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Abstract

We consider a mixed problem for a Kirchoff thermoelastic plate model with clamped boundary
conditions. We establish a sharp regularity result for the outer normal derivative of the thermal veloc-
ity on the boundary. The proof, based upon interpolation techniques, benefits from the exceptional
regularity of traces of solutions to the elastic Kirchoff equation. This result, which complements
recent results obtained by the second and third authors, is critical in the study of optimal control
problems associated with the thermoelastic system when subject to thermal boundary control. In-
deed, the present regularity estimate can be interpreted as a suitable control-theoretic property of
the corresponding abstract dynamics, which is crucial to guarantee well-posedness for the associated
differential Riccati equations.
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1. Introduction and main result

The main goal of this paper is to provide a sharp regularity result for the boundary
trace ∂θt

∂ν of the solution (w(t, x), θ(t, x)) to a homogeneous version of a thermoelastic
mixed (initial and boundary value) problem. We point out at the outset that the present
investigation which continues and pushes further the one initiated in [6]—is motivated by
the analysis of well-posedness of Differential Riccati Equations arising in the quadratic
optimal control problem for thermoelastic plates subject to boundary thermal control. The
mathematical description of the mixed PDE problem is given below.
Let Ω be a bounded domain of R2, with smooth boundary Γ := ∂Ω and let T > 0

be given. We consider the following PDE model of a thermoelastic plate in the variables
w(t, x) (vertical displacement) and θ(t, x) (temperature):






wtt − ρ∆wtt +∆2w +∆θ = 0 inQ := (0, T ] ×Ω ,
θt −∆θ −∆wt = 0 inQ,
w = ∂w

∂ν = 0 (clamped B.C.) on Σ := (0, T ] × Γ ,
θ = u (Dirichlet boundary control) on Σ ,
w(0, ·) = w0,wt (0, ·) = w1; θ(0, ·) = θ0 in Ω ,

(1.1)

where ρ > 0, hence the elastic equation in w is of Kirchoff type.1 In the description
of the Boundary Conditions (B.C.) associated with the thermoelastic system (1.1)—here
clamped, a physically relevant and technically challenging case—ν will denote the unit
outward normal to the curve Γ . The dynamics of the plate is influenced by boundary con-
trol u acting on the temperature (thermal control).
With (1.1), we associate the following quadratic cost functional to be minimized over

all u ∈ L2(0, T ;L2(Γ )):

J (w,wt , θ;u) =
T∫

0

∫

Ω

(
|∆w|2 + |∇wt |2 + |θ |2

)
dx dt +

T∫

0

∫

Γ

|u|2 ds dt. (1.2)

As it is known, solvability of Riccati equations connected to PDEs with boundary/point
control is a challenging issue, and the corresponding theories depend strongly on the type
of dynamics involved. More precisely, since the control operator B arising in the abstract
formulation

y′(t) = Ay(t) + By(t) (1.3)

of the boundary value problem is intrinsically unbounded, the main difficulty is a good
definition of the so called gain operator B∗P(t) that appears as a nonlinear term in the
Riccati equation, which is

d

dt

(
P(t)x, y

)
Y

+
(
P(t)x,Ay

)
Y

+
(
P(t)Ax,y

)
Y

+ (x, y)Y

−
(
B∗P(t)x,B∗P(t)y

)
Y

= 0, x, y ∈D(A). (1.4)

1 The term ρ∆wtt in the elastic equation accounts for rotational forces, with the constant ρ > 0 proportional to
the square of thickness of the plate; see [9].
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We recall that while optimal results are achieved in the case of parabolic-like dynamics
(i.e., when the strongly continuous semigroup eAt of the free dynamics is, moreover, ana-
lytic), there are simple hyperbolic PDE problems for which the gain operator is not even
densely defined, and hence the Riccati equations have no meaning in their classical form.
(There is a large literature on the linear-quadratic problem for PDEs with boundary/point
control: for detailed expositions of the theories pertaining to both the abstract ‘parabol-
ic’ and ‘hyperbolic’ classes, see the treatises [5,12]. More specifically, refinements of the
Riccati theory pertaining to the ‘hyperbolic’ class, formerly developed in [7], are found in
[4,18], and lastly in [19]; another related reference is [20].)
On the other hand, in recent years a distinct class of control systems has been singled

out, for which the Riccati theory is also complete. This class is characterized by a singular
behaviour at the origin of the operator eAtB , and is referred to as the class of systems which
yield “singular estimates.” Assuming this condition, a Riccati theory has been developed,
which substantially extends the analytic set-up [2,10,14,15]. Typical models which satisfy
singular estimates are coupled PDE systems consisting of a combination of hyperbolic
and parabolic dynamics. We stress that these estimates reflect certain—hidden—regularity
of the traces of solutions to the uncontrolled dynamics. The reference [10] specifically ex-
plores the mathematical properties of systems of coupled hyperbolic/parabolic PDEs which
arise in modern technologies, along with the Riccati theory for the associated optimal con-
trol problems.
The system of thermoelasticity displays as well a hyperbolic/parabolic coupling. Unlike

the case ρ = 0, where the system (1.1) becomes analytic [12,17], here, due to the presence
of rotational inertia (ρ > 0), the free dynamics is ‘predominantly hyperbolic’ [13]. Nev-
ertheless, when either hinged boundary conditions are associated with the thermoelastic
model, or in the case the system is subject to Neumann—rather than Dirichlet—thermal
control, singular estimates unexpectedly hold (see [6,11]). Thus, it is important to empha-
size that the techniques used in the proofs of those references do not generalize to the
present situation (clamped B.C./Dirichlet boundary control).
This particular difficulty became a motivation for seeking more general conditions than

singular estimates. In [6] it is shown that in the case of problem (1.1) the operator B∗eA∗t

can be represented as the sum of two operators F(t) + G(t), where only F(t) satisfies a
singular estimate; more precisely

• ‖F(t)‖L(Y,U) ! cT

t
3
4+δ
, 0< t ! T (with arbitrarily small δ > 0),

• while G(·) ∈ L(Y,Lp(0, T ;U)) for all p " 1, and
• G(·) ∈ L(D(A∗ε),C([0, T ];U)) for any ε ∈ (0,1).

The significant result contained in this paper is that, moreover,

there exists ε ∈ (0,1) such that B∗eA∗tA∗ε ∈ L
(
Y,Lq(0, T ;U)

)
(1.5)

for some q ∈ (1,2). In fact, the above condition enables us to show that the Riccati equa-
tion associated with problem (1.1)–(1.2) is well posed; in particular, that the gain operator
B∗P(·) is densely defined on D(A∗ε).



P. Acquistapace et al. / J. Math. Anal. Appl. 310 (2005) 262–277 265

A novel theory of the quadratic optimal control problem for abstract dynamics of the
form (1.3), under the aforementioned assumptions, is developed in [1]. The present pa-
per is focused on the crucial issue of establishing the trace regularity estimate which is
equivalent—in PDEs terms—to the abstract condition (1.5). The trace estimate for the
thermal component obtained in Theorem 1.1 is also of independent interest in PDE theory
of thermoelasticity. The main result of this paper can be stated as follows.

Theorem 1.1. Consider the thermoelastic problem (1.1) with u ≡ 0, and assume

(w0,w1, θ0) ∈
[
H 3−ε(Ω) ∩ H 2

0 (Ω)
]
× H 2−ε

0 (Ω) ×
[
H 2−2ε(Ω) ∩ H 1

0 (Ω)
]
,

with ε ∈ (0, 14 ). Then, the corresponding solution satisfies, for some q ∈ (1,2),

∂θt

∂ν

∣∣∣∣
Γ

∈ Lq
(
0, T ;L2(Γ )

)

continuously, that is
∥∥∥∥
∂θt

∂ν

∥∥∥∥
Lq(0,T ;L2(Γ ))

! CT

{
‖w0‖H 3−ε(Ω)∩H 2

0 (Ω) + ‖w1‖
H 2−ε
0 (Ω)

+ ‖θ0‖H 2−2ε(Ω)∩H 1
0 (Ω)

}
. (1.6)

The exponent q will depend on ε: more precisely, given ε ∈ (0, 14 ), one has

1< q <min
{
8
7
,

4
3+ 4ε

}
. (1.7)

Remark 1.2. It is important to emphasize that the trace regularity result provided by
Theorem 1.1 does not follow from optimal interior regularity for the solutions to the
(homogeneous) thermoelastic system. Indeed, the maximal interior regularity that can
be achieved by exploiting the parabolic effect for the thermal component θ is ∇θt ∈
L2(0, T ;H−1−ε(Ω)), which does not allow us to give a meaning to ∂θt

∂ν on Γ . Even a
formal application of trace theory would lead to ∂θt

∂ν

∣∣
Γ

∈ L2(0, T ;H−3/2−ε(Γ )). Thus,
Theorem 1.1 establishes an ‘additional’ space regularity for the outer normal derivative of
the thermal velocity on the boundary, with a gain in space variable which is strictly larger
than 3/2 of derivative.

2. Abstract setting. Preliminaries

In this section we recall from [6] the essential elements of the abstract set-up for the
coupled system (1.1), and we introduce some preliminary material in view of the proof of
the main result.

2.1. Abstract setting

LetAD andA be the realizations of the operator−∆with Dirichlet boundary conditions
(B.C.) and of the bilaplacian ∆2 with clamped B.C., respectively, i.e.,
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ADf := −∆f, D(AD) = H 2(Ω) ∩ H 1
0 (Ω); (2.1)

Af := ∆2f, D(A) =
{
f ∈ H 4(Ω): f |Γ = ∂f

∂ν

∣∣∣∣
Γ

= 0
}
. (2.2)

Then, the stiffness operator is given by

M := I + ρAD. (2.3)

It is well known that the operators AD and A, defined in (2.1) and (2.2) are selfadjoint,
positive operators on L2(Ω); a fortiori, the same holds forM.

Remark 2.1. By definition,

M−1AD = (I + ρAD)−1AD ≡ 1
ρ

I − 1
ρ
M−1,

and hence

M−1AD ∈ L
(
Hs(Ω)

)
∀s ∈ R.

This property will be used repeatedly throughout the paper.

The fractional powers of the operator AD are well defined: for the characterization
of domains of fractional powers of positive operators the reader is referred to [8]; see
also [12].
With D we shall denote the Dirichlet map from L2(Γ ) to L2(Ω) [16]. Among the

properties of this operator, we briefly recall the ones which will be critically used in the
sequel. We have that

D is continuous: Hs(Γ ) → Hs+ 1
2 (Ω), s ∈ R,

so that in particular

A
1
4−δ

D D ∈ L
(
L2(Γ ),L2(Ω)

)
for any δ > 0. (2.4)

Moreover, the following trace result [12, Lemma 3.1.1, p. 181] holds true:

D∗ADϕ = ∂ϕ

∂ν

∣∣∣∣
Γ

∀ϕ ∈ H
3
2+δ(Ω) ∩ H 1

0 (Ω), δ > 0. (2.5)

With the above notation, the abstract representation of the PDE system (1.1) is the fol-
lowing second-order control system:

Mwtt +Aw − ADθ = −ADDu, (2.6a)
θt + ADθ + ADwt = ADDu, (2.6b)
w(0) = w0, wt (0) = w1; θ(0) = θ0. (2.6c)

The natural function spaces Yw for the plate component [w,wt ] and Yθ for the thermal
component of system (2.6) are given, respectively, by

Yw := D(A1/2) ×D(M1/2) = H 2
0 (Ω) × H 1

0 (Ω),

Yθ := L2(Ω).
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Then, by introducing the state space Y for problem (2.6), namely

Y := Yw × Yθ = D(A1/2) ×D(M1/2) × L2(Ω)

= H 2
0 (Ω) × H 1

0 (Ω) × L2(Ω), (2.7)

the coupled system (2.6) can be rewritten as a first-order system in the variable y(t) =
[w(t),wt (t), θ(t)]:

{
y′(t) = Ay(t) + Bu(t), t ∈ [0, T ],
y(0) = y0,

(2.8)

with operators A (free dynamic operator) and B (control operator) explicitly identified.
The expressions of the unbounded operators A and B are found, e.g., in both [6, Section 2]
and [12, Appendix 3J], hence will be omitted. Since the adjoint operators A∗ and B∗ will
be needed below, we rather recall from [6, Section 2] these. The Y -adjoint operator A∗ of
A is given by

A∗ =
( 0 −I 0
M−1A 0 −M−1AD

0 AD −AD

)

, (2.9)

with D(A∗) ≡ D(A), i.e.,

D(A∗) = D(A3/4) ×
[
D(A1/2) ∩D(AD)

]
×D(AD)

=
[
H 3(Ω) ∩ H 2

0 (Ω)
]
× H 2

0 (Ω) ×
[
H 2(Ω) ∩ H 1

0 (Ω)
]
. (2.10)

On the other hand, by using the trace result (2.5), it can be shown that the adjoint operator
B∗ is such that

B∗
(

y1
y2
y3

)

= ∂

∂ν
(y3 − y2)

∣∣∣∣
Γ

. (2.11)

2.2. Preliminary observations

As explained in Section 1, motivated by the quadratic optimal control problem asso-
ciated with the abstract dynamics (2.8), the goal of the present paper is to show that the
following condition is satisfied:

there exists ε > 0 such that the (closable) operator B∗eA∗tA∗ε admits a continuous
extension (which may then be denoted by the same symbol) satisfying

B∗eA∗tA∗εcontinuous: Y → Lq
(
0, T ;L2(Γ )

)
for some q ∈ (1,2),

that is, there exists a constant C > 0 such that

‖B∗eA∗·A∗εy‖Lq(0,T ;L2(Γ )) ! C‖y‖Y , y ∈ Y. (2.12)

We may interpret the term B∗eA∗tA∗εy as follows:

B∗eA∗tA∗εy = B∗ d

dt
(A∗−1eA∗t )A∗εy = B∗ d

dt
(eA∗tA∗ε−1y);
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hence, we may equivalently focus on the term

B∗ d

dt
eA∗t z, with z ∈D(A∗1−ε).

Correspondingly, showing (2.12) becomes equivalent to prove that there exists ε > 0 such
that

∥∥∥∥B∗ d

dt
eA∗t z

∥∥∥∥
Lq(0,T ;L2(Γ ))

! C‖z‖D(A∗1−ε), z ∈D(A∗1−ε), (2.13)

for some q ∈ (1,2).

Remark 2.2. More precisely, we will prove that given any ε ∈ (0,1/4), inequality (2.13)
is satisfied, with q ∈ (1,2) explicitly determined by ε (see (1.7)). This will yield, as a
consequence, the statement of Theorem 1.1.

2.3. Notation

We will use ‖ · ‖0,Ω and (·,·)0,Ω to denote the norm and the inner product in H 0(Ω) =
L2(Ω).

3. Proof of Theorem 1.1

We proceed in several steps.

Step 1 (Start). Since we seek to compute explicitly B∗ d
dt e

A∗t z, with z = (w0,w1, θ0)

in D(A∗1−ε), we preliminary observe that d
dt e

A∗t z represents the time derivative of the
solution to the abstract Cauchy problem

{
y′ = A∗y,

y(0) = z

(this is well defined at least as an element of [D(A)]′, the dual space of D(A) with respect
to Y ). Then, as already described in [6], by using the definition of the adjoint operator A∗,
it is simple to show that eA∗t z = (w(t),−wt(t), θ(t)), where (w(t),wt (t), θ(t)) solves the
uncontrolled version of the thermoelastic system (2.6), with a bit different initial condition,
namely

wtt +M−1Aw −M−1ADθ = 0, (3.1a)

θt + ADθ + ADwt = 0, (3.1b)

w(0) = w0, wt (0) = −w1; θ(0) = θ0. (3.1c)

Thus, applying the definition (2.11) of B∗ and taking into account that ∂wtt
∂ν = 0 on Γ , as

it follows from the clamped B.C. in (1.1), we find that
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B∗ d

dt
eA∗t z = ∂

∂ν
θt (t)

∣∣∣∣
Γ

(3.2)

= ∂

∂ν

[

e−ADtθt (0) −
t∫

0

ADe−AD(t−s)M−1(ADθ(s) −Aw(s)
)
ds

]∣∣∣∣∣
Γ

.

(3.3)

In the last step, we have used both Eqs. (3.1a) and (3.1b) to compute the right-hand side
of (3.2). In (3.3) we integrate by parts in t , and exploit once more the clamped B.C., thus
obtaining

∂

∂ν
θt (t)

∣∣∣∣
Γ

= ∂

∂ν

[
e−ADt

(
θt (0) + wtt (0)

)]∣∣∣∣
Γ

+ ∂

∂ν

[ t∫

0

e−AD(t−s)M−1(ADθt (s) −Awt(s)
)
ds

]∣∣∣∣∣
Γ

. (3.4)

Notice now that the term Awt at the right of (3.4) can be rewritten as follows:

Awt = ∆(∆wt) = ∆
(
∆wt − D(∆wt |Γ )

)
= −AD

(
∆wt − D(∆wt |Γ )

)
.

With this, combining (3.2) with (3.4), and invoking once more the trace theorem (2.5), we
finally get

B∗ d

dt
eA∗t z = D∗AD

{

e−ADt
(
θt (0) + wtt (0)

)

+
t∫

0

e−AD(t−s)M−1AD

(
θt (s) +∆wt(s)

)
ds

−
t∫

0

e−AD(t−s)(M−1AD)D
(
∆wt(s)|Γ

)
ds

}

=: T1(t) + T2(t) − T3(t). (3.5)

The formula (3.5) above is the key of the subsequent analysis.

Step 2 (Interior regularity). Before we proceed with the analysis of each summand at the
right of (3.5), it is necessary to determine the interior regularity for each component of
the solution (w(t),wt (t), θ(t)) corresponding to initial data (w0,w1, θ0) = z ∈D(A∗1−ε).
Interpolation between (2.7) and (2.10) yields, for θ ∈ (1/2,1),

D(A∗θ ) =
[
H 2+θ (Ω) ∩ H 2

0 (Ω)
]
× H 1+θ

0 (Ω) ×
[
H 2θ (Ω) ∩ H 1

0 (Ω)
]
. (3.6)

Therefore, standard semigroup theory—combined with interpolation arguments—implies
the following regularity for the solution (w(t),wt (t), θ(t)) corresponding to initial data in
D(A∗1−ε):
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w ∈ C
(
[0, T ];H 3−ε(Ω) ∩ H 2

0 (Ω)
)
, (3.7a)

wt ∈ C
(
[0, T ];H 2−ε

0 (Ω)
)
⊂ C

(
[0, T ];D

(
A
1−ε/2
D

))
, (3.7b)

θ ∈ C
(
[0, T ];H 2−2ε(Ω) ∩ H 1

0 (Ω)
)
≡ C

(
[0, T ];D

(
A1−ε

D

))
. (3.7c)

Notice that, moreover,

∆w|Γ ∈ C
(
[0, T ];H 1

2−ε(Γ )
)
, (3.8)

as it readily follows from (3.7a) via trace theory.

Remark 3.1. The regularity result in (3.8) follows, via trace theorem, from the interior
regularity of the mechanical variable w. A much stronger version of related result will be
given later in Lemma 3.4. Indeed, the trace regularity in Lemma 3.4 is a “hidden regularity”
type of result that is not implied by the interior regularity of solutions to thermoelasticity.

Because T1 in (3.5) involves the terms θt (0) and wtt (0), a separate analysis of the ve-
locity terms’ regularity is also required. In fact, the next step will rely on the following
lemma.

Lemma 3.2. Let (w(t),wt (t), θ(t)) be the solution to the system (3.1) corresponding to
initial data (w0,w1, θ0) = z ∈ D(A∗1−ε). Then, we have

wtt ∈ C
(
[0, T ];Hε(Ω)

)
⊆ C

(
[0, T ];D

(
A
ε/2
D

))
, (3.9)

‖wtt‖C([0,T ];Hε(Ω)) ! C‖z‖D(A∗1−ε), 0< ε <
1
2
; (3.10)

and

θt ∈ C
(
[0, T ];

[
D

(
Aε

D

)]′)
, (3.11)

‖θt‖C([0,T ];[D(Aε
D)]′) ! C‖z‖D(A∗1−ε), 0< ε <

1
2
. (3.12)

Proof. Our starting point is the plate equation (3.1a), that is

wtt = −M−1∆2w −M−1∆θ. (3.13)

We multiply (3.13) by ϕ ∈ L2(Ω) and integrate by parts, by using Green’s formulas. Then,
exploiting thatM−1ϕ ≡ 0 on Γ , it is not difficult to obtain the following identity:

(
wtt (t), ϕ

)
0,Ω =

(
∆w(t),

∂

∂ν
M−1ϕ

)

0,Γ
−

(
∆w(t),∆M−1ϕ

)
0,Ω

+
(
∇θ(t),∇M−1ϕ

)
0,Ω . (3.14)

From a careful analysis of each of the three summands in the right-hand side of (3.14),
on the basis of the regularity asserted in (3.7a) and (3.7c), it follows that wtt (t) can be
extended from L2(Ω) to the dual space [H−ε(Ω)]′, that is Hε(Ω). More precisely, the
interior regularity result in (3.9) holds, continuously with respect to initial data, that is
(3.10) is satisfied.
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As for the thermal velocity, its regularity follows at once by rewriting equation (3.1b)
as follows:

θt = −Aε
D

(
A1−ε

D θ
)
− A

ε/2
D

(
A
1−ε/2
D wt

)
. (3.15)

Thus, by using the memberships in (3.7b) and (3.7c), it is immediately seen that (3.11)
holds true, together with (3.12). !

Step 3 (Analysis of terms T1 and T2).We are now able to establish the following result.

Proposition 3.3. With reference to the summands T1 and T2 at the right of (3.5), the fol-
lowing estimates hold true (the former for arbitrarily small δ > 0):

∥∥T1(t)
∥∥
0,Γ ! C

t3/4+ε+δ
‖z‖D(A∗1−ε), so that (3.16)

∀ε <
1
4
, ∃q ∈ (1,2): ‖T1‖Lq(0,T ;L2(Γ )) ! Cε‖z‖D(A∗1−ε); (3.17)

‖T2‖L∞(0,T ;L2(Γ )) ! Cε‖z‖D(A∗1−ε) ∀ε ∈
(
0,
1
4

)
. (3.18)

In particular, given ε ∈ (0, 14 ), the regularity in (3.17) is valid with any exponent q such
that

1< q <
4

3+ 4ε .

Proof. Let us recall from (3.5) that

T1(t) = D∗AD

(
e−ADt

[
θt (0) + wtt (0)

])
. (3.19)

We will examine the summands at the right of (3.19) separately. The term T11(t) :=
D∗ADe−ADtθt (0) can be split as

T11(t) =
(
D∗A1/4−δ

D

)
A
3/4+δ
D e−ADtAε

D

[
A−ε

D θt (0)
]
.

Then, using (2.4) first, and combining the regularity estimate (3.12) with the usual esti-
mates pertaining to analytic semigroups, we get, for any δ ∈ (0,1/4),

∥∥T11(t)
∥∥
0,Γ ! c

∥∥A
3/4+ε+δ
D e−ADt

[
A−ε

D θt (0)
]∥∥
0,Ω ! c

t3/4+ε+δ

∥∥A−ε
D θt (0)

∥∥
0,Ω

! C

t3/4+ε+δ
‖z‖D(A∗1−ε). (3.20)

Therefore, since we aim to obtain that T1 ∈ Lq(0, T ;L2(Γ )) for some q ∈ (1,2), we need
to assume ε < 1/4 and we can take any δ ∈ (0,1/4− ε).
Similarly, from (3.9) and (3.10) it readily follows that

∥∥T12(t)
∥∥
0,Γ :=

∥∥D∗ADe−ADtwtt (0)
∥∥
0,Γ

=
∥∥(

D∗A1/4−δ
D

)
A
3/4+δ
D e−ADtA

−ε/2
D

[
A
ε/2
D wtt (0)

]∥∥
0,Γ

! c
∥∥A

3/4−ε/2+δ
D e−ADt

[
A
ε/2
D wtt (0)

]∥∥
0,Ω
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! c

t3/4−ε/2+δ

∥∥A
ε/2
D wtt (0)

∥∥
0,Ω

! C

t3/4−ε/2+δ
‖z‖D(A∗1−ε). (3.21)

Summing up (3.20) and (3.21) results in the (pointwise in t) estimate (3.16), which in turn
implies the regularity in (3.17).
Next, let us recall from (3.5) that

T2(t) = D∗AD

t∫

0

e−AD(t−s)M−1AD

(
θt (s) +∆wt(s)

)
ds.

We shall use both the regularity of θt previously established in (3.11), and that of ∆wt

which can be derived from (3.7b), namely

∆wt ∈ C
(
[0, T ];H−ε(Ω)

)
≡ C

(
[0, T ];

[
D

(
A
ε/2
D

)]′)
.

Thus, it is useful to rewrite T2 as follows:

T2(t) = D∗AD

t∫

0

e−AD(t−s)(M−1AD)
[
Aε

D

(
A−ε

D θt (s)
)

+ A
ε/2
D

(
A

−ε/2
D ∆wt(s)

)]
ds

= D∗A1/4−δ
D (M−1AD)

t∫

0

e−AD(t−s)
[
A
3/4+ε+δ
D

(
A−ε

D θt (s)
)

+ A
3/4+ε/2+δ
D

(
A

−ε/2
D ∆wt(s)

)]
ds,

with arbitrarily small δ > 0. Therefore, using that D∗A1/4−δ
D and M−1AD are bounded

operators, by the usual analytic estimates it follows
∥∥T2(t)

∥∥
0,Γ ! cIδ,ε(t)

(
‖θt‖C([0,T ];[D(Aε

D)]′) + ‖∆wt‖C([0,T ];[D(A
ε/2
D )]′)

)

! CIδ,ε(t)‖z‖D(A∗1−ε), (3.22)

where we have set

Iε,δ(t) :=
t∫

0

1
(t − s)3/4+ε+δ

ds.

Then, the conclusion in (3.18) immediately follows from (3.22), provided that ε < 1/4. !

Step 4 (Analysis of the term T3). Establishing the regularity of summand T3 defined in
(3.5) is by far the most challenging and difficult issue. The corresponding result is stated as
Proposition 3.5 below. Preliminarily, we record—for the reader’s convenience—a sharp
trace regularity result pertaining to the elastic component of the solutions to the ther-
moelastic problem, since it will be invoked in the proof of Proposition 3.5.
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Lemma 3.4 [3]. With reference to the solution (w(t),wt (t), θ(t)) to the homogeneous
thermoelastic problem (3.1), the following boundary regularity result holds true:

∫

Σ

∣∣∆w(t, x)
∣∣2 dσ dt ! C‖z‖2Y , z ∈ Y. (3.23)

The inequality above implies, as well,
∫

Σ

∣∣∆wt(t, x)
∣∣2 dσ dt ! C‖A∗z‖2Y , z ∈ D(A∗). (3.24)

Proposition 3.5. Assume ε ∈ (0,1/4), and let z ∈ D(A∗1−ε). Then T3 ∈ Lq(0, T ;L2(Γ ))

for all q ∈ [1,8/7), with q independent of ε, and the following estimate holds true:

‖T3‖Lq(0,T ;L2(Γ )) ! C‖z‖D(A∗1−ε). (3.25)

Proof. The estimate in (3.25) is proved via interpolation theory. First of all, since the
operator M−1AD commutes with the semigroup eADt , let us rewrite the integral T3 as
follows:

T3(t) := D∗AD

t∫

0

e−AD(t−s)(M−1AD)D∆ws(s)|Γ ds

= D∗(M−1AD)AD

t∫

0

e−AD(t−s)D∆ws(s)|Γ ds. (3.26)

Next, setting

v(t) := AD

t∫

0

e−AD(t−s)D∆ws(s)|Γ ds, (3.27)

we see that (3.26) simply reads as

T3(t) = D∗(M−1AD)v(t), (3.28)

whereas v (defined by (3.27)) solves the Cauchy problem
{

v′(t) = −AD(v − Dg),

v(0) = 0, (3.29)

with g = ∆wt |Γ . Let us now invoke Lemma 3.4. When initial data z belong to D(A∗),
(3.24) applies, i.e., ∆wt |Γ ∈ L2(Σ). Hence, with g ∈ L2(Σ), the classical parabolic regu-
larity yields

v ∈ H 1/4(0, T ;L2(Ω)
)
∩ L2

(
0, T ;H 1/2(Ω)

)
(3.30)

(see [16]). If it were possible to deduce the regularity of v directly from the expression
(3.27) even when z ∈ Y , then the regularity of v corresponding to z ∈ D(A∗1−ε) would
follow by interpolation. However, this is not the case.
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On the other hand, integrating initially by parts in t , it is not difficult to deduce from
(3.27) the following identity:

v(t) = d

dt

t∫

0

ADe−AD(t−s)D∆w(s)|Γ ds − ADe−ADtD∆w(0)|Γ , (3.31)

or, equivalently,

v(t) + ADe−ADtD∆w(0)|Γ︸ ︷︷ ︸
F(t)

= ψ ′(t), (3.32)

where we have introduced

ψ(t) := AD

t∫

0

e−AD(t−s)D∆w(s)|Γ ds.

At this point, we turn our attention to the term ψ ′(t), whose regularity can be explored
both when z ∈ D(A∗) and when we just have z ∈ Y . Indeed, when z ∈ D(A∗), the basic
regularity of solutions to the thermoelastic problem yields w ∈ C([0, T ];H 3(Ω)), so that
∆w ∈ C([0, T ];H 1(Ω)) and ∆w(0)|Γ ∈ H 1/2(Γ ). Then, with δ ∈ (0,1/2), we have that
H 1/2−δ(Ω) ≡ D(A

1/4−δ/2
D ) so that

∥∥F(t)
∥∥

H 1/2−δ(Ω)
=

∥∥ADe−ADtD∆w(0)|Γ
∥∥

H 1/2−δ(Ω)

!
∥∥A

5/4−δ/2
D e−ADtD∆w(0)|Γ

∥∥
L2(Ω)

! c

t1−δ/4
∥∥A

(1−δ)/4
D D∆w(0)|Γ

∥∥
L2(Ω)

! c

t1−δ/4
∥∥∆w(0)|Γ

∥∥
L2(Γ )

! c

t1−δ/4
∥∥∆w(0)|Γ

∥∥
H 1/2(Γ )

, (3.33)

which implies

F ∈ Lq
(
0, T ;H 1/2−δ(Ω)

)
∀δ ∈

(
0,
1
2

)
, ∀q ∈

[
1,

4
4− δ

)
, (3.34a)

‖F‖Lq(0,T ;H 1/2−δ(Ω)) ! C‖A∗z‖Y , z ∈D(A∗). (3.34b)

Thus, by using the decomposition (3.32) and taking into account (3.30) and (3.34), we
obtain

z ∈ D(A∗) 0⇒ ψ ′ ∈ Lq
(
0, T ;H 1/2−δ(Ω)

)
∀δ ∈

(
0,
1
2

)
,

∀q ∈
[
1,

4
4− δ

)
. (3.35)

When z ∈ Y , the exceptional trace regularity of solutions to the thermoelastic system
gives (3.23), i.e., ∆w|Γ ∈ L2(Σ). Notice that ψ solves, as well, the Cauchy problem
(3.29), this time with g ≡ ∆w|Γ . Hence, ψ ∈ L2(0, T ;H 1/2(Ω)) and we have simulta-
neously



P. Acquistapace et al. / J. Math. Anal. Appl. 310 (2005) 262–277 275

ψ,D∆w|Γ ∈ L2
(
0, T ;H 1/2−δ(Ω)

)
∀δ > 0,

so that in particular

AD(ψ − D∆w|Γ ) ∈ L2
(
0, T ;H−3/2−δ(Ω)

)
.

Therefore, we obtain for the right-hand side of (3.32),

z ∈ Y 0⇒ ψ ′ ∈ L2
(
0, T ;H−3/2−δ(Ω)

)
∀δ > 0. (3.36)

Interpolation between D(A∗) (where we have validity of (3.35)) and Y (where (3.36)
holds true) yields, for z ∈ D(A∗1−ε),

z ∈ D(A∗1−ε) 0⇒ ψ ′ ∈ Lq
(
0, T ;H 1/2−2ε−δ(Ω)

)
,

∀δ ∈
(
0,
1
2

)
, ∀q ∈

[
1,

4
4− δ

)
. (3.37)

Since ultimately we will have to applyD∗, which is a bounded operator fromH−1/2+σ (Ω)

to L2(Γ )) for any σ > 0, we need to take 0 < δ < 1 − 2ε. Notice that this constraint is
always fulfilled, as we had initially 0< ε < 1/4, while 0< δ < 1/2. Consistently, we get
1! q < 8/7.
With z ∈ D(A∗1−ε), we return to T3(t) as given by (3.28). Taking into account once

more the decomposition (3.32), we see that

T3(t) = D∗(M−1AD)ψ ′(t) − D∗(M−1AD)F(t), (3.38)

where from (3.37) we know that

D∗(M−1AD)ψ ′ ∈ Lq
(
0, T ;L2(Γ )

)
∀q ∈

[
1,
8
7

)
, ∀x ∈ D(A∗1−ε), (3.39)

after using as well thatM−1AD is a bounded operator (cf. Remark 2.1).
Therefore, in order to conclude the proof it remains to establish the regularity of the

second summand on the right-hand side of (3.38), assuming this time z ∈ D(A∗1−ε). In-
deed, when z ∈ D(A∗1−ε), the regularity of solutions to the thermoelastic problem in (3.8)
yields ∆w(0)|Γ ∈ H 1/2−ε(Γ ). Then, readily

∥∥D∗(M−1AD)F(t)
∥∥
0,Γ =

∥∥D∗ADe−ADt (M−1AD)D∆w(0)|Γ
∥∥
0,Γ

! c

t1/2+δ

∥∥∆w(0)|Γ
∥∥
0,Γ ! C

t1/2+δ
‖A∗1−εz‖Y

with arbitrarily small δ > 0, so that

D∗(M−1AD)F ∈ Lq
(
0, T ;L2(Γ )

)
∀q ∈ [1,2), ∀z ∈ D(A∗1−ε). (3.40)

Combining (3.39) with (3.40) yields the desired conclusion in (3.25). !

Step 5 (Conclusion). Let us return to the representation (3.5). Combining the estimates
(3.17) and (3.18) (obtained in Proposition 3.3) with the estimate (3.25) (from Proposi-
tion 3.5), it is immediately seen that the soughtafter abstract condition (2.13) is satisfied,
provided that ε < 1

4 . Moreover, the final range for the exponent q (i.e. (1.7)) follows as a
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consequence of the constraints given by the respective propositions. Thus, using (3.6)—
which describes the domains of fractional powers of the dynamic operator A in terms
of Sobolev spaces—and the key equality (3.2), we finally interpret the abstract condition
(2.13) as the trace regularity estimate (1.6), concluding the proof of Theorem 1.1.
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