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ON THE INFINITESIMAL GENERATOR OF AN OPTIMAL
STATE SEMIGROUP

PAOLO ACQUISTAPACE AND FRANCESCA BUCCI

ABSTRACT. In this article we fully describe the domain of the infinitesimal
generator of the optimal state semigroup which arises in the theory of the
linear-quadratic problem for a specific class of boundary control systems. This
represents an improvement over earlier work of the authors, joint with Lasiecka,
where a set inclusion was established, but not an equality. The key part of the
proof of this result developes through appropriate asymptotic estimates that
take advantage of the regularity analysis previously performed in the study of
the optimization problem, while the powers of positive operators, interpolation
and semigroups provide the analytical tools. We also attest to the validity of
an assumed relation between two significant parameters in the case of distinct
systems of coupled hyperbolic-parabolic partial differential equations which
are pertinent to the underlying framework.

1. INTRODUCTION

The linear-quadratic problem is among the most renowned as well as successful
research topics within control theory. We recall briefly that by infinite horizon
linear-quadratic (LQ) problem it is meant the search of a control function a(-)
minimizing a quadratic functional such as

J(u) = / T IRy + u®)]3) de (L1)

within a given class U of admissible controls, where y(-) = y(+; yo,u) is the solution
to an initial-value problem for the linear (control) system y’ = Ay + Bu on (0, 00),
that corresponds to u(-) € U and to an arbitrary initial state yo € Y. Assuming
that such optimal control 4(-) does exist, then

is termed optimal state, and the ensemble (, @) optimal pair. To frame the dis-
cussion that follows, we initially omit the functional-analytic details pertaining to
the spaces Y, U, Z and the linear operators A, B and R; the reader may think of
the latter as they all were bounded operators (acting between respective Hilbert
spaces), just for the sake of simplicity. However, it should be kept in mind that
A: D(A) C Y — Y will be always the generator of a Cp-semigroup et in Y,
t > 0; in addition it is assumed that e“* is uniformly stable (see the basic Assump-
tions [LT). And also, it will be & = L?(0, 00; U).

As it will be made apparent later on, the optimal state satisfies a semigroup
property; to wit, §(t) = ®(t)yo, where ®(t) is a Cp-semigroup on Y, ¢ > 0. With
the focus on a class of abstract control systems which has proven effective to de-
scribe systems of coupled hyperbolic-parabolic partial differential equations (PDE),
subject to a boundary control action on its parabolic component, our goal in this
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paper is to provide a complete description of the infinitesimal generator of the said
semigroup. This by means of a full characterization of its domain, thus answering
to a question that had remained open in our previous works [4] (joint with Lasiecka)
and [1] (cf. [, Section 1.1]).

As it is well known, once the existence of a unique optimal control minimizing the
cost functional is ascertained — which may follow easily by using classical variational
arguments —, the property which is sought and identified as the actual solution of
the LQ problem is a (pointwise in time) feedback representation of the optimal
control 4(-) in terms of the corresponding optimal state §(-). This turns out to be

a(t) = —B*Py(t) a.e. in [0, 00),
where the operator P solves the quadratic algebraic equation
PA+ A*P—- PBB*P+ R*R=0,

known as Riccati equation (to be interpreted appropriately, when B is an unbounded
operator; see (L.II))). The above Riccati equation is well-posed in a finite dimen-
sional context (where A, B, R are matrices), and also in the case the abstract state
equation describes a boundary value problem for a partial differential equation in
a bounded domain with smooth boundary, in the presence of distributed control
(which naturally yields a bounded control operator B, i.e. such that B € L(U,Y)).
A historical synopsis on Riccati equations, along with relevant bibliographical in-
formation, is offered in [Il Section 1.2].

The well-posedness of the Riccati equation is key for the (so-called) synthesis of
the optimal control. Indeed, the latter is accomplished starting from the Riccati
equation corresponding to the optimal control problem and singling out its unique
solution P; next, solving the closed-loop equation

y=(A-BB"P)y, t>0
y(0)=yo €Y

that is obtained taking into account the above feedback form of @(-). Its solution
§(-) allows to finally determine the optimal control ().

It was discovered during the eighties of the last century — thanks to the work of
Da Prato and Ichikawa, Flandoli, Lasiecka and Triggiani — that the above process
can be extended to control systems which yield an (intrinsically) unbounded B, and
yet satisfy the following assumptions. These are characteristic of parabolic (and
parabolic-like) PDE with boundary or point control; see [9], [19].

Parabolic class. Let Y, U be separable complex Hilbert spaces.

o The closed linear operator A: D(A) CY — Y is the infinitesimal generator
of a strongly continous, analytic semigroup et on'Y, t > 0;

e B e L(U,[D(A*))); there exists Ao and v € (0,1) such that
(do— A) "B € LU,Y).

We note that if the semigroup e4? underlying the free dynamics is uniformly
(exponentially) stable, then in particular we may take Ag = 0. We highlight several
significant features of the (by now, classical) theory of the LQ problem and of
Riccati equations devised within the framework defined by the above hypotheses:
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i) the optimal state (t) satisfies a semigroup property, that is, §(¢t) = ®(¢)yo,
where ®(t) is a Cp-semigroup on Y, ¢ > 0 (which is exponentially stable as
well, and in addition analytic here);

ii) there exists a self-adjoint, non-negative definite operator P € £(Y) which
satisfies B*P € L(Y) and solves the algebraic Riccati equation (to be read
as (LII) and below);

iii) the Riccati operator P satisfies (—A*)'°P € L(Y), for any § € (0,1), a
property which is central to the proof of ii);

iv) the generator of ®(¢) is the operator Ap = A — BB*P, whose domain is

D(Ap) ={x € D((—A)'): (=A)" 7z — (-A)"BB*Px € D((—A))};

in particular, D(Ap) C D((—A)*~7).
(See the monographs [9] and [19], the latter providing an in-depth treatment.)

When it comes to PDE of hyperbolic type things change dramatically in the
worse. Indeed, the issue which is the most delicate from a theoretical viewpoint,
and may be out of reach, is that of obtaining a gain operator B* P which is well-
defined or at least densely defined on Y, besides than on the optimal trajectory (as
the feedback formula requires by itself). See, e.g., the discussion in [Il Section 1.2.4]
and the cited references.

The case of coupled systems of hyperbolic-parabolic PDE sets itself at the bound-
ary of the two classical (parabolic and hyperbolic, respectively) classes. Because
significant physical interactions are described by evolutionary PDE systems which
comprise dynamics of different nature — notably, of hyperbolic and parabolic type
—, the study of the LQ problem and of the corresponding Riccati equations for these
composite PDE systems has received quite a bit of attention over the last twenty
years. This both at a functional-analytic level, and in the endeavours to pursue
a clever regularity analysis on a certain interconnected PDE problem (eventually,
one a variety of them). See [Il, Section 1.2] and the pertinent references.

An abstract class of control systems broad enough to encompass a diverse range
of physical interactions has been devised by the authors, jointly with Lasiecka,
under well-structured assumptions on (the adjoint of) the kernel e/ B; these are
detailed in the next subsection as Assumptions [[[41 A theory of the (finite and)
infinite time horizon LQ problem, along with a complex of results that combine to
bring about well-posedness of the corresponding (differential and) algebraic Riccati
equations — thereby attaining the actual synthesis of the optimal control —, has been
developed in [4] and the recent [1], following the former study [3]. A distinguishing
feature of the Riccati theory developed in [3] [4] is that the gain operator is bounded
on D((—A)¢) (with a suitable € > 0), which is dense in the state space Y; see the
statement A4. of Theorem [[LAl Furthermore, it should be noted that the algebraic
Riccati equation (LIT)), with =,y € D(A), actually extends to be meaningful with
x,y € D(Ap); see the statement A7. of Theorem [[5 based on [4, Lemma 5.15 and
Theorem 5.16].

An element which had remained unresolved in [4] and [I] was a full character-
ization of the domain of the optimal state semigroup’s generator Ap. Indeed the
information achieved in [4] with regard to D(Ap) was the refined set inclusion which
follows combining the statement S5. in |4 Theorem 1.5] (recalled as (ILI0) later
on) with the property (asserted in [4, Proposition 5.5]) D(Ap) C D(A?), valid for
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any ¥ € (0,1 — ). This is

D(Ap)CE:= (] Es,
0e(0,1—~)
having set
Ey:={z€D(-A)"): 2« — A"'BB*Px € D(A)} . (1.2)

The following question then arises:
Question. Does the converse D(Ap) O E hold?

Our main result, i.e. Theorem [[L9] shows that this is indeed the case, provided that
the parameters 7 and € which occur in the Assumptions [[.4] fulfil ¢ < 1 —~. This
relation is feasible: to support the assertion, we revisit the actual values of v and
e brought about by the (model-specific) trace regularity results established in [13],
[2], [1], 2] in regard to distinct PDE problems, in the process of establishing that
these fall into the present underlying framework.

The structure of the paper is as follows: in the next subsection we recall the class
of control systems under consideration, together with the outcome of our prior work
in [] and [1I], summarized as Theorem The statements of Theorem (that
is our main result) and of the preliminary Lemma [[.§ — which clarifies a first set
inclusion — are highlighted in the separate Section

Section [2] is mainly devoted to the proof of Theorem A neat proof of
Lemma [[[8 which was not given explicitly in [4] and in addition settles a con-
fusing abuse of notation occurred in [4, Proposition 5.5], is also provided.

Finally, in the last section we review three coupled systems of hyperbolic-parabolic
PDE describing just as many physical interactions, which attest to the validity of
the constraint on the significant parameters v and € (presupposed in Theorem [[9)).

1.1. Underlying framework: genesis of the optimal state semigroup. Let
Y and U be two separable Hilbert spaces, viz. the state and control spaces, respec-
tively. We consider the infinite-dimensional (linear) control system 3y’ = Ay + Bu
on the half-line [0, 00). The operator A (which describes the free dynamics) and the
control operator B are initially characterized by the following basic hypotheses.

Assumptions 1.1 (Basic hypotheses on the control system). Let Y, U be separable
complex Hilbert spaces.

e The closed linear operator A: D(A) CY — Y is the infinitesimal generator
of a strongly continuous semigroup {eAt}tZQ on 'Y, which is exponentially
stable, i.e. there exist constants M > 1 and w > 0 such that

le*|cory < Me™™"  Vt>0.
e B L(U,[D(AY))); equivalently, A=*B € L(U,Y).

Then for any given yo € Y and any control function u € L?(0, c0; U) the Cauchy
problem

y'(t) = Ay(t) + Bu(t), t>0

y0)=y €Y

(1.3)



possesses a unique mild solution given by

¢

Mﬂ:emmﬁi/eM“”Bmgd& t>0. (1.4)
0

The formula (T4]) makes sense in the extrapolation space [D(A*)]: it yields more

specifically y € L%(0, 00; [D(A*)]'); see [19, §0.3, p. 6, and Remark 7.1.2, p. 646].

Remark 1.2. We note that owing to the first of the Assumptions[I.T] the operator
— A is a positive operator according to [22] Definition 4.1]. This allows to define the
powers with complex exponent (—A)® (in a first step for Rea < 0 via a Dunford
integral and then for Rea > 0); see, e.g., [22, § 4.1]. The fractional powers (—A)?,
¥ € (0,1), will be critically (and repeatedly) used in the proofs of our results. We
shall write A” in place of (—A)” throughout the paper in order to make the notation
lighter.

To the state equation in (L3)) we associate the quadratic functional J(u) defined
in ([LT)), where the so called observations space Z is a third separable Hilbert space
(possibly, Z =Y). It is assumed that R € L(Y, Z) throughout.

By optimal control problem (L3)-(LI) it is meant the following.

Problem 1.3 (Infinite horizon optimal control problem). Given yo € Y,
seek a control function u € L*(0,00; U) which minimizes the cost functional (L)),
where y(-) = y(-; yo, u) is the solution to (L3)) corresponding to the control function
u(+) (and with initial state yo) given by (4.

With motivation coming from the optimal boundary control of partial differential
equations systems which comprise both hyperbolic and parabolic dynamics — such
as, e.g., the ones which describe certain mechanical-thermal, acoustic-structure,
fluid-elasticity interactions — a thorough study of Problem [[3] and its complete
solution has been provided by the authors in [4] (jointly with Lasiecka), and in [I]
(achieving uniqueness for both differential and algebraic Riccati equations), under
the following distinguishing assumptions on the operators A, B, R. These assump-
tions were singled out for the most part in [3], focused on the finite time horizon
optimal control problem, and subsequently strengthened in [4] to deal with the
infinite time horizon one.

Assumptions 1.4. Let Y, U and Z be the state, control and observation spaces
introduced in the Assumptions[I 1l and in (1), respectively.
The operator B*e*™t can be decomposed as
B*eAtr = F(t)z + G(t)z,  t>0, 2z DAY, (1.5)
where F(t): Y — U and G(t): D(A*) — U, t > 0, are bounded linear operators
satisfying the following assumptions:
1. there exist constants v € (0,1) and N,n > 0 such that
I[F@lcev,y S Nt Ve ™ vt >0, (1.6)
2. there exists T > 0 such that the operator G(-) belongs to L(Y,LP(0,T;U))
for all p € [1,00);
3. with T as above, there exists ¢ > 0 such that:
a) the operator G(-)A*~¢ belongs to L(Y,C([0,T];U)), with

sup [|G()A™ || zv,o) < o0
te[0,T)
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b) the operator R*R belongs to L(D(A€), D(A*)), i.e.
HA*ER*RA76|‘£(y) <c<o00;

c) there exists g € (1,2) (depending, in general, on €) such that the map
x +— B*eA " A*“x has an extension which belongs to L(Y, L4(0,T;U)).

As already pointed out in the Introduction, the asserted complete solution to
Problem[[3 embodies several major achievements. We recall that the existence of a
unique optimal pair (4, §) follows readily from convex optimization arguments. The
soughtafter closed loop form of the unique optimal control @, i.e. (L9]) below, holds
true, as well. However, its proof is far from being straightforward: it requires further
analytical work than the classical argument based on the optimality conditions.
Indeed, the tricky bit has been to ascertain that given the optimal cost operator
P € L(Y) - intrinsically defined in terms of the optimal state §(t) = ®(¢)yo (just like
in previous theories, see (L8] below) —, then the gain operator B* P is meaningful
and bounded at least on a suitable dense subset of the state space Y (which turns
out to be D(A)), and then to prove that P does solve the algebraic Riccati equation
corresponding to Problem [[3] displayed below as (LII)). All this

e in the absence of the smoothing properties inherited by both the optimal
evolution and the Riccati operator in the fully parabolic case (highlighted
in Section [l inside i) and as iii), respectively), and also

e under a very minimal additional assumption on the observation operator R
(that is 3b) of the Assumptions [L[4).

In the following Theorem we collect all the pertinent assertions; we refer the reader
to the part titled Present work in the Introduction of [4], for a synopsis of the
analysis carried out therein, as the paper is long and technical.

Theorem 1.5 ([4], Theorem 1.5; [I], Theorem 2.11). Under the Assumptions[1.7,
the following statements are valid.
Al. For any yo € Y there exists a unique optimal pair (4(-),§(-)) for Prob-
lem ([L3)-[CI), which satisfies the following regularity properties
ie ﬂ LP(0,00;U) ,
2<p<oco
€ Cy([0,00);Y) N { N Lp(O,oo;Y)} .
2<p<oo

A2. The family of operators ®(t), t > 0, defined by
®(t)yo == () = y(t,yo; 1) (L.7)

is a Co-semigroup on Y, t > 0, which is exponentially stable.
A3. The operator P € L(Y) defined by

Pyy = / e R*R®(t)yo dt reyY, (1.8)
0

is the optimal cost operator; P is (self-adjoint and) non-negative.
A4. The following (pointwise in time) feedback representation of the optimal
control is valid for any initial state yo € Y :

w(t) = —B*Py(t) for a.e. t € (0,00), (1.9)
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where the gain operator satisfies B*P € L(D(A®),U) (that is, it is just
densely defined on'Y and yet it is bounded on D(A€)).
A5. The domain of the infinitesimal generator Ap of the optimal evolution ®(t)

(defined in (7)) satisfies
D(Ap)C{z€Y:2— A"'BB*Px € D(A)} (1.10)

1 t
- {a: eY: Iw-limy o+ ?/ A=) A1 B*PO(7)xdr in Y}
0

and Ap = A(I — A='BB*P) on D(Ap).
A6. The operator e B, defined in U and a priori with values in [D(A*))', is
such that

e® e B e L(U,LP(0,00; [D(A*)])) Vpel[l,1/q)

for all § € [0,w A n); almost the very same regularity is inherited by the
operator ®(t)B:

e (-)B € LU, L (0,00 [D(A™))) ¥p € [1,1/q),

provided 6§ € [0,w A n) is sufficiently small.
A7. The optimal cost operator P defined in (L8]) is a solution to the algebraic
Riccati equation (ARE) corresponding to Problem ([L3)-(T1), that is

(Px,Az)y + (Az, Pz)y — (B*Px,B"Pz)y + (Rz,Rz)z =0,

x,z € D(A); (L11)

the ARE reads as
(A*Px,z)y + (x,A*Pz)y — (B* Pz, B*Pz)y + (Rx,Rz)z =0

when x,z € D(Ap).
AS8. The algebraic Riccati equation ([LII)) has a unique solution P within the
class

Q:={QeL(Y):Q=Q" >0, B'Q e L(D(A),U)}; (1.12)
hence, the optimal cost operator P defined by (LL8)) is precisely that solution.

1.2. The generator of the semigroup: statement of the main result. The
assertion A5. in Theorem [[LTis the one which specifically pertains to the generator
Ap of the optimal state semigroup ®(t). Although a full characterization of D(Ap)
was not needed in [4] (and actually absent from it), the basic set inclusion (II0)
was made more precise therein. Indeed, [4, Proposition 5.5] related the domain of
Ap (and A}) to the domain of certain fractional powers of the positive operator —A
(—A*, respectively). For the readers’ convenience we explicitly recall the aforesaid
result below.

Proposition 1.6 (Cf. [4], Proposition 5.5). With reference to the optimization
Problem ([L3)-(L1), let the Assumptions be in place. Accordingly, v is the
exponent in [(LO). Then, the following inclusions are valid, for any 9 € (0,1 —~):

D(Ap) C D(AY),  D(A%) C D(A*Y). (1.13)



8 PAOLO ACQUISTAPACE AND FRANCESCA BUCCI

Remarks 1.7. i) We note that the letter e utilized in (5.8) of [4, Proposition 5.5]
to indicate the fractional power of —A, in place of the chosen ¢ in (LI3) above, was
certainly misleading. This is because € has a clear, specific meaning in 3a-3b-3c.
of the Assumptions [[L4] and then in the statements A4. and AS8. of Theorem
established under those hypotheses.

ii) It is important to emphasize that the inclusion in the right of (II3)) was crucially
employed in the proof of [4, Corollary 5.14], where we showed that ®(t) = e4#?
is differentiable on D(A) — the latter being a property was far from expected,
since D(A) is not a natural domain of the strongly perturbed evolution ®(¢). This
regularity property, in turn, was the key to proving that the optimal cost operator
P does satisfy the algebraic Riccati equation; see [4, Theorem 5.16].

Having recalled from [4] the findings stated above as Proposition [[L6, and more
specifically the first of the inclusions (LI3) therein, it becomes apparent that the
original information (LI0) on D(Ap) provided by Theorem [[H was already made
more precise. It is worth highlighting this result stemming from [4], by means of a
separate statement.

Lemma 1.8 (Set inclusion). With reference to the optimization Problem (L3)-
(@I, let the Assumptions be in place; accordingly, v is the exponent in (L6l).
Let P € L(Y) and Ap: D(Ap) CY — Y denote the corresponding optimal cost
operator and the generator of the optimal state semigroup {eAPt}tZO, respectively.
Then,

DAp)C ()| {zeD(A’): 52— A'BB Pz ecD(A)}. (1.14)
9€(0,1—7)

The question as to whether the set inclusion (I.I4)) might be enhanced to become
an equivalence was (wrongly) dismissed in the end of [4, Remark 5.4]. The present
study reveals that the answer is actually positive, provided € is below a certain
threshold determined by ~.

Theorem 1.9 (Main result). With reference to the optimization Problem (L3)-
(@TI), let the Assumptions[I]] be in place; accordingly, v and € are the exponents
therein. Let P € L(Y) and Ap: D(Ap) C Y — Y denote the corresponding
optimal cost operator and the generator of the optimal state semigroup {eAPt}tZO,
respectively. If e <1 —~, then

D(Ap)= (]| {zeD@A’):z—-A'BB*PzcD(A)}. (1.15)
9€(0,1—7)

The proof of Theorem [I.9] as well as the one of Lemma[l.g] are given in the next
section.

2. FROM A SET INCLUSION TO A SET EQUALITY

This section is devoted to showing our main result. First we give a sketch of the
proof of Lemma[[.8] with focus on the first one of the inclusions (LI3). (We remind
the reader that the proof of [4] Proposition 5.5] pertained exclusively to the second
one.) Thus we take the chance of amending a few vague or imprecise assertions
contained in the proof of [4, Proposition 5.5]. Also, we find it worth emphasizing the
powerful role of the theory of interpolation spaces, which specifically provides the
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tools. Next, we give the proof of Theorem [[L9] via a new inclusion (the converse),
thereby achieving the set equality ([.13]).

It is useful to recall the notation L for the operator — also termed the “input-to-
state map” — defined by

L:u(-) — (Lu)(-) ;:/ A=) Bu(r) dr . (2.1)
0

The assumed decomposition (LH) for the adjoint of the kernel e4*B yields the

(consistent) decomposition

Lu(t) = /0 F(t—r)*Bu(r)dr + /0 G(t —r)"u(r)dr =: Layu(t) + Layu(t), (2.2)

which will be directly useful in the proof of Lemma (The notation L; for the
above operators was introduced in [4]; see (3.10) therein; we will write L u(t) in
place of (L u(-))(t) for the sake of simplicity.)

Proof of Lemma L8 The inclusion (II4) that we are asked to show requires that
we compare the domain of the optimal state generator Ap with the domain of a
fractional power AY. Here the key tool is interpolation. More specifically,

i) we will use the following relation between interpolation spaces and domains
of fractional powers:

(X,D(4))s1 S D(A”) C (X, D(A))pc, Ve (0,1, (2:3)

whose validity is ensured here by the exponential stability of the semigroup
e?; see the statement (d) in [24] § 1.15.2], or [22, Prop. 4.7, p. 92].

ii) In turn, the driving idea is to relate D(Ap) to an appropriate interpola-
tion space (Y, D(A))a,00, first. This is because the characterization ([24,
Theorem 1.13.2], [22, Prop. 5.7])

(Y, D(A))a00 = {:1: €Y: sup teta —zlly < oo} (2.4)
te(0,1]
is especially suited for the task at hand.
iii) The conclusive argument relies on the series of set inclusions

(X, D(A))a1 € (X, D(A))ap € (X, D(A))aoe € (X, D(A))s1,  (25)

which hold true for any «, 9, p such that 0 <9 < a <1l and 1 < p < o0;
see [24, § 1.3.3] or |22 Propositions 1.3 and 1.4].

Let € D(Ap) be given. As pointed out in ii), we will show that z € (Y, D(A))a,c0
for any o € (0,1 — ). By (L) with x as initial state, we know that

(e — DNa = (B(t) — Nz — (La(-, z))(t), (2.6)

where ®(t)z is the optimal state and @(-,z) is the optimal control, respectively.
Since the asymptotic estimate (®(¢t) — Iz = O(t), as t — 0T, is trivial, we focus
on the subsequent integral term La(t). For this we need the splitting (22). The
computations leading to the estimates for Lya(t) and Lo)u(t) are essentially the
ones in (5.11) and (5.14) of [ Proposition 5.5], respectively. We omit most part
of the details and only highlight the principal tools and possible constraints on the
parameters’ values.
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To produce an estimate of L)i(t), we recall the (singular) estimate (L6 per-
taining to the component F(t) of B*eA™* (i.e. 1. of the Assumptions [4), as well
as the regularity property

Ha”LF’(O,OO;U) <¢p ”xHY Vp € [2= o0)
for the optimal control (that is (4.3b) in [4, Proposition 4.1], proved therein). The
above estimate actually extends to any p > 1 if we limit ourselves to L?(0,T;U),
with T as in 2.-3. of the Assumptions[[.4l This makes sense since we are interested

in the behaviour of L;yi(t), i = 1,2, only in a neighbourhood of ¢ = 0. Then we
have

t

. C . -

Ly < [ GO il ds < Ot ey, )
o (t—s)7

via the Holder inequality in the latter bound, where p’ is the conjugate exponent
of p. We note that in order to have 1/p’ —~ > 0 in (7)), one needs p > 1/(1 — 7).
This is allowed, because p can be taken arbitrarily large; accordingly, p’ will be

arbitrarily close to 1, which yields the upper threshold 1 — ~ for the powers of ¢.
Therefore, ([2.7) establishes

ILaya@)lly < Crt*lzlly (2.8)

for any a1 € (0,1 — ).
The analysis of the summand Lsu(t) is slightly more delicate, while leading to
a better estimate. We take the inner product with an arbitrary z € Y, use once
more that @& € LP(0,T;U) for any finite p > 1, this time combined with the basic

regularity of the component G(t) of B*eA™t, that is 2a. of the Assumptions [Zl
An application of the Holder and Young inequalities gives

(L. 2] = | [ (is).Gt = 9)2)0 ds

(2.9)
< Cot'Mallyllzly,  zeY,te0,T],
with r € (1,00) that can be taken arbitrarily close to 1. Then (2.9) establishes
IL@ya(t)|ly < Cat|lz|ly (2.10)

for any positive aa < 1.
We return to (2.6) with the information provided by the estimates (Z8) and

2I0) to find

(e — Dzlly = O(t) — O(t*) = O(t¥), t— 0",
valid for o := aq A ag, and hence for any a € (0,1 — ). By (24), we have so far
proved the membership

z € (Y,D(4))a,00 Va € (0,1 —7).
Now we recall (Z3]) and (23] to deduce that
z € (X,D(A))s,1 CD(A”)

for any ¥ € (0,«) (and any « € (0,1 —v)). Since x was given and yet arbitrary,
then D(Ap) C D(A?) fo any ¥ € (0,1 — 7). Finally, the inclusion (LI0) formerly
established in [4] ensures that any # € D(Ap) fulfils v — A~ BB* Pz € D(A), which
confirms the full inclusion (.I4]), thus concluding the proof of the Lemma.

O
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The proof of the reverse inclusion requires a different argument, with the defi-
nition of infinitesimal generator of a Cyp-semigroup as natural starting point ([23]).
The proof develops through several distinct steps, with a bootstrap argument playing
a key role among them.

Proof of Theorem[L.d. In view of Lemma[l.8] in order to attain the full character-
ization (LI5]) we seek to prove to converse of ([I4]).
0. The beginning of the proof is based upon the following observation: since
D(A%1) C D(A2) for ) > 0y, then Ey, C Ey, as well (the notation Ey has been
introduced in ([2))). Therefore, if € < 1 — v, we have

E:= ﬂ Ey = ﬂ Ey=:F.

0€(0,1—) 0ele,1—7)
Thus, proving
D(Ap) D Ey Vi € le,1—7) (2.11)
will yield D(Ap) D F = E, as desired.

Now if ¥ > € we know that D(AY) C D(A), which gives a meaning to the
element A~ BB* Pz for x € D(AY), since B*P € L(D(A€),U) (by the statement
A4. of Theorem [LH]), while A~'B € L(U,Y) (by the Assumptions [L.T]).

1. Let ¥ € [¢,1 — v) be given, and let x € Ey. By the very definition of Ey, we
have z € D(AY) and x — A"1BB*Px € D(A). To infer that z € D(Ap), we need
to address the existence of the limit of

(ID(t)t I .

inY, as t — 0%, where ®(t)x = §(t) is the optimal state of the minimization
problem. By the representation (L4 of any mild solution to the Cauchy problem
([C3), with z (in place of yo) as initial state and 4(-) in its feedback form (L) as
the (optimal) control, we know that the optimal state semigroup ®(t) satisfies the
integral equation

t
d(t)x = eMa — / A=) BB*Pd(s)z ds, t>0.
0

(®(t) — Nz = (e — Nz — /0 t eAt=*) BB* P®(s)x ds

t
= (e — I)(z — A"'BB*Px) +/ A=) BB*P(®(s) — Iz ds

Ty (t 0
1(t:%) Ty (t,7)
(2.12)
for any ¢ > 0. The identity 2I2) yields, for ¢ > 0,
dt) -1 At I
( )t z=2 - (:c—A’lBB*Px)—i—;/ A=) BB*P(®(s)— Iz ds. (2.13)
0

Because © — A"'BB*Px € D(A), the first summand in the right hand side of
(ZI3) tends to A(x — A~'BB*Pz), as t — 0F. If we can establish that the second
summand is such that
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then from (ZI3) it will follow x € D(Ap), Apx = A(x — A~ BB*Px).
The goal of the argument that follows is to show that T (¢, z) defined in (2.12)
is an O(t*) with o > 1, as t — 0.

2. We begin with some preliminary considerations, which in particular highlight
the space regularity of the incremental ratio. Based on [4, Proposition 4.7], from
x € D(AY) C D(A?) it follows ®(t)x € D(A®), which gives (®(t) — Iz € D(A) as
well.

As for the right hand side of (ZI2), it is readily seen that the first summand
Ti(t,z) belongs to D(A), since x — A'BB*Px € D(A) (just use a basic property
of operator semigroups). Therefore, clearly the term T5(¢,x) belongs to D(A€) as
well, for any ¢ > 0. However, for the purposes of the estimates we are about to
carry out, we rewrite To(t, z) more cleanly as

Tr(t,z) = L(B*P(®(-) — Dx)(t),
and observe that

e the property B*P € L(D(A€),U) combined with the exponential stability
of ®(t) (cf. the assertions A4. and A2. of Theorem[IH]) ensure in particular
that

B*P(®(-) — Iz € Cy([0,00),U) N LI (0,00;U) ;

o L e L(LY(0,00;U),Cy([0,00), D(A)) by [, Proposition 3.6(v)].

These regularity properties are somewhat excessive. Indeed, with respect to the
time regularity, what matters is the behaviour in a right neighbourhood of ¢t = 0.

In the next step we move on to produce (successively enhanced) asymptotic
estimates for (®(t) — I)x. Since we are interested in the asymptotic behaviour of
the said function (of ¢), as ¢ — 07, we are allowed to assume ¢ < T, where T is
as in 2. of the Assumptions [[4l We will denote by ¢ any positive constant not
depending on the variable ¢.

3. We begin with the derivation of a first estimate for (®(¢) —I)x around ¢t = 0. The
considerations above justify the use of the stronger topology of the space D(A€).

Claim 1. The following estimate is valid:
[(@(t) — Da|lpacy < c(tcve/d)y,  0<t<T, (2.14)
where ¢’ is the conjugate exponent of q in 3c. of the Assumptions[1.4)

To confirm Claim [I] let us examine either term T;(¢,z), ¢ = 1,2, in the right
hand side of (ZT12]). We estimate

Ti(t, 2|y oo = |[(eA = I)(x — A"'BB*Pz)|| ., ,.
76, e = | Iocas o)

= H(eAt —I)A(x — AilBB*Paj)HY <cthe,

with the bound following by interpolation, since A¢(z — A~*BB*Px) € D(A'~¢).
Next, in view of B*P € L(D(A°),U) (already recalled in the step 2.), we have

B*P(®(-) — )z € C([0,T),U) C LY (0,T;U),

so that
T5(- z) = [L(B"P(2(-) — I)z)](-) € C([0,T], D(A")),
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along with the estimate

(|72 ( HAE/Ot t=)BB*P(®(s) — Iz ds

¢ ‘T)HD(AG
%

2.16
<1@() = Dol opmiacy (2.16)

< I@C) = Dallogonpean '’
for any t € [0,7]. Combining (Z.I6) with (ZI5) we attain the estimate (Z.14) for
the left hand side of ([2.I12)), as needed.

4. Let now ng = [¢'(1 — €)] be the largest integer not exceeding ¢'(1 —€). If ng = 0,
ie. ¢' < 1=, then from ([2.14) it follows

[(®(t) — Il peaey < ct' ™, 0<t<T.
If ng > 0 instead, we use a bootstrap argument, based on the following fact.
Claim 2. Let a be a positive real number. If
[|AS(®(t) — Dxlly < ct”, 0<t<T,

then we have

<tttV 0<t<T.

t
HAE/ A=) BB*P(®(s) — )z ds
0 Y

To show that Claim [ holds true, we return to the right hand side of (2I2).
Still with the bound 2I8) for Ti(t, x), we aim to improve the estimate (2.16) for
Ts(t,x). We argue by duality, using 3c. of the Assumptions [[4l Let z € Y be
given: then, for 0 < ¢ < T, we have

t
’(Af/ eA(t_S)BB*P(@(s)—I);vds,z)
Y

0

t
= /(B*P(@(s)—I)x,B*eA*“—S)A*ez)Yds
0

L
rd

F ot %
<ec / |B* P((s) — I)z||¥ ds] U |B*eA"” A%<z |9, da}
LJO

L
7

Sct/H = Dl s el

SC./ Md% Izlly < ellzlly t>+1/9".
L/ O

Since z is arbitrary, the claimed enhanced estimate follows.

Thus, still in the case ng > 0, we apply successively Claim [2] with
1 2 no
q q/ PR IR q/ )

until we obtain

<ctotD/d o<t < T, (217)

t
HAe/ A=) BB* P(®(s) — I )z ds
0 Y
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Combining (ZTI7) with 2I5) and noting that ng + 1 > ¢’(1 — €) by definition of
ng, we finally attain

[(@(t) — D] peacy < et/ vil=e) = el 0<t<T. (2.18)

We note that the estimate [2.I8) subsumes the case ng = 0 discussed separately in
the beginning of this step.

4. We can now perform the final step. Suppose that ¢ < 1/¢’ A (1 — ). Then, a
further use of Claim Pl with a = 1 — € yields (from (2.I8]))

t
HAE/ A=) BB* P(®(s) — Iz ds
0

Y

where now 1 — e+ 1/¢’ > 1, owing to the assumed relation eq’ < 1. This implies, a
fortiori, that

=0. (2.19)

t
/ A=) BB*P(®(s) — Iz ds
0 Y

.1 ’
lim -
t—0t ¢

If 1/¢ < e < 1— v instead, a more careful analysis is called for. For a given
z €Y and any t € [0,7T] we have

(/Ot et BB*P(®(s) — Iz ds, z)

Y

= /Ot (B*P(®(s) — I)z, B*e® 92)  ds
:/0 (B*P(‘I)(s)—I)I,F(t—s)z)yds—k/o (B*P(®(s) — Iz, G(t — s)z), ds,

where in the last equality we have introduced the decomposition ([[H]) of the adjoint
of the kernel eA*B. To estimate the first summand in the last row, we exploit the
(singular, close to 0) estimate (L) pertaining to the component F(t) of B*e4™t
and recall once more the bound (ZI8), to find

/0 (B*P(®(s) — Iz, F(t — 5)z)y ds

t

<c [ @) - el | Pt = 9oy ds sy 2:20)
0
t 5175

gc/o We*fﬂt*ﬂ ds||z|ly <ct?= 7 |z]ly .

It is here that the constraint e < 1—-y arises, owing to the requirement 2 —e—~ > 1.
As for the second summand, the basic regularity (in time) of the component
G(t) of B*e*™t (see the item 2. of the Assumptions [4) combined with (ZIS)
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brings about

/0 (B*P(®(s) — Iz, G(t — 5)2)y ds

gc/o 1(2(s) = Dzlpas |G (E — 5)2[|v ds (2.21)

1/p'
<c Uo s(1=9)p ds} IGO | eev.Lro.r.opllzlly

< CtlfeJrl/p’ ||Z||Y

for any ¢t € [0,7], and with the summability exponent p € [1,00). Because p > 1
is finite and yet arbitrarily large, 1/p’ can be taken arbitrarily close to 1, which
implies that 1 — e+ 1/p’ > 1. Since z € Y is also arbitrary, the estimates ([2.20)

and ([227)) yield

¢

/ A=) BB*P(®(s) — I)x ds
0 Y

with a > 1, and hence the limit (ZI9) holds true, even in the case 1/¢' < e < 1—7.

5. We resume the representation (ZI3) of the incremental ratio for the optimal

state semigroup, and combine the limit

<ect*,  0<t<T,

At _ I
lim < (r — A"'BB*Pa) = A(x — A"\BB*Pz) inY
t—0t+
(pointed out already in the step 1.) with (2I9), to obtain that
() -1
lim Lx = A(x — A"'BB*Px),
t—0+ t

whose meaning is x € D(Ap) and Ap = A(I — A~ BB*P). The set inclusion (Z.I1))
is established, thus concluding the proof of Theorem
O

3. THE e-y CONSTRAINT: PDE ILLUSTRATIONS

We have seen in the previous section that we are able to characterize the do-
main of the optimal state semigroup’s generator Ap, in the case the values of the
(independent) parameters v and e that occur in the standing Assumptions [[4] fulfil
the relation € < 1 —~. One may wonder whether this constraint is plausible, and
actually met by significant boundary control systems which comprise hyperbolic
and parabolic components and whose abstract formulation yields a kernel e4*B (in
fact, its adjoint) satisfying the Assumptions[[.4l Because the very requirement 3a)
of the Assumptions [[4 may be satisfied for a certain ¢y > 0, while being false (at
least a priori) for € < €, the property € < 1 —+ cannot be taken for granted.

In this section we show that the answer to the said question is positive. We
recall and discuss briefly three distinct PDE problems describing distinct physical
interactions: from mechanical-thermal and acoustic-structure ones (in 2D and 3D,
respectively) to fluid-elasticity ones in 3D. Each of these illustrations has been
previously shown to fall within the class of abstract control systems defined by the
Assumptions [[L4} see the papers [2], [11], [12], respectively. The values of v and
e specifically suited for either case had explicitly arisen during the proofs of the
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soughtafter (respective) trace regularity results that pertain to a certain component
of the solution to the uncontrolled PDE problem.

3.1. A thermoelastic system. As our first example, we consider a classical PDE
model which describes the displacements of an elastic (thin) plate, in the pres-
ence of thermal effects; in regard to the modeling, see [I6]. This very system of
coupled hyperbolic-parabolic PDE provided motivation for the distinctive abstract
framework introduced in [3], along with the linear-quadratic theory devised therein,
subsequently continued in [4, 1] with focus on the infinite time horizon problem.

The PDE problem. Let © C R? be a bounded domain with smooth boundary
T' := 09Q; the symbol v will denote the outward unit normal to the curve I'. The
linear PDE model comprises a Kirchhoff equation for the vertical displacement
w(t, z) of the plate (and hence, p > 0 below) and a simple diffusion equation for
the temperature (¢, z), with the coupling occurring in the interior. The system is
supplemented with clamped (mechanical) boundary conditions and is subject to a
thermal boundary control action g.

Aiming to study the associated quadratic optimal control problem on an infinite
time horizon, we will have here ¢ € (0, 00). Thus, the initial-boundary value problem
(IBVP) is as follows:

Wy — pAwy + A%w + A =0 in Qoo :=(0,00) x Q

0y — AO — Awy =0 n Qw

w=2% =0 on Xy = (0,00) x T (3.1)
=g on Yo

w(0,-) = w®, we(0,:) =w'; 0(0,-) =6 in Q.

Functional setup, abstract formulation. The natural energy/state space is
Y = H3(Q) x H}(Q) x L*(9).

With U = L*(T), we take U := L?(0,00;U) as the space of admissible controls.
The PDE problem (3 admits a reformulation as the Cauchy problem ([I3),
after having set

y(t) = y(t7 ) = (w(t7 ')7 wt(tv ')7 H(tv )) ) g(t) = g(t, ) )

and where A and B are suitable operators which can be detailed explicitly; see [19,
Appendix 3J, p. 402] and [13]. We retrace below the various steps and analytical
results which combine to bring about the conclusion that the PDE problem (3]
falls within the abstract framework defined by the Assumptions A,

Verification of the basic Assumptions[I 1l (a) It is pretty well-known that the
present (free) dynamics operator A is the generator of a Cy-semigroup of contrac-
tions e in Y, t > 0; this semigroup is not analytic, as opposed to the case when
the thermoelastic system comprises the Euler-Bernoulli plate model (p = 0), in
place of the hyperbolic Kirchhoff one (p > 0).

1Here we make reference to all the hypotheses with the only exception of 3b), that pertains to
the observation operator R.
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(b) In addition, the semigroup e4? is exponentially stable, as proved in [5] by
energy methods. (We note that the introduction of a novel (operatorial) multiplier
is the decisive element in the proof therein.)

We recall that the study of well-posedness of initial-boundary value problems for
(uncontrolled) linear thermoelastic systems has developed throughout the nineties
of the last century, with initial focus on the case k = 0 and hinged BC; see [19]
Chapter 3] for an historical overview on the subject, along with a list of pertinent
references. It is worth noting that the analysis in [18] offers a unified treatment of
linear thermoelasticity under different BC, via an insightful decomposition of the
underlying semigroup e* (which in particular covers the problem at hand here).

(c) As for the controlled thermoelastic problem (B1), the explicit computation
of B and A™!'B performed in [I3] — combined with the aforementioned results —
confirms that the basic Assumption [[T] are satisfied.

Verification of the Assumptions[1.7] The applicability of the theory of the qua-
dratic optimal control problem on an infinite time horizon devised in [4] is discussed
in full detail in [4, §2.1], as the end point in a series of steps carried out in the
earlier [I3] and [2]. We recall specifically that the decomposition (IZH) of B*eA™,
along with a local (in time) version of the estimate (L) for the component F(t)
(valid in a right neighbourhood of ¢ = 0, with n = 0), as well as the statements 2.
and 3a) of the Assumptions [[.4] were shown to be valid in [I3].

The boundary regularity result that yields 3c) was subsequently sought and
achieved in [2] Theorem 1.1]. Finally, the enhanced estimate () (for all ¢ > 0
and with n > 0) was proved in [4, §2.1].

It is important to emphasize that the conditions 1., 2., 3a) on B*e** and 3c) on
B*eA™t A*¢ have respective PDE counterparts; these are always regularity (in time
and space) results for certain boundary tracedd. In the case of the thermoelastic
system (B]), they specifically pertain to the normal traces (on T') of the thermal
component of the uncontrolled system (i.e. (B.I) with g = 0), as synthesized below:

e regularity of the operator B*e™" ~» regularity of % ’F,

99,

e regularity of the operator B*e”" A*¢ ~~ regularity of PALE

Values of v and €. The outcome of [I3, Theorem 3.3] and [2] Theorem 1.1] allows
to conclude that the values of v and € are as follows:

3+ 0< <1
=—-+0 €<~
,y 4 b 47

where o € (0,1/4) may be arbitrarily close to 0, while € can be taken freely in the
specified range. Thus, since 1 —y = 1/4 — o, the constraint € < 1 — v is satisfied.

3.2. A PDE model for acoustic-structure interactions with thermal ef-
fects. One may interpret the two dimensional plate dealt with in the previous
paragraph as a flat, elastic portion I'y of the boundary of a three dimensional,
bounded domain {2 — representing an acoustic chamber — with the interactions
between the acoustic waves in 2 and the vibrations of the flexible wall taking place
on I'g. Hence, differently than in the case of the thermoelastic system, the result-
ing structural acoustic model displays a strong coupling, as it occurs by means of

2Below and later on we will utilize the symbol ~~ to make explicit the said correspondence.
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boundary traces on I'yg. Optimal control problems arise naturally within this con-
text, motivated by the goal of reducing the noise within the chamber and/or the
vibrations of the elastic wall.

An archetypical PDE model for acoustic-structure interactions which couples
equations of different type (a hyperbolic wave equation and a parabolic-like elas-
tic equation) acting on manifolds of different dimensions, further subject to point
control, has been the object of extensive research work during the nineties. Point
control mathematically describes — via a combination of derivatives of Dirac delta
functions — the action of piezoelectric patches for the noise attenuation, as proposed
by Dimitriadis et al. The work [6] by Avalos and Lasiecka studies the quadratic op-
timal control problem associated with the said linear problem. It provides the first
contribution to the mathematical analysis of Riccati equations (with unbounded
operator coefficients) that arise from the optimal boundary control of systems of
coupled hyperbolic-parabolic PDE — recast as abstract systems in the usual form
y' = Ay + Bg —, by exploiting (thus revealing) the central role of certain regularity
estimates for the kernel e*B, even in the absence of analiticity of the semigroup
et

Here we consider a PDE system which is a variant of the aforementioned struc-
tural acoustic model. With the same basic equation for the acoustic waves prop-
agation in the chamber, the equation describing the vertical displacements of the
elastic wall changes to embed rotational forces (which account for the term —pAwyy
in (3:2)) below, p > 0 being proportional to the thickness of the plate). And yet, the
thermal effects — which are present — bring about an additional diffusion equation
on I'g. Thus, the resulting system comprises three evoutionary PDE, of different
type: precisely, a hyperbolic equation and a system of coupled hyperbolic-parabolic
PDE.

The PDE problem. Let Q C R? be a bounded domain, with boundary
89::F:I‘0UF1,

where I'; € R2, i = 1,2, are open, simply connected and disjoint; I'; is the so
called hard wall. The PDE problem comprises a wave equation for the acoustic
velocity potential z = z(t,x), x € €, and a thermoelastic system for the pair of the
plate’s vertical displacement and the temperature (w(t,z),0(¢t,x)), x € Tg. The
wave equation is supplemented with Neumann BC, while the thermoelastic system
(is supplemented) with clamped BC and is subject to Dirichlet boundary control.
Thus, the IBVP is as follows:

zy = Az in (0,00) X 2 =: Qo

2 +diz=0 on (0,00) x '} =: ¥

%:wt on (0,00) x Iy =: Xy

Wy — pAwy + A%w + A+ 2, =0 in Xg

0y — A0 — Aw; =0 in Xg (32)
w:%’:o,ﬁ:g on (0,00) x 9Ty

2(+,0) =29 2(-,0) = 2! in Q

w(-,0) = w’, wy(-,0) = w'; 6(-,0) =6° in Ty.
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We note that symbols 7 and v above denote the outward unit normals to I and to
the curve 9Ty, respectively; di and p are positive constants (p is proportional to
the thickness of the plate).

Functional setup, abstract formulation. We recall briefly that the natural (finite
energy) state space for the PDE problem ([3.2) is

Y = HY(Q) x L*(Q) x HZ(Ty) x H}(Ty) x L*(Ty);

with U = L?(9Ty), we take U := L*(0,00;U) as the space of admissible controls.
Indeed, the IBVP ([B2) can be recast as the Cauchy problem (I13]), having set

y(t) = y(tv ) = (Z(tv ')7 w(tv ')7 wy (tv ')7 o(tv )) ) g(t) = g(ta ) )

and with the operators A and B explicitly identified; see (2.13) and (2.15) in [10]
Section 2]. Now, the complex of results — be they functional-analytic or in the PDE
realm — showing that the control-theoretic properties listed as Assumptions [[.4]
hold true (for the time being and as before, excluding the assumption 3b) on the
observation operator R), are highlighted and properly attributed below.

Verification of the basic Assumptions[Il. (a) The study of well-posedness of the

abstract Cauchy problem
{y’ = Ay
y(0)=yo €Y

corresponding to the IBVP ([B:2) with homogeneous boundary data (i.e., with
g = 0), as well as of the uniform stability of the corresponding dynamics, has
been pursued successfully by Lebiedzik in [21]. This work establishes that the said
operator A is the generator of a Cy-semigroup of contractions e in Y, ¢t > 0.
Classical semigroup theory provides the tool.

(b) Furthermore, by using energy methods and a compactness-uniqueness argu-
ment, e? is shown to be exponentially stable.

(¢) In the presence of nontrivial boundary data g, the control operator B arises.
This and A~!B are explicitly computed by the second (named) author in [I1],
thereby concluding that the basic Assumption [Tlon (A, B) are satisfied.

Verification of the Assumptions[I.4} The analysis performed in [II] pertains to
the optimal control problem on a finite time horizon, meaning that ¢ varies on [0, T")
rather than on [0,00); consequently, the asymptotic behaviour of et — as well as
the one of the component F(t) of B*e4 ™ — does not play any role therein. However,
[11] provides essentially the appropriate boundary regularity estimates that allow
for the invocation of the theory in [4], besides the one in [3] focused on the case T
is finite. We remind the reader that these pertain to the regularity (in time and
space) of the boundary traces of the thermal component, as summarized below:

e regularity of the operator B*e™" ~ regularity of % ’ ary

e regularity of the operator B*e?”" A*¢ ~~ regularity of % ’81“0'

Precisely, Theorem 2.3 in [I1] yields the sought decomposition (3] of the operator
B*eA™t, along with the validity of 2., 3a) and 3c) of the Assumptions [4 A
reworking on the proof of the singular estimate

IEM) | oy SCE47 we>0
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proved therein would allow to obtain the enhanced estimate (L6l (with appropriate
constants N and 7), so that 1. of the Assumptions[L. 4 holds true as well; the details
are omitted.

Remark 3.1. We point out that the complex of (regularity) results provided by
[11l, Theorem 2.3] follows combining

- the sharp trace theory for the solutions to wave equations with nontrivial
(Neumann) boundary data (in particular the estimate (3.9) in [I1], whose
proof is found e.g. in [I7]), which in turn yields

- the improved boundary regularity of the elastic component of the (uncon-
trolled) system: precisely,

HAw|3F0HL?(O,T;L?(@FO)) < Crllyolly, Yy €Y

(see [11l Proposition 3.2]),
- the smoothing effect of the parabolic component.

Values of v and e¢. In conclusion, the analysis pursued in [I0, [[TI] and more
specifically in [T1] Theorem 2.3] bring about respective values of v and € which are
akin to the ones found for the uncoupled thermoelastic system; to wit,

3 1
v = 1 + 0o, O<e< 1’
where o € (0,1/4) may be arbitrarily close to 0, while € can be taken freely in the
specified range. Thus, since 1 — v = 1/4 — o, the constraint ¢ < 1 — ~ is readily
satisfied.

3.3. A PDE model for a fluid-elasticity interaction. The PDE problem that
serves as a last illustration of the feasibility of the relation € < 1 — « (assumed
in Theorem [[9) originates from the mathematical description of a very different
physical interaction, more precisely a fluid-elasticity one. The PDE problem under
consideration arises from the linearization of a recognized PDE system that de-
scribes a fluid-structure interaction (FSI) in 3D, under the hypothesis of stationary
interface. The true nonlinear scenario is that of an elastic body fully immersed in
a viscous, incompressible fluid; the interface is the boundary of the elastic body,
where the interactions between the two media occur. We refer the reader to the
work of Barbu et al. [§] and its bibliography, in regard to the original FSI. As it will
become apparent below, the said linearization further includes a dissipation term
on the interface, which renders the coupled dynamics uniformly stable, as proved
in [7].

The PDE problem. Let © C R3 be the bounded and smooth domain representing
the fluid-solid region. If we denote by € and € the (open, smooth) domains
occupied by the fluid and the solid, respectively, then (2 is the interior of Q; U (.
The velocity field of the fluid is represented by a vector-valued function w, which
satisfies the equations of Stokes flow in €Qy; the scalar function p represents, as
usual, the pressure. The displacements of the solid region §2; are described by the
variable w, which satisfies the Lamé system of dynamic elasticity. The interaction
occurs at the interface, say, I's = 0}, which is assumed stationary. Then, I'y
will denote the outer boundary of Q instead: namely, I'y = 0Q; \ 0. Below,
v = v(z) is the outward unit normal for the fluid region Qy and therefore it is
pointing towards the interior of the solid region €.



21

Thus, we consider the following system of PDE in the unknowns (u,w):

ug —dive(u) + Vp =0 in (0,00) x Qy =: Qy

divu =0 in Qy

wy —divo(w) +w =0 in (0,00) x Q5 =: Qs

u=0 on (0,00) x I'y =: ¢ (3.3)
e(u)-v=o(w) - v+pr+g on (0,00) xI'y =:3;

wy—o(w) -v=u on X

u(0,-) = ug in Qf

w(0,:) =wo, w(0,") =w; in Q.

The symbols o and € denote the elastic stress tensor and the strain tensor, respec-
tively, that are

o 1 8wl 8wj - 3
€j(w) = 3 (833j + oz, ) , oij(w) = )\;ekk(wﬁ” + 2p€;5(w) (3.4)

where A, ;1 are the Lamé constants and d;; is the Kronecker symbol. (We note the
abuse of notation determined by the use of the letter e for the parameter in 3. of the
Assumptions [[4] and also for the elastic strain tensor defined in ([B.4). However,
as the latter appears only in ([B3]), no confusion is likely to arise.)

The PDE system in (3.3]) shares with the previous illustrations the features that
it comprises both parabolic and hyperbolic equations, and moreover the parabolic
component is subjected to a boundary control action. Notably, its abstract refor-
mulation falls into the framework characterized by the Assumptions [[.4], as proved
in [12].

Functional setup, abstract formulation. The functional setup for the IBVP (B3]
follows — in its basic elements — the one introduced in [§] for the true nonlinear
problem. Also, the perspective taken in [I2] to attain the sought regularity results
is akin to the one adopted in [20], [I4] and [15] in the study of the optimal boundary
control problem associated with its (undamped) linearization. We note that the
regularity analysis that has been carried out in the aforementioned works benefited
from the enhanced regularity of the boundary traces of the normal component of
the stress tensor on the interface, valid for weak as well as semigroup solutions.

The state (energy) space for the system is

Y =M x [H'(Q)]? x [L*(Q)]?,
where H denotes the (null-div) space pertaining to the fluid component, that is
H:={ue [L2(Q)]*: divu=0, u- vlr, =0},
while [H*(Q)]? x [L?(Qs)]? is the natural energy space for the Lamé system.
As before, the IBVP (B3] can be recast as the abstract Cauchy problem (L3),
having set
y(t) == y(t,-) = (u(t, ), wlt, ), we(t,-),  g) =g(t,-),

and with suitable operators A and B explicitly identified; see [12] Section 2.1]. The
abstract setup introduced in [I2] has proved well-suited for the derivation of the
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boundary regularity estimates that allow for the invocation of the theory of the
infinite time horizon optimal control problem devised in [4].

Verification of the basic Assumptions [l The basic Assumptions [[T] for the
pair of the (free) dynamics operator A and the control operator B are ascertained
in [I2], Proposition 2.2]. The modified transmission condition

wy —o(w) - v=u

on the interface I's — in place of wy = w, which conveys the matching of the two ve-
locities — subsumes a source of dissipation, which renders the PDE system uniformly
(exponentially) stable, as proved in [7].

Verification of the Assumptions[1j] The requirements 1., 2., 3a) on BreATt
and 3c) on B*eAt A*¢ of the Assumptions [L4 translate into appropriate regularity
results (in time and space) for the boundary traces of the fluid velocity field v on
T's. More specifically,

e regularity of the operator B*e?™" ~» regularity of % |F\,

Ous
ov IT,’

where (u, w, w;) solves the uncontrolled problem, that is IBVP 3] with g = 0.

It was found in [I2] that the sought boundary regularity results for the fluid
velocity field can be achieved exploiting and combining carefully the parabolic reg-
ularity of the fluid variable with the exceptional regularity of certain normal traces
of the elastic component. The latter, enhanced by the presence of the boundary
dissipation into the coupled system, emerges from an energy equality obtained in
[7], which in turn can be proved with the only use of multiplier methods. In this
respect it should be noted that the prior work carried out in [20] and [I4] [15]
on the (undamped) linearizations of the original FSI necessitated arguments from
microlocal analysis, instead; see [I5, Lemmas 2.3 and 2.4].

e regularity of the operator B*e?™" A*® ~~ regularity of

Values of v and e. The analysis pursued in [12] (whose core is the proof of
Theorem 1.2 given in Section 2.3 therein), yields the following values of v and e:

= - O<e< =
+ 0o €
Y 1 ’ 27

where o € (0,3/4) may be arbitrarily close to 0, while € can be taken freely in the
specified range. Thus, since 1 — v = 3/4 — o, the constraint ¢ < 1 — ~ is readily
satisfied.
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