Clule) —v(&e, Vil I1;

as ¢ >0 we get u=wv. [[/

THEOREM 5.2. — Under Hypotheses I, 11 let u be a classical solution of (P) with
ve B and | e 0y(10, T], E), 0 €[0,1[. Then

[l z<0flels+ (@) s s}, Veero, 10

PROOF. ~ As # is a strict solution in [e, T for each & €10, I, Theorem 4.5 and
Remark 1.7 yield

it < Oflwtea+ (I ads),  Veele, 1.

Letting ¢ — 0%, the result follows, since f is integrable over 10, I{.  ///
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THEOREM 5.3. ~ Under Hypotheses I, II if u is a classical solution of (P) with

xe B and fe 0(10, T], E), then » € D(A(0)).

PROOF. - Since u € C([0, T], E) by definition, we have x = lim u(¢); the proof
is complete since u(t) € D(A(0)), Vte10, T1. /] o

THEOREM 5.4. — Under Hypotheses I, II let x € D(A(0)) and fe Cy(]0, T1, B) N
N C(10, T1, E), 6 € [0, 1, 0 € ]0, 1[. Then the function u given by Formula (F) is a
classioal solution of (P) and belongs to OV°"*(10, T}, E). If in addition f € ho(10, T1, E),
o €10, of, then ue h*(]0, T, B).

PROOF. — Ag in the first part of the proof of Theorem 4.3, we get u € o([o, 17, E)
and ¢ — exp [t4(0)]w € C=(]0, T, E); by Lemma 3.2 (ii) we have K(-,0)z € c+(10, 11,
E), so that

9=Q1+ E)(f — E(-, 0)z) € C°"*(10, T, E) N 0,(10, T, E)

by Lemma 3.4 (ii)-(iv); therefore Tg € (**"*(]0, T], E) (Lemma 3.5 (v)). If in addi-
tion fehs(]0, T1, B), 0 €10,«, then geho(10, T], B) by Lemma 3.4 (iv), hence
Tg e (10, T1, E) by Lemma 3.5 (v), and finally w e k%°(10, T, E). /]

REMARK 5.5. — As in the case of striet solutions, Theorem 5.4 still holds (except
for the Holder regularity of »') assuming f € 0y(10, T, E), 6 € [0, 1[, and the following
property (instead of Hélder continunity): for each &€ 10, 1|, the oscillation o, () of
flie,m satisfies condition (4.3). This is no longer true if f is merely in Co(10, T, E)
(see Remark 4.6).

REMARK 5.6. — Replacing Hypothesis IT with (4.6), we obtain the following
improvement of Theorem 5.4: if » e D(A(0)) and fe Cy(10, T1, E) N k*(10, T1, E),
6 € [0,1[, then the classical solution w is in K“*(]0, T, E).

6. — Strong solutions.

Let us consider now strong solutions of Problem (P). The basic tool is the «a
priori » estimate for striet solutions (Theorem 4.5). As a first consequence we derive
an «a priori» estimate for strong solutions, and consequently unigqueness. Next,
after an easy necessary condition for existence, we prove that Formula (F) indeed
gives the strong solution of (P), and study its Hélder regularity. Finally we show
that under Hypotheses I, IT a eclassical solution of (P) with fe C([0, T1, E) is in
fact a strong one.
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THEOREM 6.1. — Under Hypotheses I, I1 let u be a strong solution of (P) with x € E
and fe C([0, T1, E). Then

u®]s<6{lals+[I1o)sds}, Vielo, 71

PROOF. — By definition, there exists {u,},enC C([0, T1, B) N O([O, 1, D(A(O)))
such that, defining @, = u,(0), f,= %, — A(*)u,(*), we have

i) u,—u in €([0, T1, E), fo—f in O([0, T, B), 2, « in H;
ii) u, is a strict solution of

(6.1) { un(t) — A ua(t) = falt), t€[0,T],

1, (0) = ,, .

By Theorem 4.5 we have
i
Junt®)ls< Oflanla+ [Ifoto)lm s}, V10, 71,
0

and as » —>o0 we get the result. [//

COROLLARY 6.2. — Under Hypotheses I, II Problem (P) with x€ E and fe
€ C([0, T, E) has at most one strong solution. [[]

THEOREM 6.3. — Under Hypotheses I, I let w be a strong solution of (P) with v € B
and f e C([0, T1, B); then @ € D(A(0)).

PROOF. ~ Let {u,},vC CY([0, T], E) 0 0([0, T], D(4(0))) satisty (6.1); then
@ = u(0) = lim 4,(0), and u.(0) € D(A(0)),VneN. [

THEOREM 6.4. — Under Hypotheses I, II let we D(A(0)) and fe O([0, T, E).
Then the function u(t) defined by Formule (F) is a strong solution of (P) and belongs
to €°(10, T1, B), Yo €10, 1[.

PROOF. — By Le@mata 3.1 (iii) and 3.5 (i), u € C([0, T], E) and u(0) = «. Since

@ € D(A(0)), we can choose {,},enC D(A(0)) such that x, ~# in B and A(0)z,+
+ £(0) € D(4(0)). Indeed, take {w, }nenC D(A(0)2) such that w,—>2 + A(0)~1f(0) (this
is possible by Lemma 2.5 (iv)), and define =, = w,— A(0)~1f(0), obtaining A(0)w, -+
-+ §(0) = w,e D(A4(0)) S D(A(0)). Now fix é €10, ul; since C%([0, T], E) is dense in
0([0, T1, B), there exists {f,},.nC C°([0, T1, E) such that f,(0) = f(0) and f,—f in
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C([0, T1, E). Let u, be the strict solution of

Un(t) — A(W)un(t) = fu(0),  1€[0, T1,
n(0) = 2 ,
which exists by Theorem 4.3 since A(0)z, 4 f.(0) = 4(0), 4 f(0) € D(A(0)).
Then u,(f) is given by Formula (¥F). It follows that for each ¢e [0, T']

T
Jtta(t)— (D)5 < |20 25+ € [I(1 + By (fa— f — K-, 0)(@s— 2))(5) |z ds <
[
, Te
<Ol|@a— a|z+ O + E)e(zo,2,m) [T' 12— Flleo,m.m+ ™ [n— w“EJ )
hence u,—u in C([0, T, E). This shows that « is a strong solution of (P).

Finally by Lemmata 3.1 (ii), 3.2 (i), 3.4 (ii) and 3.5 (iii) we deduce that ue
€ Co(10, T, B), Vo e 10, 1[. [/

About Holder regularity of the strong solution up to ¢ =0 we have:

THEOREM 6.5. — Under Hypotheses I, II let u be a strong solution of (P) with x €

€ D(A(0)) and fe O([0, T1, B). Then ue C°([0, T1, B), ¢ €10,1[, if and only if v €
(S DA(O)(G’ OO).

PROOF. — Let # € Dg(0, c0). By Lemma 3.1 (iv), t —exp [t4(0)]z € O([0, T, E).
On the other hand, Lemma 3.2 (iii)-(iv) implies that

Gl—ot—-o'(]Oﬁ T], E) if I<o<l~«,

K(-,0)xe
C*TN[0, T, B) ifl—a<o<l.

Hence, by Lemma 3.4 (ii)-(iii)

Cr_y_0(10, TLE) if0<o<1l—u«,
1+ E)'(j— K(-,0)x) € .
o([o, 11, B) fl—a<o<l1,

and by Lemma 3.5 (ii)-(iv)

¢**°([0, T1, E) fo<o<l—a,
T(1 + K)™f — K(-, 0)z) .
%[0, T1, B),V6e€10,1[ ifl—a<o<1l.

Since  is given by Formula (F) (by Theorem 6.4 and Corollary 6.2), we conclude
that u € C°([0, T, E).
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Conversely, let x € D(4(0)), f € C([0, T], E), and suppose that « is a strong solu-
tion of (P) belonging to C9([0, T], E), 6 €10, 1[; then % is given by Formula (F).
Moreover by Lemmata 3.2 (i), 3.4 (ii), 3.5 (ii) we have Tge 0%([0, T, E), where
9= (1 -+ E)*(f — E(+,0)x), and therefore exp [tA(0)lx = u— Tge C°*([0, T}, B),
which by Lemma 3.1 (iv) means @ € Dq(0A2, 00). If o € 10, a] the proof is complete,
otherwise we know that x € D, («, o).

As Dbefore, we then deduce Tyge C®7%([0, T, E), V8 €10,1[, and hence

exp [tA(0)]z e C°N*([0, T1, ), or @€ Dyg(oA(2x),00).

If o €10, 2«] the proof is complete, otherwise after a finite number of steps we get
% € Dygplo,00).  []]

THEOREM 6.6. — Under Hypotheses I, II let w be a strong solution of (P) with

we D(A(0)) and fe O([0, T], E). Then uehe([0, T], E), 0 €10,1[, if and only if
® € Dy(0).

PRrOOF. — If © € D,)(0) then exp [t4(0)]x € h*([0, T1, E) by Lemma 3.1 (v). On
the other hand, as in the proof of Theorem 6.5, we have Tge CF ([0, T, B),
V6 €10, 1[, where g = (1 + K)-'(f — K(-, 0)a), and in particular Tg e #%([0, T, ),
V8€10, (6 + a)AL1[. Therefore we conclude that u e ho([0, T, E).

Conversely, let  be a strong solution belonging to ke([0, T, E), 0 €10, 1[. As
in Theorem 6.5, Tge C*([0, 17, E)c h"([(), T1, E),¥6 €10, . Hence exp [{4(0)]z e
€ W*M([0, T, B), V8 €10, of, or € Dyq)(c A\ D), Y6 €10, «f. By possibly a finite number
of steps we get we Dygy(0). /] '

THEOREM 6.7. — Under Hypotheses I, Il every classical solution of Problem (P)

with @ € D(A(0)) and f e C([0, T, B) is also a strong one.

PROOF. — Choose ¢ €10, I[: » is a striet solution of

‘ w(t) — A@yu(t) = (1), tele, T]

Let v be the strong soiution of (P) (it exists by Theorem 6.4). Then by defini-
tion there exists {v,},y such that v,—» in C([0, T], E) as n —oo, and for each
n e N, v, is the strict solution of

[ va(t) — A(B)0,(8) = fo(t), te[0, T

'vn(o) = Tn

where f,—f in 0([0, T1, E) and @, —« in F as n —oo.
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Hence w, = # — v, i8 the strict solution of

{ w(t) — AWywa(t) = f(t) = fa(),  tE[e, T

wa(e) = u(e) — vale) -

By Theorem 4.5, taking into account Remark 1.7, we get

1) — ou8 s < Of [ute) — outes + [116) = fuls)|s s}, Vee e, 77
AsA n —>00 we obtain
fu(t) — o(t)|z< O|u(e) — v(e)lz, Viele, T,

and letting & — 0% we check w =w, i.e. u coincides with the strong solution of (P).
(Thus, in particular, w is given by Formula ®.)

We recall however that in the definition of strong solution the funection f ig
required to be continuous in [0, T}, while one can speak about classical solutions
of (P) provided f is merely in (10, T, E).

7. — Space regularity.

In this section we look for conditions assuring that the strong solution of Prob-
lem (P) is continuous with values in the intermediate spaces D, (0, co) and D) (0).
Sinee the solution is given by Formula (F), we begin to study the behaviour in such
spaces of the operators appearing in (F).

Lemma 7.1. — Under Hypotheses I, 11 let 0, f€10,1[. Then for each s e [0, T]
and t€0, T we have:

(i) [exp [2A(s)]]c(z,pacior) < g .

(ii) [exp [EA(8)]] £(Dacwr(B,o0)Dacr(8)) < ﬁ% .
() 1 4(5) exD (1A (811} e 5000 < 7155 -
(iv) [A(s) exp [tA(s)]] Q(DA<0)(ﬂ,w),DA(n>(9))<t1_+g?,§ :

Proor. — (i) It is a consequence of (1.36) of SINESTRARI [30].

(ii) It follows by using (1.37), (1.41) and (1.14) of [30] in the cases § <6,
f > 6 and g = 0 respactively.
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(ili) See (1.38) of [30].

(iv) The conclusion follows by (1.39), (1.43) and (1.14) of [30] in the cases
B<0,8>0 and § = 0 respactively. ///

LemMMA 7.2. — Under Hypotheses I, II we have:

(i) [exp [tA(0)] — exp [A(0)]|c(z, pacier) < Cle)E — 7, VI, T e, T, Ve €10, TT,
V6 €10, 1.

(i) - exp [tA(0)]€ CP~°([0, T), £(D,)(B, ©0), Dyiey(6))), ¥ €10, 1[, VO €10, B
(iii) ¢ - exp [t4(0)1€ Cp_(10, T}, EDyoy(By ), Da(8))), V€10, 1L, VO €[, 1[.
(iv) If weDq(f),B€10, 1[, then t —exp[tA(0)]zeh’~°([0, T], D) (0)), Y6€10, AL
(v) If weDyy(B), B0, 1[, then t — exp [tA(0)]w € 05_o([0, T1, Dy)(0)),
V0 e [B, 1[, and
x iH6=4,

[teﬂg exp [tA(0)]x],_y = [
0 if0>p.

PRrOOF. — (i) It is a consequence of the fact that ¢ — exp [t4(0)] e C*(]0, T,
£(5, D(4(0))). :

(ii) Let ¢t> 7>0 and take @ € D(f, 00). For any £§>0 we have by Lem-
ma 7.1 (iv):

exp [EA(0)]—1
50

B

(exp [¢4(0)] — exp [rA(O)])w

i

<[ 140 exp 174(01101, o<

loxp [£4(0)] — 1
.

_|
_l

¢
fA(O) exp [oc4(0)]x do

<0 f 9 aly< Ot — 70,

ol+o—8

(iii) It follows by (i) and Lemma 7.1 (ii).
(iv) It follows by Theorem 3.1 (¢) of [30].

(v) By (i) we have ¢t — %% exp [t4(0)]2 € 0(10, T], Dy,)(6)); to prove conti-
nuity at ¢ = 0, suppose first § = f: in this case we have lim [exp [t4(0)z — wl;=0
because ¢ — exp [{4(0)] is a strongly continuous semi-group in D (B) (see e.g.
(1.11) of [30]).

On the other hand, if 6 > 8, as @ € Dy,(B), for each ¢ > 0 there exists 6 > 0 such
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that |[#7°A(0) exp [t4(0)z|z< & if 0 < t< §; therefore

16-6|&1-0.A(0) exp [£4(0)] exp [t4(0)]x]z<
Clt-8 A(0) exp [tA(0)]o|z< Ce if é<t,

O] &-A(0) exp[EA 0)]2|z< Ce it 1< &< d,

Ct9-6]£A(0) exp [EA(O “E(E)éo lexp [t4(0)]z|z< Cle)to—6 if =6,

which implies lim 1~ Plexp [tA(0)]uf,= 0. [/

In our next lemma we prove some results which are similar to those of Lem-
ma 2.12 of Fusita-KATo [19].

LemMA 7.3. — Under Hypotheses I, 11 we have:
(i) If p € C(10, T1, E), o € [0, 1[, then Top(t) € D 40)(6), Y6 € 10, 1[, V2 € [0, TT.
(ii) T et(C,(10, T1, B), C*="%([0, T, Dy)(6))), Yo &[0, 1[, ¥8 €10,1 — of.

(iii) If g e (10, T1, B), 0 €10,1[, then Tpe C*~°(10, T, D (0)), V6 € 10, 1,
and

[ To)],< 0(0)tl—d_e”(p”Ca(]O,T],E) , Vielo0,T], Voe]o,1].
Proor. — (i) If £€170,¢ we have

exp [£4(0)]—1

(7.1) Iz To0) <
—¢ £4(0
< f e_XE.[_g‘g N2 410 (A(0)A(s)) A(s) exp [t — ) A(s)]p(s) ds e
0
¢
4(0)] —
. J‘exp 3 5(6 )] 1exp [(t—s)A(s)]p(s) ds|| <
t—¢&

—~&

¢
1-6 d
<0“‘}’)HC¢7(]0,T],E)|:J‘Z£”S)—S} s + f(?z—:)—"s”] .
0 &

By choosing e << 1 — 0 we get

exp [EA(0)] t ds

—1 e 51_
Eo T‘P(t)“E <C|o| C.;(]O,T],E){§1 o T + = E)u}<

1—0—¢ 1-—-6
< C”(plloa(IO,T],E){gtU—a + (tg__‘f)o‘} ’

0
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which implies

exp [£4(0)]—1

lim iz

=0t

L o) “ =0, V6elo,1[, Vielo,T].

(i) Let ¢ C,(10, T}, B) and take §€10,1 —of. If t>7>0 and &> 0, by
Lemma 7.1 (i)-(iii) we check

o) |PREEOIZE 2y — Tpin)| <
t
A4(0)1 —

<{ f D LN L exp [(t— ) Alo)lts) ds) +
f f XD BEON=2 (s) exp ToA(9)1pls) do ds| <
0‘5— —

<0 fexp 1 — )4 Ipte)1o @5 + 0 [ 14(6) exp 1o A@)Igto)lo do ds<
T 0 T8

1
do ds
ol [ T )1

d
<Ololc0m E){(t —7)i=f- °+fm f g"gl d3}< Clo] cotio, m,my(t — 7)*=0—°,

—8

and (ii) is proved.

(iii) If ¢ > 1>¢ and 6 )0, 1[, we have as in (7.2) for each &> 0:
oxp ELON=2 (mp(0) — 1)

do d
Eﬂ <Olpleaomn| f 986+f f X P

t— 7)1 ds 1 — 1
<0|{¢p||o.,(10,TJ,E){( ;) fsj ) "+1+f(r—s =T )ds ) B}<

< O(e)| ol osqo,m,m(E — )%

this fact and (i) prove that Tp € C*~%(10, T1, DA(O)(O)V) V6 €10, 1[. Finally if t € 10, 11,
as in (7.1) we have for each £ >0

exp [EA(0)]—1
EG

|2
Tpt0), <Ollecnmn

0

as
(t— s)0s0

< 0=~ ¢l o,q0,11,8) »

which proves (iii). [//



PAOLO ACQUISTAPACE - BRUNELLO TERRENI: On the abstract, etc. 43

Now we are able to prove the space regularity theorem for the strong solution
of (P).

THEOREM 7.4. — Under Hypotheses I, II let u be « strong solution of Problem (P)
with x € D(A(0)) and fe O([0, T, B). Then we have:
(i) we 0‘1_0(]07 ), DA(O)(G))7 Y6 €10, 1[.
(il) # € Dy(B, 00), €10, 1, if and only if u e Cy(10, T, Dyq)(B))-
(iﬁ) If S DA(O)(ﬂ’ 00)7 ﬂ € ]07 1[, then u € Oﬁ—e([o’ T]y DA(O)(G)); Vo e ]07 ﬂ[
(iv) @ € Dy)(B), B €10, 1, if and only if ue C([0, T], Dyqy(B))-
(V) If re DA(O)(/g), ﬂ € ]01 1[’ then u € hﬁ_—e([oy T]7 DA(O)V(G))7 Voe ]()7 :3[

PrOOF. — (i) Since # is given by Formula (F), for each ¢ e [0, T] we have u(t) =
= exp [t4(0)]z + Tg(¢) where g = (1 4 K)(f — K(-, 0)z). By Lemma 7.2 (i) we
have ¢ — exp [t4(0)]x € Lip (10, T, D,y(0)), V8 €10, 1[; moreover, since K(-,0)ze
€ C;_,(10, T], B) (Lemma 3.2 (i)), we get ge 0,_,(10, T], E) by Lemma 3.4 (ii),

and. consequently Tge C*~%(10, T, Dy,(0)), V0 €10, 1] by Lemma 7.3 (iii). This
proves (i).

(ii) Suppose # € Dyy(f, o0). By Lemma 7.2 (iii), ¢ — exp [tA(0)]x € Cy(]0, T1,
D,)(B)); next, Lemma 3.2 (iii)-(v) gives

Cyey(10, TL,E) it f<1—ua,

K(-,0)ze
[ o*tP=Y[0, T), B) if f>1—a;

in any case K(, 0)we Cy_,_gy,(10, T, E), which implies (Lemma 3.4 (ii)) ge

€ Ca-ampyyo(10, T), E). Hence Tge C**AM=%([0, 17, D,\(6)), ¥0 €10, (= + HALL

by Lemma 7.3 (ii), and in particular Tge O{**AA)=F([o, T1, D, ,(8)). This implies

ue Cy(10, T, Dyy(B)). Suppose conversely u € Cy(10, T1, Dyqy(B)); then by definition

lexp [£4(0)]—1
&s

%(t)UE <|wlio,qo,m, 0407y V2 €10, T7, Y& >0

letting ¢ — 07, since e O([0, T], E) we get

4

A(0)]—1
PRIt <huleomanon, Y0,

3

that is @ € Dy, (B, o0).

(iii) By Lemma 7.2 (ii), ¢ —exp [tA(0)]w € C°~°([0, T, Do(0)), Y0 €10, A[; as
in (if) we get Tge C(“+AAN=0([o, T D, (6)), V0 €10, (& + B)AL[, and (iii) follows.
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(iv) Suppose x € D) (). Then Lemma 7.2 (v) gives ¢ —exp [t4(0)]z € O([0, T,
D)) while, as above, Tge C\*+AA=0([0, T, D,\(6)), V0 €10, (o« -+ HALL. In
particular, Tge C(**PA)=F([0, T], D ,,(8)) and consequently u € O([0, T1, D,y ())-
Conversely if u e C([0, T, D,,(8)), then obviously & = u(0) € D,q)(f).

(v) By Lemma 7.2 (iv) we have t — exp [t4(0)]@ € #*~°([0, T, D,,(9)), Y6 €
€10, B[ and, as in (i), Tge OL*+AA=8(0 11, D, \(6)), Y6 € 10, (« + B)AL[; since
B < (a4 B)AL, we get in particular Tgeh’~°([0, T1, D) (0)), ¥0 €10, B and hence
w e WP°([0, T, Dy)(0)), YO €10, . /]

We finish this section with an «a priori» estimate for the classical solution of
Problem (P), which is of interest in the study of the quasi-linear version of (P).

THEOREM 7.5. — Under Hypotheses I, II let u be a classical solution of (P) with

@€ D(A(0)) and fe C([0, T], E). Then we have:
(@) If @€ Dyy(B, o), €10, 1[, then
o< 0[5 1ol + o-Wflawmn|,  ¥0 <A, 1L VeeDo, 70,
(i) If @€ Dyq)(B, o) and | € 0o([0, T, B), B, o€ 10, 1[, then
Iffl(t)’“(t)llz~:<0'[tli_;3 lels+ \lfllcv(ro,Tl,E)]; Vieo, T].

PROOF. — (i) Since, by Theorem 6.7, « is also a strong solution of (P), » is given
by Formula (F), i.e.

u(t) = exp [tA(0)]» + Tg.(t) — Tg.(t), te[0,T],

where ¢, = (1 + K)~'f and g,= (1 + K)-(E(-, 0)a).
By Lemma 7.1 (ii) we have

¢
lexp [£4(0)Jw]o< 7= [l -

Next, by Lemma 3.2 (iii)-(v) it follows that K(-, 0)x e 0,(10, T, E), = (-
—a—pB)V0, and

C
K2, 0)2]z< 7 [lg 5
hence by Lemma 3.4 (ii) g.€ 0,(10, 71, E) and

921 0:(10,T1,5) S O|K(-, O)W”cu(m,m,ﬂ) < C“W”ﬁ ’
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and finally, by Lemma 7.3 (ii), Tg,e C*~°(]0, T1, D,(6)), Y6 €10, 1[ and
I Tg2(t)“6<0751_2_6“92”01(10,@,13)< 0751_1_0”‘”“,3 .
Similarly, since f e O([0, T, E), we get Y9 €10, 1[

1 Zg,)lo < O 1]l 60,01, -

Hence

c
l(®)]e< t;;llwﬂfr Ot =%l + O8Ol co,rmy, VYO[B, 1[5
since 4 = (1 —a— B)V0, we have 1 — 1 = (« + B)A1 and

1
lotlo<0 {5 el + P flowomn), Y0 <111,

which proves (i).

(ii) We proceed as in the proof of Theorem 4.4. Fix ¢€]0, T and t € J¢, TT.
Setting v(s) = exp [(t — s) A(t)Ju(s), s € [e, £], we easily deduce

A(t)u(t) = A(t) exp [(¢ — &) A(f)]u(e) +

t
+ [40) exp [0 — ) A@I(L — A A(3)2) A(s)u(s) ds +
et
+ A1) exp [(¢ = 5) A®I1(s) — (1) ds + (oxp [(t — ) AT —1)(1),  Veel[e, T) .

Hence

4] G (e |lﬁ+01|fnmom)+f | A(s) u(s) | ds ,

Viecle, T],

)1"
which implies (see [3])

||Aw>u(t)nE<0{

1
(_t:e—)l—_ﬂ lu(e)lg - Hf”C”([O,T],E)}, Vie[e, T].

By (i) we check

4@ u(®)]=<C {—_15)—1——3 Uels + e#4fl owo,mn,m1 -+ Hf”c"([o,TJ,E)}, Viele, T1,

(t

and the conclusion follows when & —0%.  ///
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8. — Examples.

In the next examples we want to show how Hypotheses I and II of Section 1
can be eagily checked in a classical non-autonomouns boundary-initial value problem.

In this section, unless otherwise specified, all functions are assumed to be com-
plex-valued.

First example.

Set B = C([0,1]), |«]|z= sup |u(z)|, and define Yie [0, T
2€[0,1]

D(A(®) = {ue 0*([0,1]): aou(0) — fou'(0) = ay(1) + Brw'(1) = 0}

&1 Ayu = a(-, )"+ b(-, ' + e(-, t)u

where

(8.2) oy Bi€[0, 0, a;+ Bi>0, i=0,1
and

(8.3) a,b, 0 C([0,11X[0, T}, R), infa(z,1)>0.

[0,11x[0,71]

Obviously D(A(t)) does not depend on #; it is not dense in F if and only if §,
or f, is 0. We have the following result:

PROPOSITION 8.1. — Let {A ()}, 1y be defined by (8.1) ahd suppose (8.2), (8.3) hold.
Then there exist w° M > 0 such that
(1) G(A(t)) € 1—o0, 0%, Vi€ [0, TT;
(ii) If Re A > w°® we have

(8.4) 1R(4, A®)) e < Vie[o, T].

M
A — o’
ProoF. — For each A€ C and t€[0, T'] the problem

A—a(-, )" —b(-, ) —e(, ) u =fe R
(8.5) xu(0) — fou'(0) =0
ou(l) - pu' (1) =0
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is equivalent to the following one:

z"?’('y tu — (V)(', t)u’),_ (-, thu = F(-,t)
(8.6) apu(0) — Bou'(0) =0

o u(l) + fru'(1) =0

where
?/’(w, 1) = eprb(Ey t)(a(é:’ t))_l dé s V(w’ 1) = (“(”7 t))—l"/’(a% t) ’
0
p(@, 1) = o(@, t)(a(z, )@, 1),  F,1) = fle)(a(, )y, 1) .

We note that y, y are strietly positive in [0, 1] X [0, T'], and that problem (8.6)
is a classical problem of Sturm-Liouville type. So, defining

w = max |e(x, )]
[0,11x[0,71]

it is well-known (see e.g. HARTMAN [15]) that problem (8.6) has countably many

eigenvalues, all being real and <w; moreover for any other number A€ C the

problem is uniquely solvable in C2([0, 1]) for each F(-,t) € E, i.e. for each fe E.
This proves (i).

To prove (ii), fix #°€[0,1], o > 0 and ¢ > 1, and take a real function 0 € C*(R),
such that 6 =1 on I,= [4°— g, 2°+ ], 0 =0 outside I,,, 0<6<1 and |0'|z<
<2/(¢ —1)p. From (8.6), multiplying by 02 and integrating over ]0,1[, we get

1 1
(8.7) f(Re Ay—o)02jul do +f¢]u'|2ez dov — [pu/ TOE =
0 0 1 1
_ f Re (F5)6° dow — f Re (4'T) 200’ dw
0 0
and

1 1 1
(8.8) fIm A0l do = f Im (F7)6? dw — f Im (W) 206’ do .
(1] 0 1]

Set B,=1I,N1710,1[. As Rely—g¢>CRel—w) and — [pu'u6*];>0, by (8.7)
we dednce

1
(8.9) Oflwlgﬁ2 dKO{f u| do + (g—l”’_lﬁif 2 dm} it Red>o.

Boo Boe

4 — Annali di Matematico
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In addition if ITm A| << Re A — w we have, again by (8.7),

M——w[f [w]? do -|—f|u 2 dw<0{f|Fu|dw—|— f[u[z dw}

while if 0 <Rel—w<|Im | by (8.8) and (8.9) we get

0 2 .
(8.10) M——w]}! i dw<0’f | Pu dw—l—mf[u] da ;

Bop o0

thus we conclude that

(8.11) l———w]f Ju? da:—{—f(u [zdm<0{f{Fu{ dw-}— E zf]%lz dw}

Boe if Reli>w.

Now for each 1€ C such that Re 1> w -+ 1, set g = |1 — o[}, and choose ¢
large enongh so that Co/(c —1)?<< 1/8 in (8.10). Then if #° is a maximnm point
for |u(-,?)| in [0, 1], we can rewrite (8.11) as follows:

2Cc

o —yig I -

(8.12) -Ql—zflulzdm+f{u’lzdw<2009”ﬁ’(-,t)”E“u(-,t”E—l—

On the other hand it is easy to verify that

(5 D5 = lua, t)|2<2‘flu’|2 ds|lw'—y| + 2|u(y, )", VyeB,,

which implies, by integrating over BQ, and noting that ¢ << 1 and g<<meas (B,) <20,

2
-, 13 <20 f w42 f ]2 do
By Be

This inequality, together with (8.12), gives (recalling the choice of ¢):

Jul-, DlE<4Cag®| (-, Dalul-, 05+ Ful-, )7,
or
, C
lu(-5 )z<8C0o@?*| F(+,1)[z< 7 —a] Il

and setting w®= w -1, (ii) follows. ///
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REMARK 8.2. — By (8.5), (8.6) and the well-known inequality
o]z <45 [ulg Vue ([0, 11)
we eagily deduce that
%' lz < Clflz

and consequently if Re 4> w? the solution of problem (8.5) satisfies
(8.13) |4 — ollu]z+ 12— e[z + [v' ]z < O[]z -

Let us suppose further that the functions a, b, ¢ are Hélder continuous in ¢
nniformly in , i.e. there exist «€]0, 1] and B> 0 such that

(8.14)  l|a(w, t) — a(x, )| + |b(z, ) — bz, 7)| + |e(@, t) — e(z, T)| < B}t — 7|*,
Vee[0,1], V&, v [0, T].
Then we have the following

PROPOSITION 8.3. — Let {A(t)},;0,ry be defined by (8.1) and suppose (8.2), (8.3),
(8.14) hold. Then, setting w' = w®-- 1, there exists K > 0 such that

11— (0'— A(t) R(o', A()) ey <Eft —7|*, Vi, €0, T].

PROOF. - Let f € B and set u = u(-, 7) = R(w', A(v))f. By Proposition 8.1 and
(8.13) we have u e D(4(0)) € C¥([0,1]) and

[l + ]z + %]z < 0]z -

Hence
[(1— (0'— 4®) R(e', A@))flz= (A1) — A(x) R, A(2))f| <
<Blt — vlf]lulz+ ||z + [«'|z]< O Blt — «|*|f] 5,

and the proof is complete. [//

By Propositions 8.1 and 8.3, taking into account Remark 1.2, we conclude that
the operators {A(!) — o },o,m, With A(t) defined by (8.1), satisfy Hypotheses I
and IT of Section 1. Hence all results of the preceding sections can be applied to
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the problem

Ui— a2, E) Uy — b(w, )u,— (@, )u -+ Au = f(z,t), (2,1t)e[0,1]x][0, T]
ou(0, 1) — Bou,(0,8) =0, 1[0, T]
(1, t) 4 fiu.(l,8) =0, te[0,T]
u(@, 0) = @(x), x€[0,1]
where A€ C, f € 0([0,1]1x[0, T1), ¢ € 0([0, 1).
We note that in the case of Dirichlet conditions, i.e. §,= fi= 0, it is known
(see DA PRATO-GRISVARD [12], LUNARDI [23]) that
D)0, 00) = {u € C*°([0,1]): u(0) = u(1) = 0}

, ¥8el0,1[ —{i}.
Dyy(60) = {ue hzo([O, 17): %(0) = u(1) = 0} t)

Second example.

Let 2 be a bounded open set of R», #>2, with boundary of class 2 Consider
the differential operator
n

Az, t, D) = z (@, t DD—{—Zb o, t)D; -+ e(w, VI, (x,t)e2x[0, T],
i=1

where D, = 0/0x,, under the following assumptions:

(A.1) (uniform ellipticity). There exists F > 0 such that

3 aulw, )EE>EER, Vo, t)e2%[0, T, V& e Ry
Bi=1
(A.2) For each t€ [0, T'] the real-valued (for the sake of simplicity) functions a.;,
b;, ¢ are in C(£) with bounds independent on i,
n

Let us recall the definition of Sobolev spaces. If xe N", set || = > «,, and,
D*u = D3 D3 ... D2 = dl*ly (90 dwle ... 2al™); it ke N, set DPu = {D*u}, ,_,: thus
Dy i3 a vector With(% +;§ _1) components. Let H*(£) be the Banach space of
functions u € L*}(Q) such that their distributional derivatives D*y are in L2(£) for
each o€ N* with |«|<k, with norm

ol =[lular+ 5 10°ulb]

We denote by H(R2) the closure of (g(£2) (the functions of C*(£2) with compact
support) in the norm of H*(Q).
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Now we give the definition of Morrey spaces. For each 2°c 2 and ¢> 0 set
B o) ={weR" [r—a'|<o}, Q°%0)=2Q0NB@"0), d=diam(Q).
DEFINITION 8.4. — We say that u e L**(Q), u € [0, n], if the quantity

sup {9‘”f]u(w)]2 dz, 2°e 2, 0 €10, d]}
2(z°,0)

is finite.

We say that w € H**(Q), p [0, n], k€N, if ue HQ) and D*u € L**(Q) for each
owe N» with |o| = &.

The spaces I>*(Q) and H**(Q) are Banach spaces with norms

— 3
[l iy = [sup {9"‘ f u(@)[* do, e, 0 €10, d]}] ,

2(z°,0)

]
{ulaor= [t 3 (0wl

We shall write simply | D*uz.q, and |D*u|[z. . for

3 3
Lgk HD““”J%*(Q)] and L“IZ:k ”D“u”%m(a)]

respectively.

The L**-spaces have been introduced by MorrREY [25]. More properties of these
spaces, with several inclusion theorems, are exposed, for example, in CAMPANATO {6].
Here we only need the following result, which however is not optimal at all:

LEMMA 8.5. — If ue H**Q) then u, Dyuc L**(Q), i =1,...,n, and
] 2oy + (| D8] oy < O el 2.2y -

ProoF. — See CamMpANATO [6], [7]. ///

Fix now w10, n[, set B = L**(Q) and define for each &[0, T]:

- { D(A(t)) = {u e H¥Q) N HYQ): A(+,1, D)ue L**Q)},
(8.13)

A)yu = A(-,t, D)u.
According with well-known results of CAMPANATO ([9], [7]) we shall verify now

that under assumptions (A.1) and (A.2) there exists w®> 0 such that the operators
{4(t) — 00,71, With A(t) defined by (8.15), satisfy Hypotheses I, IT of Section 1.
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First of all consider an operator A(x, D) independent on ¢ and satisfying assump-
tions (A.1) and (A.2). Fix Ae C and consider the stationary problem

[ M—A(,Du=fel}Q), xzef,
(8.16)

u=0, - - xedQ.

It is well-known (see AGMON [2]; see also Theorems 3.8.1-3.8.2 and Lemma 5.3.3
of TANABE [35]) that problem (8.16) has a unique solution » e H*(2) N Hi(£2) for
each fe L*Q), provided A belongs to a suitable sector containing a half-plane
{#e C: Re z> '}; moreover the following estimate holds

(8.17) 4 — o' ||l gsay -+ 14 — o Bl Dol oy + | D*ut] gy < Of 2oy »

and the constant ¢ does not depend on A.
With the methods of CAMPANATO [91, [6], [7] the following key inequality can
be proved:

THEOREM 8.6. — There exists o°> w'A max |¢(x, t)| with the following property: if
[0,11%[0,71
pel0,n and fe L»*(Q), then the unique solution of problem (8.16) with Re 4 > o°

is in H**(Q) and satisfies
(8.18) 1 D2t 2.2y < Of| ey + [Flzear) 5

and the constant C does not depend on A. [[]

We omit the proof: we only remark that the same estimate has been obtained
by CAMPANATO [7] and MORSELLI [26], by means of a series of lemmata yielding
(8.18) with a constant which possibly depends on A. In order to avoid any depen-
dence on 1, it is necessary to prove again each lemma, showing that in fact there
is no dependence at all, This has been done by CAMPANATO [9] in a different (but
similar) situation. '

As a consequence of Theorem 8.6 we have:

PROPOSITION 8.7. — For each te [0, T) let A(?) be the operator deﬂ‘ned by {8.15).
Under assumptions (A.1) and (A.2) we have:

(i) D(A(t)) = D(4(0)) = H>*(Q) N Hy(2), Vte [0, T].
(i) o(A(%)2{Ae C: Re 1> "}, Vte [0, T].
(iii) If Re 1> o° then

(8.19) \B(, A0 flomor< [ Flaemar, Vi€ TH).

and the constant C does not depend on A.
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ProOF. — Fix 1 such that Re A > w° (w?is defined in Theorem 8.6). Let f € L**(Q)
and let w = u(-,?) be the unique solution of the problem (analogous to (8.16))

w— A, 6, Du=f, 2zl
=20, ze o .
By Theorem 8.6, « e H>*(£) N HL(L); this proves (i) and (ii).

To prove (iii) we observe that since «®> max |e(x, t)|, from the equation
10,11 [0,T]

(2 — e, t)u = % (%, DDu+metDu—1—f

i=1

it can be easily deduced that V
|4 — @] g2y < O D* | oy + | DUl grosiay + [ flzsman} 5
thus, by Lemma 8.5 and Theorem 8.6 we get
12 — @9l s.u0) < O[]y + [F] 2200} 5
and finally by (8.17) we obtain

14 — @l u] ze.ue) < Ol sy + [l e} < Clflzamcar

which proves (iii). ///

Let us assume further the following:

(A.3) The funections a,;, b;, ¢ are Holder continuous in ¢ uniformly in #, i.e. there
exigt « €10,1[ and L > 0 sueh that

n [

z @@, 1) — aylz, 7)| + Z [bs(@, 1) — by, v)| -+ |e(z, t) — e(@, 7)|<Lft — 7|*,

4,i=1 i=1

Veel, Vi, ze]0, T].

PROPOSITION 8.8. — Let A(f), t € [0, T, be defined by (8.15), and set & = w®+ 1.
Under assumptions (A.1), (A.2) and (A.3) we have

i1 — (@ — AW) B(&, A)f sy <Ol — 7| fl oy, ¥f € LP4(Q) .
PROOF. — Set u = u(-, 1) = R(®, A(r))f. Then by (8.17) we have

J]zemey + [ Dullzema) + | D2 gouay < Of[f| ey -
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Hence ) .

[l — (@ — A(t)) B(®, A(7))] f”LZ"“(Q)‘—: [(A(x) — A@) u|gsme <
<Ljt — vl [[[w] pruey + | Dulrney + | D] gomer] <Lt — 71*| Hlpoay /]

and the result follows. [//

By Propositions 8.7 and 8.8, taking into account Remark 1.2, we see that the
operators {A(t) — @}, m, With A(t) defined by (8.15), satisfy Hypotheses I and II
of Section 1. Hence all results of the preceding sections are applieable to the problem

iz, 1) — A(@, 1, D)yu(@, t) + Iu(@, t) = (v, 1), (2,1) € 2x[0, T
w(w,t) =0, (#,t) € 22 %[0, T]
u(z, 0) = @(a) , ve 2,

wherz 1€ C, fe 0([0, T], I**(Q)), ¢ € L**(Q).
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