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1 Introduction

Among the general goals in the various theories of variational convergence, an im-
portant one consists in singling out a notion of I'-limit problem (P) for a sequence
of minimum problems (P,,) of the form

(Pn) min {F,(y,u) : (y,u) €Y xU}.

Loosely speaking, a good definition of I'-limit problem should guarantee the fol-
lowing property:

“If (yn, un) is an optimal pair for problem (Py), or simply a minimizing sequence,
and if (Yn,un) = (y,u) in'Y x U, then (y,u) is an optimal pair for the '-limit
problem (P).”

The next Theorem indicates which are the relevant features that the I'-limit prob-
lem should possess in order to satisfy this property (the theorem is proved in [7],
Proposition 2.1).

Theorem 1.1 Let Y and U be topological spaces and let F,, : Y x U — R be a
sequence of functions. Let (Yn,u,) be a minimum point for F,, or simply a pair
such that

inf F,

lim F,(yn,un) = lim Jnf ]

n—o0 n—o0
Assume further that (ypn,un) = (y,u) in Y X U, and there exists
Fly,u) =TOLY ") lim_ Py (y,u). (11)

Then (y,u) is a minimum point for F on'Y x U, and

lim [inf Fn} = min F.
n—oo | Y xU Y xU
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The definition of the I-limit (1.1) is given in Section 4 (Definition 4.1).
The above theorem motivates the following definition of I'-limit problem.

Definition 1.2 When (1.1) is satisfied, we say that the problem
(P) min {F(y,u) : (y,u) €Y x U},
is the T-limit of problems (P,).

See [7], [8] for the explicit calculation of T-limits in various situations.
In this paper we consider the following family of optimal control problems: for
fixed (small) € > 0, we look for

weLP(0.13V) I (w), (12)
where
T
Je(u) Z/O (llCs, T+ Nye (s, ) 17) dss (1.3)

here V is the space Hel>(To,CV) x H='/%(Ty,CN), and for each control u €
L?(0,T;V) the state function . is the solution of the second order regular parabo-
lic initial-boundary value problem

%(t,x) — A(x,D)y(t,z) = 0 in [0,7T] x Q
9. () 8‘?}; (t,x) + (1 —9:(2)y(t,z) = wu(tz) in [0,7] x 09 (1.4)
y(0,7) = wyo(x)  inQ,
where the scalar function 9, is defined as follows:
1—¢ ifrely
Je(z) = 1—e— 122 d(,Ty) if x €Ty and d(z,T'1) < e (1.5)
€ if x € Ty and d(z,T'1) > e.

Here T’y and T'; are disjoint smooth submanifolds of 9Q, such that Ty UT; = 99.
Our main result is that the I-limit of this family as e — 07 is the following optimal
control problem: look for

uELg(l(i)l,lT;U) J(w) (1.6)
where -
J(u) 2/0 (s, I + llu (s, )7) ds; (L.7)

the space U is H'/?(T'y,CY) x [Hé({Q(Fl, CM)]*, and for each control u = (ug,u1) €
L?(0,T;U) the state function y is the solution of the second order parabolic mixed
initial-boundary value problem

B (t,x) — A(z, D)y(t,x) = 0 in [0,7] x Q
y(t,z) = wo(t,z) in [0,T] x Iy
P (t,x) = wi(t,z)  in[0,T]x Ty (18)
y(0,2) = yo(x) in Q.



We note that the space of controls for problem (1.6) is larger than that of problems
(1.2), and in the framework of I'-convergence we are forced to choose the smaller
one: thus we can only approximate the solutions of (1.6) which belong to the
smaller space, with a little loss of generality (compare with Remark 2.7 in Section
2).

A special case of the above situation occurs when I'; = ), so that the approximat-
ing boundary condition has the form

s—y(t,w) +y(t,z) = u(t, z) in [0,7] x 0%
al/A

in this case the I'-limit problem contains the Dirichlet boundary condition y = u
in [0, 7] x 09, and the natural space of controls is just L2(0,T; L2(99, CV)) (see
[6] for details).
This kind of result is interesting also from the numerical point of view. Indeed,
in many programs that calculate numerically the solution of partial differential
equations, the Neumann and Dirichlet conditions are treated by considering a
unique boundary conditions of type

0

a—y-l-by:u in [0,T] x 09,

Ovy
where the biggest constant appears near the condition one wants to consider (an
example is the program [18]).

Let us shortly describe the content of the following sections. In order to apply
the general result given in [8], we need to find a representation formula for the
solutions of equations (1.4) and (1.8). Therefore, in Section 2 we analyze the mixed
problem and we prove that the solution of (1.8) can be written as

y(t,) = etAyo(-) —/0 Ae(t_s)AGu(s, -) ds, (1.9)

where A:D(A) — L2(Q,CN) and G:U — D([—A]”) (for 0 < 9 < 1/4) are suitable
operators. Next, in Section 3 we prove the same kind of formula for the solution
of (1.4), i.e.

t
Y (t, ) :etAEyg(-)+/ A et=94 G u(s, ) ds, (1.10)
0

where now A.: D(A.) — L?(Q,CN) and G.:V — D([-A.]”) (for 0 < ¥ < 1/2).
In Section 4 we finally prove our I'-convergence result.

Finally we set some notations.

If T > 0 and X is a Banach space, we will use the standard spaces LP(0,T; X),
1 < p < oo, and C°([0,T]; X), with their usual norms. As a rule, the space X
will be a Sobolev space H™(A) of functions defined on some subset A C RV,
with values in RY or CV. We will simply write H™(A) instead of H™(A;RY)
or H™(A;CV); here the number m > 0 may be integer or not. In particular, we



denote by HJ"(A) the closure of the space C§°(A) in H™(A), where C§°(A) is the
set of infinitely differentiable functions with compact support contained in A; the
set A may be an open set of RV, or a submanifold of the boundary of a smooth
open set Q C RV,

In the latter case, we also define Hé({Q(A) as the Hilbert space of functions be-
longing to H'/?(A) whose trivial extension to 9 is an element of H'/?(5Q). We
recall that Hy/?(A) is a proper, closed subspace of H'/2(A).

We denote by (-,-) and |- | the scalar product and the norm in CV, whereas
(,-)x denotes the duality pairing between a space X and its dual space X*. In
our estimates we will write C' for a generic constant possibly varying from line to
line.

2 The mixed problem

We start with describing in a more precise way the optimal control problem we
are going to approximate.

Let Q be an open set of RN with 9Q = Iy UT;. For fixed T > 0, we consider the
state space L*(0,T; H) and the control space L*(0,T;U), where H:= L?(2) and
U:= HY2(Ty) x [Hyl?(T1)]*. We look for

ueLg(l(i)I,lT;U) J(w) (2.1)
where
T
J(u) = / (IfuCs, B + lly(s. )3 ds (2.2)

and for each control u = (ug,u1) € L*(0,T;U) the state function y is the solution
of the parabolic mixed initial-boundary value problem

S4(t,x) — A(z, D)y(t,z) 0 in [0, 7] x
y(t,z) = wo(t,z)  in[0,T]x Ty
By . (2.3)
g (tz) = w(te) in[0,T]xIy
y(0,2) = wyo(z) in Q.
Here
n a n
A(z,D) = Diaij(z) - D)) , va > vi(z)ai;(x) - D,
=1 i,j=1

and v(z) is the unit outward normal vector at € 9Q; Ty and T’y are suitable
subsets of 9Q2. We interpret this problem in the variational sense: namely, we set
Ht () ={u e H'(Q) : w= 0 on I'c}, and introduce the bilinear form

a(u,v) = Z /Q(aij(:n) -Dju, D;v) dz, u,v € Hp (); (2.4)

4,j=1



finally we fix a function go € L2(0,T; H'(Q2)) such that goljo,7)xr, = uo. Then,
following [14], the variational version of problem (1.8) consists in looking for a
function y such that v := y — go € L*(0,T; H} (€2)) and

T
/0 [—(v(t),¢' (1)) 12(0) + a(v(t), p(t)] dt = (Yo, »(0)) r2) + F(p) (2.5)
for all test functions ¢ such that
¢ € L*(0,T; HY (Q) N H'(0,T; L*(Q)), o(T) =0, (2.6)

where the functional F is defined, for all functions ¢ of the above type, by

T
F((p) = /0 (go(t)awl(t»Lz(Q) dt — a(go,go) + <u17¢|F1>Hééz(F1)' (27)

Of course, any solution of system (1.8) solves equation (2.5) too, and any suffi-
ciently smooth solution of equation (2.5) is also a solution of system (1.8).
We list now our basic assumptions.

(HO) Q is a bounded connected open set of RY with boundary 99 of class C*:!.
(H1) yo € L*(Q2).

(H2) a;5 € L®(Q;CN), with M = >ij=1laij () ()| o= (@,cv? ), and there exists
v > 0 such that

n

Re Y (aij(z) -mj,mi) > vy |nil?
i=1

i,j=1
for all 11,...,m, € CN, and for all z € Q.

(H3) I'p and I'y are (n—1)-manifolds of class C?, such that Ty C 80, 't = 992\ T,
and FO N Fl ;é (Z)

For the solution of system (1.8) in the variational form (2.5) we have the following
existence and uniqueness result.

Theorem 2.1 We assume (HO), (H1), (H2), (H3). If u € L?(0,T;U), then
equation (2.5) has a unique solution y in the class L*(0,T; H*(Q)); moreover
y € C°([0,T); L*(Q)) N H'/?(0,T; L*(Q)) and

yllcoqo, iz ) + IWllz2o,1m ) + Wl 20,1 2(0)) <
< C[||y0||L2(Q) + ||u||L2(0,T;H1/2(Fo)) + ||u||L2(0,T;[Hééz(F1)]*)] .

Proof. For each A > 0 the bilinear form a(u,v) + Au,v)2(q) is coercive on the
space H'(Q); hence the same holds for the space H{ (Q). Thus the result follows
by Theorems 1.1 and 2.2, Chapter IV, in [14]. O



In order to obtain a representation for the solution of equation (2.5), we define the
following operators A and G:

D(A) = {we H'(Q): A(-, D) € L*(Q),

vlr, =0, 3871;|F1 =0} (2.8)
Av = A(, D)v,
A(\Dv = 0 in Q
v := G(ug, u1) = vo= U on I'g (2.9)
8‘?}; = u on I'q.

We prove now that A is the generator of an analytic semigroup in L?(9).

Proposition 2.2 Under assumptions (HO), (H2), (H3), let the operator A be de-
fined by (2.8). Then A is densely defined and generates an analytic semigroup in
H = L?(Q). Moreover for any § > 0 we have the estimate

c()

IR, A) fllm < ™ Ifllr YA€ Sy, (2.10)

where Sy, 1= {\ € C: Jarg(N\)| < ¥}, and ¥y = 7 — arctand.

Proof. Obviously, C§°(Q) C D(A) so that D(A) is dense in H. Next, we show
that the resolvent set p(A) contains the positive real half-line: indeed, by the
coerciveness in H'(Q) of the form a(u, @) + Au, @) g for all X > 0, we get that for
all f € H the problem

{ u € HY (Q)

(2.11)
a(u,p) + Mu, o)m = (f,p)n Vo € H} (D)

is uniquely solvable. Choosing ¢ € Hg () we easily find A(-,D)u = f — \u € H,
i.e. u € D(A) and Au — Au = f. This shows in particular that the solution u of
(2.11) solves the problem

A—A(,Du = f in Q

u = 0 on Iy (2.12)
88771 = 0 on Fl.

Thus we only need to prove (2.10). Fix 6 > 0 and take A\ € Sy,, with Jp =
7 —arctand. Let v € D(A) and set f = Av — Av. Multiplying this equation by v
in H and integrating by parts we get

/Q/\|U|2 dx + /Q 2”: (aij(x) - Djv, D) dx = /Q(f, v) dz. (2.13)

i,j=1



By taking the real part and recalling hypothesis (H2) we obtain
Re [ o dz+v [ Dol do < |flulloll
Q Q
by taking the imaginary part we get
1] [ 1oF do < |l ol + 3 [ 1Dof? da.
Q Q

Now if |ReA| < §|ImA|, then

Al fo lv)? dz < V1462 [Im)] [, [vf? do <
< VI8 + 50 Ifllullvll

whereas if ReX > 0 and d|Im)\| < Re\ we have

A oo de < (/14 2 ReX [, |v]? do <

Lt 55 fllallolle -

IN

These two estimates show that for any § > 0 we have

Allolle < VIFE | (1+5) 45| I5ln vaess. @)

Note that the smaller is ¢ the larger is the sector Sy, but also the larger is the
constant in the estimate.

As p(A) D]0, oo[, by estimate (2.14) and standard arguments we deduce that p(A)
also contains the right half-plane; hence Proposition 2.1.11 in [16] implies that A
is sectorial. Therefore A is the infinitesimal generator of an analytic semigroup;
moreover, by (2.14) we immediately deduce (2.10). This completes the proof. O

The adjoint operator of A is defined as follows:
D(A*):={ve H'(Q): A(,D)v e L*(Q),
r, =0} (2.15)

— ov
U|F0 - O’ OV g

A*v := A(-, D),

where A(z,D)v := Z?Fl D;la;j(z)! - Djv] and a;;(x)t is the matrix whose el-
ements are the conjugates of the elements of the transposed a;j(z)! of a;;(z).
Consequently it is clear that the following statement holds:

Proposition 2.3 Under assumptions (HO), (H2), (H3), let the operator A* be
given by (2.15). Then A* is densely defined and generates an analytic semigroup
in H = L?(Q). Moreover for any § > 0 we have the estimate

@)

R(\, A”
1RO, A7) Fllar < =5

Iflle YA€ Sy, O (2.16)



Concerning the operator G, we have the following result:

Proposition 2.4 Let (HO0), (H1), (H2), (H3) be fulfilled. If A is defined in (2.8)
then the operator G, given by (2.9), is well defined and continuous from U =
H'Y2(To) x [Hel ()] into D([—A)”) for 0 <9 < I

Proof. Let (ug,u;) € U and fix a lifting go € H'(Q) of the datum ug, with
||90||H1(Q) S C||U0||H1/2(FO). Then the problem

U — go € H%o (Q)
a(u,go) = <u1’(p>Héé2(F1) VQD € Hll‘o (Q)

has a unique solution v € H*(2). Hence u = G(ug, u;) by definition of G, and, in
particular, we have G(ug,u1) € H??(Q) for all 9 € [0, 1].

On the other hand, by Theorem 3.1 of [5] we know that D([—A]”) coincides with
H??(Q) if and only if 9 € [0, 1[. This completes the proof. O

We are finally ready to prove the representation formula for the solution of system
(1.8) in the variational form (2.5).

Theorem 2.5 Under assumptions (HO), (H1), (H2), (H3), let u = (ug,u1) be an
element of L*(0,T;U), where U = H'/?(Ty) x [H&f(n)]*. Then the solution of
(2.5) is given for each t € [0,T] by

y(t,-) = eyo(-) — /Ot A" AGu(s,-) ds. (2.17)

Proof. By Theorem 2.1 we know that equation (2.5) has a unique solution y €
CO([0,T]; HYN H'/2(0,T; HYN L*(0,T; H'(R)), where H = L*(f). Set now

t
v(t) = etlyy — / Ae=)AGu(s) ds, t €[0,T7; (2.18)
0

by the standard properties of analytic semigroups and by Proposition 2.4 it is
easily seen that v € C°([0,T]; H) N L*(0,T; H*Y(Q)) for any ¥ € [0, {[. We have
to show that y = v.

We suppose first that

yo € H2(Q), u = (ug,u1) € C*([0,T],U), (2.19)
yo — Gu(0) € D(A). '
Under assumption (2.19) we can integrate by parts in (2.18):
v(t) = etlyo+ [e(t*s)AGu(s)]g - fot et=3)AGu! (5) ds = (2.20)

= eyo + Gu(t) — e Gu(0) — fot e=IAG/(5) ds.



Hence we can compute
t
V' (t) = Aetyo — Gu(0)] — / Ae=9AGu! (s) ds Yt €[0,T]; (2.21)
0

thus we see that
v(t) — Gu(t) € D(A) Vit € [0,T7, (2.22)

and in addition, by (2.8) and (2.9),
v'(t) = Afv(t) — Gu(t)] = A(-, D)v(t, ) vVt € [0,T]. (2.23)

In particular, v € C°([0,T]; H). Moreover, v(0) = yo and, by (2.22), v(t) behaves
at 0N just like Gu(t), i.e.

Ov(t) |
aI/A T

This shows that v solves problem (1.8). In particular, v solves equation (2.5) too;
by uniqueness, this implies v = y, provided (2.19) holds.

Consider now the general case, i.e. yo € H and u = (ug,u1) € L*(0,T;U); let
y be the solution of equation (2.5) and let v be the function (2.18). There exist
sequences {yo,n} and {uy}, satisfying assumption (2.19) for all n € N, such that
Yo.n — Yo in H and u,, — w in L?(0,T;U). Denoting by y, the corresponding
solution of (2.5) and by v,, the corresponding function (2.18), we have by the above
argument v, = y, for all n € N. But since the C°([0,T]; H)-norm of both y,, and
vy, depends continuosly on the H-norm of yg , and on the L?*(0,T;U)-norm of g,
as n — oo we immediately deduce that v = y. This proves the result. O

o(t)lr, = uo(t) € H'*(Ty), = us(t) € [Hod*(T)]".

After the above preparations, we see that the control problem (1.6) fits in the
abstract setting described in [12]: thus, by the results of [12] (see also Theorem
3.141in [1], and Theorem 8.2 in [3]) we can characterize the optimal control through
a feedback formula involving the Riccati operator. The synthesis of the optimal
control problem is summarized in the following statement.

Theorem 2.6 Let (HO), (H1), (H2), (H3) be fulfilled. Then:
(i) There exists a unique optimal pair (4,9) € L*(0,T;U) x L?(0,T;H)) for
problem, (1.6), where H = L2(Q) and U = H'/2(Ty) x [Hol(T1)]*.

i) The Riccati equation in integral form, i.e.
(ii) q gral form,
T
P(t) = / eCAT T — P(s)AGG* A*P(s)] e* D4 ds,
t

has a unique solution P € C*([0,T[; L(H)) N C°([0,T]; L(H)).
Moreover, P(t) = P(t)* > 0 and P(t) € D([-A*]'"?) for each ¥ €]0,1],
with ||[~A 1" P(t)|| )y < C(T — t)=(=9) for all t € [0,T[; in addition it
holds

J(@) = (P(0)yo,yo)n -



(iii) We have the feedback formula for u:

a(t,") = G*A*P(t)y(t,-), te0,T].

(iv) The optimal trajectory 4 is expressed by §(t,-) = ®(¢,0)yo(-), where ®(t,s)
is defined by the integral equation

t
B(t,s) = et=94 —/ AetAGG* A* P(r)®(r, s) dr, t € [s,T).

The expressions P(s)AG and G*A*P(s) are shorter forms relative to the well
defined operator [—[(—A*)! " P(s)]*(—=A)"G] and to its adjoint, with fived ¥ €
10,5. O

Remark 2.7 As noted in the Introduction, in order to obtain our I'-convergence
result we will need to restrict somewhat the control space U, replacing Hl/Z(FO) X
[Hé({2(f‘1)]* by its closed subspace V = Hé({z(I‘o) x H='/2(I';). Of course, all
results proved in this Section still hold if we use the restricted control space.

3 The approximating problems

Our goal is to approach problem (1.6) by a family of more regular problems which
we now describe.
Fix € > 0. In the same open set 2 as in the preceding section, consider again the
state space L?(0,T; H), with H = L?(Q2), and take as control space L2(0,T;V),
with

V ={ueD09Q) :ulr, € HY*To), ulr, € H/*(T1)}, (3.1)

endowed with its natural norm
lullv = [lulroll g2 gy + llles L2z, -

We remind that a distribution u € D'(0Q) belongs to V if the restrictions of the
functional u to the subspaces D(I'g) and D(T';) verify respectively

[(u, ©)| < Collellgrrzr,)y Ve € D(T1),

(3.2)
[(u, )| < CIHQDH[HS({Q(FO)]* Vi € D(Lp);

by density, the above equalities are true for all ¢ € H'/?(I';) and for all ¢ €
[Hé({Q(FO)]* respectively.

Lemma 3.1 The space V, difined in (3.1), is isomorphic to Hé({Q (Do) x H1/2(Ty)
by the map j(u) = (ulr,,u|r,)-

10



Proof. We just verify that the map j is onto, the other properties being quite easy.
Fix (ug,u1) € H&gz(l“o) x H='/2(I'y), and set u = U + V, where U is the trivial
extension of ug to dQ and V is the element of H~'/2(9Q) defined by V () = u1 ()
for all ¢ € H'/?(8Q) c HY?(T). Then it is straightforward to check that that
u|r, = uwo and ulp, = uy, i.e. j(u) = (ug,uy). 0O

We recall here our approximating control problem: in view of Lemma 3.1, we set

V = HYP(To) x H-V/2(Ty), (3.3)
and we look for
WEL2(0,T;V) Tz u), (3.4)
where
T
70 = [ (s + 5, ) s (3.5)

and for each control u € L?(0,T;V) the state function y. is the solution of the
regular parabolic initial-boundary value problem

Si(t,x) — A(z, D)y(t,z) = O n [0,T] x
Do@) 2 (o) + (- De@y(ta) = ulta) m[0,T]x0Q  (36)
y(0,z) = yo(x) in Q.
Here the scalar function 9. is defined as follows:
1-¢ ifeely
Ve(z) =4 1—e— 1222 d(a,Ty) if x € Ty and d(z,T';) < e (3.7
€ if x € Ty and d(z,T';) > ¢

The classical results on regular elliptic and parabolic problems guarantee that, at
least for smooth data, a unique solution of the state equation (1.4) exists; however
the standard estimates (see e.g. [4]) depend on g, so that the solution might be
unbounded in certain spaces with respect to € as ¢ — 0.

On the other hand, problem (1.4) has also a variational formulation: for fixed u €
L?(0,T;V), problem (1.4) consists in looking for a function y € L2(0,T; H'(Q2))
such that

N <y<t>,¢'<t>>Lzm) +aly(t), p(t)+
ot

+H(5%= y(2), o (1)) grive ag)] dt = (3.8)
(yo, ©(0))L2(0) + fo t), () /2 o0y dt
for all test functions ¢ such that
¢ € L2(0,T; HY(Q) N HY(0,T;L*(),  ¢(T) =0. (3.9)

Our first task is to give an existence and uniqueness result for the variational
problem (3.8), with an estimate not depending on e.

11



Theorem 3.2 We assume (HO), (H1), (H2), (H3). If u € L*(0,T;V), with
V' defined in (3.8), then equation (3.8) has a unique solution y. in the class
C([0,T]; L2(Q)) N L2(0,T; H'(Q)) N H'/2(0,T; L*(R)). Moreover there exists
C >0, independent of €, such that

lvellcogo, ;2@ + Yelln2 0,101 (@) + Vel gz 0,7 2(0)) <

< C[||y0||L2(Q) + HUHLZ(O’T?Hléz(FO)) + H“HL?(O,T;H*UZ(H))]'

0

Proof. The bilinear form a(y,v) + (% Y, V) 1/2(p0) 18 clearly weakly coercive
on H'(); in fact it is even coercive, since the norm ||u||z2(a0) + || Dullr2(q) is
equivalent to the usual norm of H*(f2), as shown e.g. by Lemma 4.4 in [2]. Hence
the result follows by Theorems 1.1 and 2.2, Chapter IV in [14]. O

As we did for the case of the mixed problem, we want to find now a representation
formula for the solution y. of problem (1.4). We start with defining the operators

D(A) :=3ve H2(Q): 9.2 + (1 —9.)v =0 on 60
A.v:=A(-,D)v,

and

A(-,D) in Q

w=0
w = Gsh < { 195(;,_1i+(1_195)w:h on BQ

(3.11)
As (3.10) is a regular elliptic operator, it is clear that A. is the infinitesimal gener-
ator of an analytic semigroup; we show now that this property holds “uniformly”
with respect to e.

Proposition 3.3 Let (HO0), (H1), (H2) be fulfilled. Then the operator A. defined
by (3.10) is densely defined and generates an analytic semigroup in L*()). More-
over for any d > 0 we have the estimate

c(6
1RO, A fllzz) < T Il YA€ Sy (3.12)
where Sy, := {\ € C: |arg(\)| < Po}, and J9 = ®# — arctand. In particular, the
constant C(§) does not depend on e.

Proof. We just need to prove (3.12).
Let f € L?(Q2) and set v. = R(\, A.) f: then v. solves

Mve — A(,Dyv. = f in Q
9.2 4 (1-dYH)v. = 0 on 0.

€ 0va

(3.13)

Let us multiply by v., integrate over Q and use the boundary condition: we get
AfQ |’U€|2 dz + a(ve,ve)+

) (3.14)
+ Jr, ﬁ—i’ﬁgﬁp do + [, 119:95 v do = [, [(f,v:)| da.
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This estimate plays the role of (2.13) in the proof of Proposition 2.2: thus, just
repeating the argument used in that proof, we get for any § > 0

C(d)
lvellz2 () < W 1fllz2) YA e Sy, ,

where g = m — arctand. This proves the result. O

Remark 3.4 By (3.14) it follows in particular the useful estimate, which holds
true for all A € Sy, :

Ve
llvelle (@) + /FO T—0.

The adjoint operator of A. is defined by:

ov,
vy

2
1-9. C(6)
ot [ S5 do < 5 Wl

D(Az) = {v € HA(Q) s 0525 + (1= 9.)v = 0 on 90}

(3.15)
A*v = A(-, D).

Hence it is clear that the following result, parallel to that of Proposition 3.3, holds:

Proposition 3.5 Let (HO), (H1), (H2) be fulfilled and fize > 0. Then the operator
A given by (3.15) is densely defined and generates an analytic semigroup in L*(Q).
Moreover for any § > 0 we have the estimate

. o
1RO, A2) Lo < ﬁ Iflz@ VA€ So . (3.16)

where Sy, := {\ € C: |arg(N\)| < Jo}, and 9o = # — arctand. In particular, the
constant C(8) does not depend one. 0O

Concerning the operator G., we have:

Proposition 3.6 Let (HO), (H1), (H2), (H3) be fulfilled; fit € > 0 and let A, be
defined by (3.10). The operator G, , given by (3.11), is well defined from the space
V., defined by (3.3), into the space D([—A:]?) for each ¥ €]0, %[ In addition, there
exists C > 0, independent of €, such that

Ce) M I[=A:)’GehllT2 () < IDGehlT2() <
< O [Ihlrolyase oo, + IRl 2,y VREV.

Proof. Let first w = G:h, where h € C*°(012) and h vanishes in a neighbourhood
of o N Ty; then w is smooth and solves problem (3.11). We repeat the argument
used in the proof of Proposition 3.3. Multiply by w(z) the equation A(z, D)w = 0
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and integrate by parts: using Hypothesis (H2) and the boundary condition, we
get

v [ |Dw]? dx-l—fFO o |22 do + [r, 52 =P w|? do <

(3.17)

‘fro (h, 22) - do| + ‘frl(h,w) L do].

’81/,4

Let us estimate separately the addenda of the last term in (3.17). We start with
the second one, which is easier to handle. As ¥.(z) =1 —¢ on I'; we have

[, ()= do| = £z [(hw) e, <
< 1= llg-reey) wllgee,) < (3.18)
< 2= b=y lwllgrzee) <
< SRy +C Il -
Concerning the first term on the last member of (3.17), set
I.={zely:d(zT) <e}, (3.19)

and d_enote by h the function which coincides with h on Ty and vanishes on Ty:
then i € H'/?(90) and we can write

‘fro ’BVA do—‘ S
wy _1_ 8 1 1
‘fro hy 3us) T2 d”‘ + frg (hy o)l (=57 = 7=2) do < (3.20)
‘fm h, aauli = dg‘ +fF5 (h, gxﬁ” i 19 do
=I+1I.
On one hand, we get for all n > 0
I = R, ) do| <
< C Ha,,AHH 12(0) hllmreee) < (3.21)
<

< 0 Il + C) bkl e,

on the other hand, we have

Tk B_w)| = 75 (3.22)
< o i |22 do + [ gy B2 do,
and the second addendum in the last member of (3.22) is estimated by
Jr. woomy WP do < C [ LIAP do <
(3.23)

< CfFo |h|2 d(zTF1) do < C||h|r°”i]§éz(1“0)'
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By (3.17), (3.18), (3.20), (3.21), (3.22) and (3.23), we deduce for a sufficiently
small n:

Jo |Dw|* dz + fro 1%95 gTu,”Q do + fn % lw|? do <
) ) (3.24)
< C ||h|FO||HééQ(F0) + ||h|F1||H—1/2(F1) .

Now the general case, i.e. the case h € V, follows by a density argument, since
we may approximate h by a sequence {h,} C C*(09Q) of functions vanishing in
a neighbourhood of Ty NT;. Thus estimate (3.24) holds for w = G.h too; this
means that the map G. is bounded, uniformly with respect to €, from Hé({Q(FO) X
H='/2(I'y) to H'(Q).

We invoke finally a result due to Fujiwara (Theorem 2 in [10]), according to which
we have D([—A.]") = H*>?(Q) for all ¥ € [0,3/4] and

Iflloagey S CENfllazo)  Vf € H?(Q), (3.25)

with C(e) possibly depending on e. This estimate, together with (3.24), implies
our result. 0O

Remark 3.7 In the proof of Proposition 3.6 we have proved in particular the
following useful estimate for w = G h:

_Ue el 1—9
Jo, 557 |gpsl? do + [, 5= |wf* do <

2 2 (3.26)
S C |:||h|F0||Héé2(FO) + ||h|F1||H_1/2(F1):| ’

Remark 3.8 An estimate similar to (3.26) is valid for the solution y. of the
parabolic problem (3.8), namely
Oye

T
fO fFolf—i’g Ova

T P 2
< O [t My + s 0 e, ]

2
dodt + [ [, 552yl dodt <

(3.27)

The proof requires the same argument used in the proof of Proposition 3.6, and
we can omit, it.

We are finally ready to prove the representation formula for the solution of problem
(1.4).

Theorem 3.9 Assume (H0), (H1), (H2), (H3). Ifu € L*>(0,T;V), with V defined
by (3.3), then the solution y. of (1.4) is given for each t € [0,T] by

t
ya(ta ) = etAEyO(') +/ Ase(tis)AEGsu(sa ) ds. (3'28)
0
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Proof. As (1.4) is a regular parabolic initial-boundary value problem, the result
follows by adapting the proof of Proposition 2.13 in [1]; otherwise, one may repeat
the same argument used in proving Theorem 2.5 above. We omit the details. O

Finally we state the result on the synthesis of the optimal control problem (1.2),
whose proof is parallel to that of Theorem 2.6 (compare again with [12], [1], and

[3])-
Theorem 3.10 Let (HO0), (H1), (H2), (H3) be fulfilled. Then:

(i) There exists a unique optimal pair (i.,9.) € L*(0,T;V) x L*(0,T; H)) for
problem (1.6), where H = L*(Q) and V is defined in (3.3).

(ii) The Riccati equation in integral form, i.e.
T *
P.(t) = / (DAL — P.(s) A GG AZP.(s)] e D 4 g,
t

has a unique solution P. € C1([0,T[; L(H)) N C°([0,T); L(H)), such that
P.(t) = P.(t)* > 0 and P-(t) € D([-A*]'"?) for each 9 €]0,1], with
N=A PPl gy < C(T — )~ for all t € [0,T[; in addition it
holds

J(ie) = (P-(0)yo, yo)mr -

(iii) We have the feedback formula for u.:
ﬂs(ta ) = G:A;PE (t)gs(ta ')7 te [07 T[

(iv) The optimal trajectory §. is given by Y:(t,-) = P.(t,0)yo(:), where ®.(t,s)
is defined by the integral equation

t
B_(t,s) = elt=9)4 / A et AG G* A P.(r)®. (r,s) dr, t€[s,T).
8

The expressions P-(s)A:G. and G:A%P.(s) are shorter forms relative to the well
defined operator [—[(—AZ)' "V P.(s)]*(—A:)?G.] and to its adjoint, with fized 9 €
0,3, O

)2

4 ['-convergence

First of all, we observe that all I'-convergence results in the literature deal with
a discrete parameter n tending to +00. So, from now on we will consider a fixed
subsequence of our approximating problems with parameter ¢ = ¢, such that
en — 01 for n — oo.

We remark that, by (1.5),

. 1 ifzeTy
nlbnéoﬂfn(“’)_{ 0 ifzeTy. (41)



In order to apply the abstract result of [8], we need to rewrite the optimal control
problems in a different way. Therefore, we set

H=1IQ), V=HY Ty xH Iy, (4.2)
and
Y =L*0,T;H), U=L*0,T;V). (4.3)
Define the operators M. ,M :Y —Y and B, ,B:U — Y as follows:
M., (y) = y—efony
{ ) L vy ey, (4.4)
M(y) = y—e“yo
B.. (u) = [TA. =94 G, (s)u(s) ds,
(u) fot (Sule) Yu € U. (4.5)
B(u) =[5 Ae=AG(s)u(s) ds

As we already noted, the space of controls for problems (1.2) is smaller than that
of problem (1.6). See the remark in the Introduction and compare with Remark
2.7.

Due to Theorems 2.5 and 3.9 above, the state equations of the approximating
problems and of the mixed problem can be written as

M., (y) = B:,(u)  and  M(y) = B(u), (4.6)

respectively. We also observe that the corresponding cost functionals J. and J,
defined by (1.3) and (1.7), are in fact the same (they differed only in the choice
of the space of controls, which are equal to V now). In order to stress their
dependence on y, we relabel both J._ (u) and J(u) as J(y,u), i.e. we set

T
J(y,u) = /0 (lluCs, T+ Nly(s, )l ds. (4.7)
Now our approximating problem (1.2) has the following equivalent formulation:

(Pn) min {J(y,u) + X{a., ()=B., (w} © (,u) €Y x U},
where for each set A the function y 4 is given by

(z) = 0 ifxreA
XA =1 +oo ifx ¢ A

Similarly, we rewrite the mixed problem (1.6) (with U replaced by V') as

(P) min {J(y,u) + X{M(y)=B(u)} : (y,u) €Y x Z/{} .

Thus, setting

F, (ya U) = J(yv U) + X{M-, (y)=Be, (u)} (ya U), (48)
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the sequence of optimal control problems we consider is
(Pn) min {Fy(y,u) : (y,u) €Y x U},

with Y and U given by (4.3).
Of course, a point (yn,u,) € Y x U is an optimal pair for problem (P,,) if

Fn(ynaun) = }I/nirz}{Fn(yau)

We recall now the general definition of multiple I'-limits.

Definition 4.1 Let X and W be topological spaces and let {Fp}nen be a sequence
of functions from X x W to R; we denote by Z(+) and Z(—) the sup and inf
operators respectively. For every x € X and w € W we set

F(NQ,XB’W’Y) lim Fn(maw) = Z('Y) Z(B) Z(_a) Z(a) Fn(xn:wn)
n—oo {wn}YeS(w) {z,}eS(2) kEN n>k

where a, 8,7 € {+,—}, and S(x), S(w) denote the set of all sequences x,, — = in
X and w, — w in W respectively. Note that when the I'-limit does not depend
on the signs + or — in one (or more) of its variables, the corresponding sign is
customarily omitted.

Our aim is now to apply Proposition 2.1 in [7] (see also Theorem 1.1 in the Intro-
duction). Therefore we take as F), the functionals defined in (4.8). Our goal is to
prove that the functional F' corresponding to problem (P), i.e.

F(yau) = J(yau) + X{M(y)=B(u)} » (49)
coincides precisely with the multiple I-limit (1.1):

F(y,u) =T(N.Y ~,U7) lim F,(y,u). (4.10)

This will mean that in fact problem (P) is the '-limit problem of the sequence of
problems {(P,)}, in the sense given by Definition 1.2 in the Introduction.

In order to prove (4.10), we are going to apply an abstract result in [8]. We first
recall the definition of G-convergence of operators.

Definition 4.2 Let Z and W be topological spaces and for all n € N let D,
be operators from Z to W. We say that the sequence {D,} G-converges to the
operator D : Z — W if

F(Na W, Z_) nli}rgo X{Dn(z)zw}(wv Z) = X{D(z):w}(wa Z) Vw e W, Vz € Z,

that is, if the following conditions are satisfied:

Q) ifzn > 2zin Z, w, = w in W and D, (z,) = w, for infinitely many n € N,
then D(z) = w;
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(ii) if z € Z and w € W are such that D(z) = w and w, — w in W, then there
exists {zn} C Z such that z, — z in Z and D, (z,) = w, for all sufficiently
large n € N.

The following general result holds true (it is a special case of a result proved in
[8], Proposition 3.3 and Section 3).

Theorem 4.3 Let Z, W be topological spaces, let G, : W x Z — R be a functional
and let D,D,, : Z — Z, K, K, : W — Z be operators. Consider a sequence of
control problems of the following form:

g}%{Gn(za W) + X{Dy (2)=K, (w)}}-

Assume that:
(i) the sequence {D,} G-converges to D;
(i) if wy, = w in W, then K,(w,) = K(w) in W;

(iii) there exist a function ¥ : W — R, bounded on bounded sets of W, and a
function w: Z x Z — R, with lim,,. w(z,v) =0 for all z € Z, such that

Gp(z,w) < Gp(v,w) + ¥(w)w(z,v). Yw e W, Vz,v € Z, Yn €N

Then
P(N, Z7,W7) lim [Gh + X(D,. (=K. (w)}] (z-0) =[G+ X{D(2)=k (w)}] (2, w),
where
G(z,w) =T(N,W™) ILm Grn(z,w). (4.11)

We will apply this theorem with Z =Y, W = U (defined in (4.3)), G, =G =J
(given by (4.7)),and D,, = M., D =M, K,, = B.,, K = B (see (4.4) and (4.5)).
Thus what we have to do is to verify that assumptions (i)-(iii) of Theorem 4.3
are in fact satisfied.

We start with proving hypothesis (i).

Lemma 4.4 Let (HO), (H1), (H2), (H3) be fulfilled. If M., and M are defined by
(4.4), then the sequence {M. } G-converges to M as n — oo.

Proof. Suppose we have shown that
ehenyy > eyy inY Wy € H; (4.12)

then we easily deduce the following properties. Firstly, if {y,},{v,} C Y are such
that y,, = y in Y and v, = M., (y,) = y., — e'4enyy for infinitely many n € N,
then letting n — oo we get v = y — etdyy = M(y).

Secondly, if v = M (y) = y — e!yo, and {v,} C Y is a sequence such that v,, — v
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in Y, then setting y,, := v, + et4<=yo we have M. _(y,) = v, for infinitely many n

and y, > yinY.

Recalling Definition 4.2, these facts imply that M.  G-converges to M; hence the

proof of Lemma 4.4 is achieved provided we show (4.12).
Let us prove now (4.12).
To begin with, fix f € L?(Q) and X € p(A.,) N p(A). If we set

ve, = R(\ Ac,), v:=R()\A),
then by (3.13) and (2.12) the function v — v.,, solves the equation
AMv—wve,)—A(,D)(v—v:,)=0 inQ,

whereas at the boundary v and v, verify

9., % 4 (1—do v, = 0 ind0Q
v = O iIl FO
L = 0 inly.

Hence multiplying by v — v., and integrating by parts we easily get
IMv = ve,, [72(q) + VID(0 = ve, 720y <

< Joq(w —Ugn)%(v —ve, )do =

)
— fFo e, %(U — v, )do — fFl (v—10.,) (;;f: do =

ove,
= - faQ Ve, %(U — ., )do — faQ(U —e,) ;;i,A do—
~ Joq Ven Fzndo = 1 + 11 + I11.

Let us estimate separately each term. We have

0
I < cl|ve, || gz o) M(U —ve,)

H-1/2(5Q)
and similarly

ov.,
Ovy

II<C‘

H-1/2(8Q)

hence

(4.13)

(4.14)

(4.15)

(4.16)

< COlve, [l @)llv = ve, 51 ()

lv = ve, la1/200) < Cllve, lmr@)llv — ve, | m1(0) ;

v C
I+ 1T < Cllve, | @) llv = ve, @) < ZHU — e, |7 () + —|||Usn||%{1(9)

|A
and by Remark 3.4 we obtain
v C
I+1T< 2o~ Ve 7 () + W||f||%2(9) :

20
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Concerning the third term, we get as before

Ov., 9 c 9
III S C||Usn||H1/2(8Q) BZ/A Hil/z(ag) S C||U5n||H1(Q) S WHfHLz(Q) . (418)
Thus, by (4.16), (4.17) and (4.18) it follows that
Ao = ve, 720y + VIID (v = ve, 720 < gllfllz (4.19)
v Ve, L2(Q) v v Ve, L2(Q) = |>\| L2(Q)- .

By compactness there exist a subsequence, that we still call v—v._, and a function
w € HY(Q) such that

v—v., —~w in H(Q) asn— oo (4.20)
and
v—v., - w inL*(Q) asn — oco. (4.21)

Since the operator A(-, D) is closed on L?(2) and v — v., solves (4.14), we deduce
that
Aw — A(-,D)w =0 in Q. (4.22)

Now, using Remark 3.4, we can rewrite (4.19) as follows
Nl = v, B2y + VD = v )30+

s 2] 1—-9 C
+ ng T—o. |affj |2da' + frl i |UE|2 do < WHfH%%Q)

(4.23)

Using again compactness, passing possibly to another subsequence, we get the
existence of two functions v € L2(I'g) and p € L?(T';) such that

2o, =/ v, Sy i L2(T0), e, =y G = pin L(TY).
(4.24)
Now, since  is bounded, the (N —1)-dimensional measure of the set I'. introduced

in (3.19) is bounded by Ce. Consequently, by Remark 3.4 we get

C
o, 2o,y < IMlz2r., ) llve, llz2o0) < |)\|—1/2 fll2) Ven (4.25)
Thus, recalling (1.5), we deduce

e, llrwe)y = e,y + vl ovr.,) <

A

9.,
< Cyen+ ||m”L2(Fg\Fm)HZEn||L2(Fo) < (4.26)

Cﬁ+c\/z,

ve, =0 in L'(Ty). (4.27)

IN

so that
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Similarly, as

a’UE En En
— <i/— |lg- <c , 4.28
H Ova L1(Ty) “V1l-ep la "HLZ(FI) - 1-¢, ( )
we get
Ove .
81/,: —0  in LY(T). (4.29)

Comparing (4.20), (4.27) and (4.15), we see that
w=0 in Ty. (4.30)

Similarly, by the closedness of the operator % from H'(Q) into H~'/2(89),
(4.20) implies that

ov—v,) , Ow H~'2(90),

vy %
so that by (4.29) and (4.15) we obtain
ow .
M =0 mn Fl. (431)

By (4.22), (4.30) and (4.31) we deduce that w solves the mixed problem (2.12)
with homogeneous data, so that Theorem 2.1 allows us to conclude that w = 0.
As a result, by (4.21), ve get v., — v in L?*(Q2). Now an easy argument by
contradiction proves that in fact the whole sequence {v., } converges to v in L2((2).
Thus, recalling (4.13), we have proved that

RO\AL)f = RONAF in L2(Q) VS e LX(Q). (4.32)
Let us show now that
ehen f 5 et f in L2(Q)  Vfe L*Q), V> 0. (4.33)

We recall that, by the usual representation of analytic semigroups as Dunford
integrals, we have

ethen f_ otAf = 2% / MR A ) — ROLA)fd\ Vf € L2(9),

v

where 7 is a path from +ooe™™ to +oce’, with 0 < ¥ < ¥y , contained in Sy,
(see Proposition 2.2) and leaving 0 on its left side. Using this representation and
a simple change of variable, as the integrand is a holomorphic function of A, we

have for all f € L*(Q):
letee f = €4 fllEa(a) =
= ‘ Qme'y e’ [R(%aAfn) - R(%’A)] f dTU L2(Q) —

<Ot [ e 7|[R(%, A.,) - R(3, D) fllieay |dol.

(4.34)
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Now fix § €]1/2,1[: by (2.10) and (3.12) we can write
||letAen f — etAf||L2(Q) <
< CONILay 7 [, e 70 |[R(5, Az,) — R(F, S5, |dol.

We observe that

2 (Goan) -2 (G A

and that the right-hand side has finite integral over +; thus, recalling (4.32), by
Lebesgue Theorem we get (4.33).
Moreover, since

1—6 o eRecr Tl P
< € -
5 Loy S = 1fllL2@)

a

»111/2
let4en § = ' L2y < COE 1l [f, o™ 7 ll] 18 (435)

lo]

and § > 1/2, applying again the Lebesgue Theorem we conclude that (4.12) holds
true. This completes the proof of Lemma 4.4. O

We prove now that hypothesis (ii) in Theorem 4.3 is fulfilled too.

Lemma 4.5 Assume (HO), (H1), (H2), (H3), let B., and B be defined by (4.5)
and let Y and U be given by (4.3). If ue, = w in U, then B. (u) — B(u) in Y.

Proof. Set v, := B., (uc,) and write u := (ug, u1). By Theorem 3.9, v._ is the
solution of

8:;?" - A(a D)Usn = 0 in [O,T] x 0
9o, Qa4 (1— 0. Jo., = we, i [0,T]x 09 (4.36)
Ve, (0, ) = 0 in Q.

Then, by Theorem 3.2 and Remark 3.8, v, satisfies

T
sup |lve, (s,)72(q) + Jo [1Dvs, 172y di+
s€[0,T]

T Dy
+o Jr, =5

€n

T .
<O (Mol + 0By e, )

Ove,
Ova

2 T —9. ;
do dt + [ [r, e oo, |? do di < (4.37)

By compactness, passing possibly to a subsequence still denoted by {v., }, there
exists a function v € L2(0,T; H'(Q2)) such that

v., =v  in L*(0,T; H'(Q)). (4.38)

Since this implies v, — v in L*(0,T; L?(012)), we also have

ove,,

o2 =, — (1 =9 v, ~up—v  in L*(0,T;L*(Ty)). (4.39)
aI/A
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Now, using again compactness, (4.37) implies that there exists a function w €
L?(0,T; L*(Ty)) such that

ov ) Ov
et =1 =0 )0, (e s 0w = in L2(0,T; L*(Ty)).
e, oo (1 —9:,)0., T 0-w=0 in L°(0,T; L*(Ty))

Then, by uniqueness, (4.39) implies
v = Ug on Iy. (4.40)

Moreover, since the operator % is closed from H' () into H='/2(d%), by (4.38)
we have

—B’UE" JEEN 8_’1}

s 12 L 7—1/2
" in L2(0,T; H'/2(69)). (4.41)

Then, recalling that ¥., =1 —¢, on I'y we obtain

av&" RN 3_1}
n Qua vy

in L(0,T; [Hyy(T1)]*),

so that, by (4.41), we get

3671; =u on I'y. (4.42)
Finally, letting n — oo in problem (4.36), by (4.38), (4.40) and (4.42) we conclude
that v solves the equation

v —A(,Dw = 0 in [0,7] x O

Vo= U in [0,T] x Ty (4.43)
a(?}i, = u in [0,7] x Ty '
v(0,5) = 0 in Q.

Therefore, by uniqueness and by Theorem 2.5, we deduce v = B(u); hence we
have proved that B., (u.,) — B(u) in L*(0,T; H'(€2)). By Rellich Theorem we
also get B. (u.,) = B(u)inY. 0O

We are finally ready to prove our main result.

Theorem 4.6 Assume (HO), (H1), (H2), (H3). In the spaces Y, U introduced in
(4.3), let M., , M, B, and B be defined by (4.4) and (4.5) respectively, and let
J be given by (4.7). Then the sequence of optimal control problems

(Pn) min {J(yau) + X{M., (y)=B-, (u)}(yvu) : (yvu) €Y x u}

I'-converges to the optimal control problem

(P) min {J(yau) + X{M(y):B(u)}(yau) : (yau) EY x Z/{} .
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Proof. We apply Theorem 4.3. In Lemma 4.4 and in Lemma 4.5 we proved that,
under our present assumptions, hypotheses (i) and (ii) in Theorem 4.3 hold true.
On the other hand it is easy to see that the cost functional verifies (iii). Thus by
Theorem 4.3 and Theorem 1.1 we conclude that the sequence of problems (P,,)
I'-converges to the optimal control problem (P). O

The above theorem holds for an arbitrary sequence ¢,, — 07; this allows us to say
that problems (P.) I'-converge to problem (P) as e — 0t.

Remark 4.7 For the sake of simplicity we considered a cost functional with a
very simple form. One can also deal with more general cost functionals such as

T
/0 (Il (s, Mz + [luls, )T ) ds + (Pry(T), y(T)) r2(o)

with Pr € L(L?(12)), provided the operator Pr is regular enough in order to have
existence of the optimal controls and to satisfy condition (iii) of Theorem 4.3 (see
[1] and [2]). The cost functional might also depend explicitly on e: in that case
one has in addition to determine the I'-limit in (4.11).
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