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Abstract. An abstract linear-quadratic regulator problem over finite time horizon
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Riccati operator, provided its final datum is suitably regular.
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0. Introduction

Let H, U be complex Hilbert spaces; for fixdd > 0 we consider the following linear-
quadratic regulator problem: minimize

.
J() :=/0 {(M(t)y(t) [ y®)y + (N®U) | U(t))u} dt
+ (Pry(™) | y(M)y 0.1)

over all controlsu € L2(0, T; U) subject to the state equation

t
y(t) = U(t, 0)x —/ U, n)Ar)G(T)u(r) dr, tel0,T]. (0.2)
0
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Here {M(t)} and Pr are positive, bounded, self-adjoint operatorsHn {N(t)} are
positive, bounded, self-adjoint operatordinx is an element oH, eachA(t) generates
an analytic semigroupe™®} in H, {U(t, s)} is the evolution operator associated to
{A®M)}, and G(1) is the “Green map” relative té\(t). More precise assumptions on
{AMD)]}, {GM)}, (M)}, {N(t)}, andPr are listed in Section 1.

The state equation (0.2) represents a large class of linear parabolic nonautonomous
initial-boundary value problems, with boundary controls of Dirichlet or Neumann type:
see Section 9 of [AT5] for some typical examples. Looking for a pointwise feedback
optimal control for problem (0.1)—(0.2), the main step is the study of the associated
Riccati equation, whose integral version is

.
P(t) =U(T,t)*PTU(T,t)+/ ur, t*
t
x [M(r) = P(OAMGEON@)IGI)*Ar)*PE)]U . t) dr, (0.3)
and whose differential version is

P'(t) + AD)*P(®) + P(D)A()
= -M® + POAOGOND GHO*AMD*P(1), (0.4)
P(T) = Pr.

The Riccati equation and its corresponding control problem in the autonomous
case have been widely studied by several people and the whole theory is, more or less,
complete: we quote, among others, [B], [LT1], [F1], [DI1], [F2], [F4], [LT3], and [LT4].
Two different approaches are available: (i) the variational method, which starts from
the Euler equation for the cost functional and yields explicit formulas which express in
terms of the data both the optimal pair and the Riccati operator, and (ii) the dynamic
programming method, which solves directly the Riccati equation and obtains, through
the Riccati operator, a feedback formula for the optimal control in terms of the optimal
state. Both methods are carefully described in the survey papers [LT2] and [BDDM].

Only a few papers deal with the nonautonomous control problem (0.1)—(0.2); the
references [Li] and [DS] are based on variational techniques, whereas in [DI2] and [AFT]
the dynamic programming approach is used.

In [AFT] it was shown that under certain abstract assumptions, which are naturally
fulfilled in the mentioned concrete parabolic problems of Section 9 of [AT5], (0.3) has a
unique global solutioP (-), whereP (t) is a positive, bounded, self-adjoint operator for
eacht € ]0, T], provided the final datunfy is suitably regular; consequently one gets
the existence of an optimal pdif, §) for problem (0.1)—(0.2) in the spat€(0, T; U) x
L2(0, T; H). On the other hand, in the autonomous case the minimal assumpt®n on
is more general than in [AFT], and in addition the optimal pair turns out to enjoy some
regularity properties, as shown in [LT1], [LT3], and [LT4].

Thus the main goal of our previous paper [AT5] was to extend as far as possible
to the nonautonomous situation the results of [LT1], [LT3], and [LT4]. To this purpose
we were unable to repeat, for a general choicePef the direct proof of existence
and uniqueness of mild solutions of (0.3), given in [AFT] by means of the dynamic
programming technique; we followed instead the variational approach of [LT1] and
[LT3], adapting and refining it according to the nonautonomous situation, through the
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extensive use of the nonautonomous theory of abstract parabolic equations developed in
[AT1], [AT2], [Al], [AT3], [A2], and [AFT]. In this way we generalized to this situation
almost all statements of [LT1], [LT3], and [LT4], even improving some of them. In fact

in [AT5] we proved that (0.4) has a classical solutif), namely,

T
P() = / U, H)*M@)¢r, t) dr + U (T, )" Pro(T, t), (0.5)
t

whereg (t, s) is the state operator, i.e.,
o, s)x =y, s; X), VX € H, (0.6)

y(-, s; X) being the optimal state for the control problem analogous to (0.1)—(0.2), with
initial valuex and initial times instead of 0. The optimal control is then given in feedback
form by

act, s; x) = N(O)IG)* A P Y(t, S; X). (0.7)

In particular, we showed in [AT5] tha®(-) is continuously differentiable in [Or[ as

an L(H)-valued function and satisfies (0.4) in the sensg€ @), provided the operator
AM)*Pt) + P@)A() is replaced by its bounded extensiarit) P(t) (see Section 7

of [AT5] for details); the final datumPy is taken essentially in the largest possible
space, as the counterexample in [F3] and the remarks in Section 7 of [LT3] show (see
also Remark 8.3 of [AT5]). In the autonomous case this result was first proved in [D]
for problems with distributed control, and in [LT4] for boundary control, with some
smoothness assumption on the final dateym

This paper is a completion of [AT5]. Indeed, the differentiability result of [AT5] is
based on certain related statements whose proofs, being very long and technical, were
omitted there; thus we collect here those proofs, showing in addition the uniqueness of
the Riccati operatoP(-), provided the final datunfr is suitably regular (exactly as in
the autonomous case, see Theorem 6.4 of [LT3]).

We now describe the contents of the following sections. Section 1 contains the list of
our assumptions; Section 2 concerns some results about linear Volterra integral equations
in certain spaces of singular functions (the same ones as in Appendix A of [AT5]): these
spaces were introduced in [AT1] as spaces of maximal regularity for abstract linear
parabolic equations, but they were first used in [So]. In Section 3 we introduce the state
operatop (t, s) and prove its differentiability properties, and finally Section 4 is devoted
to the uniqueness of the solution of (0.3). Throughout this paper we use the notations
of [AT5].

1. Assumptions

We list here our abstract assumptions.

Hypothesis 1.1. For each t € [0, T], A(t): Dapy € H — H is a closed linear
operator generating an analytic semigroye’~® ¢ > 0}; in particular, there exist
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M > 0and® € ]n/2, [ such that

[r = ADOI ] 2y, = MA@+ RD T Vi e S(), Vtelo,T], (1.1)

where $9) = {z € C: |argz| < 9¥}.

Hypothesis 1.2. There exist N> Oandp, u € ]0,1] with$ := p + u —1 €10, 1],
such that

[ADR — AOT [AD ™~ AS | 1)
+ A0 = AOTHIAGT = [A®T | £
< Nt —s/*(A+ A", Vi e S(¥), Vt,se[0,T]. (1.2)

Hypothesis 1.3. {U(t,s),0 < s <t < T} is the evolution operator relative to
{A(t),t € [0, T]}; in particular,

[I=A®IUE D=AG] 7 | 1y, + [[=AGTU 9 [-ADT | £ )
<My, [14+ t—5)77"] for 0<s<t<T, n,yel01]. (1.3)

Hypothesis 1.4. The numbeb = p + n — 1is such that

[[=A®I"UE 9I-AS] = [-A@IU @ I=AST | £,
<Nyt =)’ [1+ (x =97 "7]
for O0<s<t<t<T, n,vy€l0,1], (1.4)
[[=A@) U t, ) [-ADT7 = [-AS)TUE 9 T-ADT | 1)
< Nyy(c =9 [1+ (t —0) 7]
for 0<s<o<t<T, n,y€l0,1], (1.5)

all operators being strongly continuous with respect,to, i, s.

Hypothesis 1.5. Foreachte [0, T], G(t) € £(U, H) and there exista € 13, 1] such
that

[—AM]*G(-) € C*([0, T], L(U, H)). (1.6)

Hypothesis 1.6. We have M:) € C%([0, T], Z*(H)), N(-) e C(0, T], =T ()),
and there exists > 0 such that Nt) > v,i.e, (N(t)u | u)y > v||u||fJ for each ue U
andte [0, T].
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Hypothesis 1.7. Pr € T (H)andin additiontheIinearoperator#zLOT: D(Lgr) C
L2(0, T; U) — H is closedwhere the operator §; is defined by

D(Lor) = {u e L%(0, T, U):
T
/ [—AM] U (T, nHAr)Gr)ur) dr € D([—A(T)]”)}, (x.7)
0

g
Lor (W) = [~ AT)]" fo [—ACT)]"U (T, HA®) G () dr.

Comments and remarks on this set of assumptions can be found in Remark 1.8
of [AT5].

2. Linear Volterra Integral Equations

Let X be a Banach space. We introduce some spaces\aflued functions, having a
singularity at an endpoint of their interval of definition.

Definition 2.1. Let [a, b] be a real interval.

(i) If y =0,B,(a, b[, X) (resp.B, (Ja, b], X)) is the Banach space of Bochner
measurable functions: [a, b[— X (resp.u: ]a, b] — X) such thafju]l, <
o0, Where

sela,b[ sela,b]

ull, := sup(b—s)"[[u(s)lx (resp- SUD(S—a)VIIU(S)le).

(i) If y = 0,C,([a, b[, X) (resp.C, (Ja, b], X)) is the space of continuous func-
tions belonging taB, ([a, b[, X) (resp.B, (Ja, b], X)), endowed by the same
norm.

(iii) If n €]0,1]andy >0, Z, ,([a, b[, X) (resp.Z, ,(a, b], X)) is the space of
functionsu € C, ([a, b[, X) (resp.C, (Ja, b], X)) such that{i], , < oo, where

[u],,,:= sup {(b—zﬁ)”'7 sup (q—p)‘"IIU(q)—U(p)le,

sela,b] s<p<q=(s+b)/2

se]a,b] (s+a)/2=p<q=s

(resp. sup{ (s—ayr* sup  (@—p) "u(@)—u(p)lix })

(iv) If » € ]0,1]andy € [-n,0[, Z, ,([a, b[, X) (resp.Z, ,(a, b], X)) is the
space of functionsi € C!([a, b], X) such that{i], , < co, where [1], , is
defined as before.

The spaceg, , are Banach spaces with their obvious norms, i.e.,

Iullz, = {||u||y+[u]y,n |f V4 >0,
7 | lullee + LUy +[Uly,  if ¥ €[—v,0[
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they will be useful in describing the weightedldér continuity of the optimal pair of
problem (0.1)—(0.2).
The following characterization of the spacgs, holds true:

Proposition 2.2. If n €]0, 1] andy > —p, y # 0,then we havevw € Z, ,([a, b[, X)
if and only ifw: [a, b[— X fulfills

[w(p) —w@lx <c(p—q)"(b—p) 77 for a<g=<p<h (2.1)

Proof. Assumew € Z, ,([a, b[, X). Fix p,gwitha<g<p<b.lf p<(a+b)/2
we havea < q < p < (a+ b)/2, so that, by definition o, ,,

lw(p) —w@lx =c(p—’'(b-2a)""<c(p—-q)'(b—p 7"

If p> (a+b)/2,thentwo cases may occygi—q <b—porp—q>b— p.Inthe
first case, we have < p < (q + b)/2, so that

lw(p) —w@lx <c(p—’'b-—) 7" <c(p—’(b—p) """
in the second case we have- q > 2(b — p), so that

lw(p) —w@lx < lwPlix +llw@lx <cb—p 7 +cb-—q7”
<2cb-p)7 <2c(p-q)'b—-p) .

Note that this inclusion holds fgr = 0 too.
Assume conversely thait fulfills (2.1); we must prove thab € Z, ,([a, b[, X). It
isobviousthati <s<q =< p=<(s+b)/2 < b, then

lw(p) —w@lx <c(p—@"(b—p)77" <2 c(p-q)"(b—s) "7,
so that p], , is finite. Next, we have to show that

lw(p)ll <ctb—p)~” for a<p<b if y>0,
lw(p) —w@lx <c(p—q)~7" for a<q<p<b if —-np=<y<O.

Supposer > 0.Ifa < p < (a+ b)/2 we have

lw(p)lix < lw(p) —w@|x + lw@lx <c(p—a)y(b—a)y " + |w@)]x
<chb-—a)7+lw@lx <cb—p)~7 + lw@lx,

whereas ifa+b)/2 < p < b,i.e.,b— p < (b —a)/2, then there exists € N* such
that

2" lb—a)<b—p<2"(b-a),

so that we have, denoting lay the point of g, b[ whose distance frorhis 2-%(b — a),

n—1

[w(Plx < lw(p) —w(@)llx + Z lw(@k+1) — w(@)llx + llw(@o)lx
k=0
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<c(p—a)'b-p~""
n-1
+C) (@ —a)" (b —ag) ™" + [w(@)x
k=0

<Y (B —a)"(b—ak) " + [w@)lx
k=0

n
=cb—a)7 ) 24 + Jw@lx
k=0

<cd(b—ay 72" 4 |w@)llx < c"(b—p 7 + |w@lx.

This shows thajjw||, is finite if y > 0.
Suppose finally-n < y < 0. We proceed similarly: led < g < p < b; if
p—q < b— p, then recalling thay + n > 0 we get

—lw(p) —w@lx <c(p—"(b—p)~"7
=c(p-""b-p " <c(p-d77,
whereasifp —q > b— p,i.e.,b—qg > 2(b — p), there exists: € N* such that
2" b-q)<b-p=<2"(b-0q),

and consequently, denoting bythe pointin [, b] whose distance fromis 2 *(b—q),
we obtain (since-y > 0)

n—-1
lw(p) —w@lx < llw(p) —w(@)lx + Z lw(Qk+1) — wd) llx
k=0
n—-1
<c(Pp—0)'BO=pP "7+ (Ghrr— G0 — Gs) "
k=0
n
<cb—q7 )y 28 <cb-q) 7
k=0
<cdb-pr+c(p-q <2x(p-q".
This shows thatv € C”I([a, b], X). O

Remark 2.3. Wheny = 0, a function may satisfy (2.1) without being bounded at the
pointb, as the scalar example laty — x)/(b — a)) shows; such a function cannot be
in the spaceZy , ([a, b[, X). However, ifu: [a, b[ — X satisfies property (2.1), then
necessarilyy € BMO(a, b; X) (the space of functions with bounded mean oscillation).

Remark 2.4. In view of Definition 2.1, Hypotheses 1.3 and 1.4 just say that, for each
y.n=0,

{t = [-ADO]'U 1, S[-AWG)] € Zy—yvosds TI, LH)),

s [~ASTU 1 9 - ADT € Zoyppos (0.t LH)). (2:2)
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We introduce other spaces of functions having nonintegrable singularities.

Definition 2.5. Let [a, b] be a real interval.

@ If y = 1,1,(a,b[, X) (resp.1,(a, b], X)) is the space of functions e
C, ([a, b[, X) (resp.u € C,(]a, b], X)) such that the limit

b—h b
hIer&/a u(t) dt (resp.hﬂgl /a+h u(t) dt)

exists in the norm oK.
(i) If y = 1andp €]0, 1], we set

Z; ([a,b[, X) := Z, ,([a, b[, X) N1, ([a, b[, X),
Z; (la, b, X) := Z, ,(a, b], X) N1, (a, b], X).

The spaces$, ([a, b[, X) (resp.l, (Ja, b], X)) are Banach spaces with the norm

lully, == llully + lullx,
where
d
/ u(t) dti| a§c5d<b}
c X

d
(resp.||u||* = sup{ / ut)dt|| :a<c<dc< b}) ;
c X

for a proof see Lemma 1.7 of [AT1]. The spacgs, ([a, b[, X), Z7 ,(a, b], X) are
Banach spaces with the norm

Iluliz;, = llull, + [uly,, + Ul

We now recall some results concerning linear Volterra integral equations in the spaces
B,,Cy, Z, 4 1,,andZ;  introduced above.

Julls := SUP{

Proposition 2.6. Leta b € Rwitha < b,let X be aBanach spacet0 < § <o < 1.
Let Q(t, s) be a bounded operator in Xontinuous for a< s < t < b, and consider
for s € [a, b[ the integral operators

t
(Qso)(t) = / Qt.o)p(e)do,  tels bl.

(i) If
1Qt, o)llcxy <Btt—o)*™  for a<o<t<h, (2.3)
then Q € £(B,(s,b], X)) and (1 — Qs)~t € L(B,(]s, b], X)) for each
y € [0, 1].

(i) If (2.3)holds and in addition

IQ(t,s) — Q(z, 9)llex) < Bt —1)°(x —s)* 17°
for a<s<t<t<hb, (2.4)

then Q € L(B, (s, b], X), Z¢ —a)v(-s).5(s, b], X)) for eachy € [0, 1[.
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(iii) If (2.3)and(2.4)hold, and in addition

1Q(t, ) — Qt, S)llzH) < B(r —9)°(t — 1)+
for a<s=<rt<t<h, (2.5)

then Q € £(l, (s, b], X)) and (1 — Qs)~* € L(l, (s, b], X)) for eachy €
[1,1+ 6.
(iv) Finally if (2.3), (2.4),and(2.5) hold, and in addition

1Q(t, a) — Q(z.q) — Q(t, s) — Q(z, 9l zh)
<Bt-0’'@-9C—q*+?
for a<s<g<rt<t<h, (2.6)

then Q € L(l, (s, b], X), Z,_«s5(s, b], X)) for eachy € [1,1+ 4[.

Moreover in all cases the corresponding norms are bounded by constants depending
onlyonb—a, B, «, 4.

Proof.  All results follow by adapting the proof of Propositions 2.4 and 2.6 of [AT1].

However, we explicitly prove thatl — Qs)~ e £(1, (s, b], X)) wheny € [1,1+ §[

since the corresponding proof in Proposition 2.6(ii) of [AT1] is not completely correct.
First it is tedious but easy to verify by induction that the iterated oper@®r

m € N*, is given by

t
Qy(t) = f Qn(t.o)p(@) do,  te[s b,
where

Qut, o) = Q(t, o),
t
Qu(t, o) :=/ Qmit.))Q@ o) dg,  VmeN, a<o <t<b,

and in addition, for eachm € N T,

IQm(t, )llzx) < Bnt =)™t for a<o <t<b, (2.7)
IQm(t, 0) — Qm(z, @)l £y < Bm(t — 7)°(t — )™ +°

for a<s<t<t<h, (2.8)
IQm(t, ©) — Qm(t, )l c(H) < Bm(t —9)°(t — )™ 172

for a<s<rt<t<h, (2.9)

Qm(t, o) — Qm(t, ) — Qm(t, S) — Qm(z, S)||£(H)

<Bnt—1)¥0 -9t —-0)*"? for a<s<o<t<t<bh, (2.10)
whereB, is a constant depending only bn- a, B, «, § and such that

lim By,T"=0, VT >0. (2.11)

m—oo
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We show now thaQ' maps boundedly, (Js, b], X) into itself with norm less thaé

providedm is sufficiently large. This will show thatl — Q'S“)‘l, and hencél — Qg) !
too, belongs taC(l, (s, b], X)). Indeed we have

t t
Qy(t) = / [Qm(t, o) — Qm(t, 9]¢(0) do + Qn(t. s) / ¢(c) do,

so that by (2.9) and (2.7) we get

t
t—9"1QMp(t)|x < Bm(t —5)” / (0 —9°(t— o)™ (0 —5)" do[g],

+ Bn(t — 9™ gl
< cBnb—a)™lgl,,  Vtelsb],

ie.,
[QS¢], < cBnb—a)™ ¢l (2.12)

Similarly, we easily obtain, for eacp,r withs < p <r < b,

f Qlg(t) dt
p

< ¢B, / (t— 9™ dig],
X p
+ Bm/ (t — 9™ dt[g]. < cBnb— )™ ]l .
P

ie.,

[QT¢], < cBnb—a)™¢ll,. (2.13)
The result follows by (2.11), (2.12), and (2.13). O

Remark 2.7. From Proposition 2.6 we also deduce an integral representation of the
operator(1 — Qs)~*: Indeed we have, fare [s, T — ¢],

00 00 t
(2= Q) M) = 90 + Y 1QPAM =00+ Y [ Qnit.0)y() do
m=1 m=1YS

and by (2.7) we get

t
(2= Q) M0 = o) + [ Rt 90(0) do, (2.19)
where the kerneR(t, o) is given by
R(t,0) =Y Qu(t, o) (2.15)
m=1

and satisfies estimates similar to (2.7), (2.8), (2.9), and (2.10).
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3. Differentiability of s — ®(t, s)

We collect the main properties of the state operator s) defined by (0.6). By the results
of Sections 4 and 5 of [AT5] we havg(t,s) e L(H)forO<s<t < T and

o(t,t) =14, ot,s) =, r)p(r,s) for 0<s<r<t<T, (3.1)

ld -, Sl 2eh,L2s,T,HY < C, Vs e [0, T, (3-2)

t > ¢(t,9x € CLo(s, TLH), VxeH, Vsel0,T[ (3.3)

s— ¢(t,9x e C([0,t], H)  VxeH, Vtelo,T[, (3.4)
1/2

H PY24(T,s) HaH) <c,  Vse[o,T[. (3.5)

Moreover,¢ (t, s) satisfies the following integral equation for0s <t < T:
#(t,s) =U(t,s)
t
— / U(t, 1) A)G()N(()IG(1)*A(T)* P(1)é(z, S) d. (3.6)
S

This equation will be the starting point in order to prove differentiabilitg eb ¢ (t, s)
forO<s<t<T.

Proposition 3.1 [AT5, Proposition 6.1]. Under Hypothese$.1-1.7let ¢ (t, s) be the
operator defined by0.6). Then for0 < s <t < T we have

. ot +h,s)—o(,s)
rIJLnO( h X! y)H

= ([1n — GOND GO AD PM] (L, 9 | AD)*Y),,
VX € H, Vye DA(I)*'

Proof. By (3.6) we get, forO< h < (T —1)/2,

t+h,s) —of(t,
<¢( + S; o ( S)le)
H
_ (Ut+h,5)-U,s)
‘< h X'y>H

t+h
+ (/ [—AD]*G()N(T)IG(1)* A(T)*P (1) (1, S)X dt |
t
x [[~A@T Ut +h, )" — [~AD T Ut + h, t)*] y)
H

t+h
+ (/ [—A@]*G()N(1)IG(1)*A(r)*P(1)¢ (r, S)X dr |
t

x [-A®) Ut + h, t)*]y)
H
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t
+ (/ [—A@]*G(N(T) 'G(1)*A(T)*P(0)¢ (7, 9x dr |
U@+h,o)*=U(, )" y)
H

x [—-A@)* ] .

Lettingh — 0, by Hypothesis 1.4 we obtain, in a straightforward way,

(¢(t +h,s) —¢(t.s)
h

+ ([~ADI*GONMD G AD* PG, )X | [-AD)*TY),,

X| Y> — (ADUE, 9x [ ) +0
H

t
+ (/ [—AD]*G()N(T)IG(1)* A()*P (1) (1, S)X dt |

[—A@T U, r)*v)

H

A similar computation wheis — t)/2 < h < 0 yields the same conclusionlas—- 0™,
and the result follows. O

We are unable to get a better result, i.e., differentiability e% ¢ (t, s)x in a stronger
sense: see Remark 6.2 of [AT5].

We now examine the differentiability properties ®f— ¢(t, s). Fix a nhumber
£€]0, T[. ForO< g < T — ¢ we introduce the integral operator

[Kqel(t) == /t U(t, 1) A(r)G()N(1) 'G(0)* A(T)*P(1)e(7) dr,
telq, T q—s], (3.7)
whose kernel is
K(t,7):=U(t, 1)A@)GE)N()IG(1)*A(x)*P(7), O<t<t<T, (3.8
and satisfies, by Hypotheses 1.4-1.6 and by (5.9) of [AT5],

IK® Dl <ct—)*HT —n)* !t for 0<t<t<T; (3.9)
in particular,
IK® Dl <ct -1t for 0<t<t<T-—e¢. (3.10)

We are going to show that the results of Proposition 2.6 are applicable to the operators
Kq in the interval [T — ¢] and in the spacéd. To start with, by (3.10) we see that
Proposition 2.6(i) holds, so thatl + Kq)‘1 belongs tof(B, (Iq, T — €], L(H))) for

eachy € [0, 1[and

||(1+ Kq)71||L(By(]q,T—S],E(H))) S CSv Vq € [07 T - S]a V)/ € [07 1[
(the spaceB, is introduced in Definition 2.1). Moreover, by Remark 2.7
t
[+ Ko 2010 =00 + [ Rt.0)(@) oy,
q
V¢ € B,(Jq, T —¢],H), Vtelq, T—¢], (3.11)
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where the kerneR(t, o) is given (compare with (2.14) and (2.15)) by

R(t.0) =Y (—D)"Kpn(t, o). (3.12)
m=1

with
t

Ki(t, o) = K(t, 0), Kmei(t, o) :=/ Km(t, 9)K(q, o) dq, Ym e N*.
It also satisfies
IRt Dl e <Ct—1)*t  for 0<t<t<T-—-s (3.13)
Hence we can rewrite (3.6), for€s <t <T —¢, as
¢(t,9) = [(1+ K9 MU, 9] (1)
=U(,s) + /t R(t, 0)U (o, s) do, tels T —e¢l, (3.14)
s

and for smalh > 0 we easily obtain

h
. _ . s+h
- [<1+ Ks+h)—1<u(’s+h; ve.s %/ K(-1)(z.9) dr)} ®
for s<s+h<t<T-—g¢, (3.15)
p(t,s—h) —a(t,s)

—h

_ [(1+ Ks)—l(U(~,S— h)h— UG, s) +% Ke. D)o 5—h) d’)] ©

- s—h
for 0<s—h<s<t<T-—g; (3.16)

now we have to leh — 0. We need some lemmas.

Lemma 3.2 [AT5, Lemma 6.3]. Under Hypothese&.1-1.7 let ¢ (t, s) be defined by
(0.6).Then

lpt,T) =t S)lc) < C(r —9)°(t—7)°  for 0<s<t<t<T-—e

Proof. From (3.14) we deduce

Pt 1) —p(t,8) = (L+K)™ <U(-, ) —-U(,9) +/ K(.99¢(.s) dQ> )

S

T t
=U(t,t)—U(t,S)+/ K(t,q)¢(q,s)dq+/ R(t, o)

S

X (U (o,7) —U(o,8) + /T Ko, Q)¢ (q, S) dq) do. (3.17)

S
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Now by Hypothesis 1.4 we have

U, 7) —U(,9)llcm <t —9°C —1)7°
for 0<s<t<r<T, (3.18)

whereas by (3.9) and (3.3) we get, forkOs <7 <r < T,

/ K(r, )¢ (q,s) dg

L(H)

<c / T(T — 20— tdg< (T — 0)*2(r — 9)°,

and, in particular,

/ K (.. 9 dq

S

<C(t —9)* for 0<s<t<r<T-—g
L(H)

hence, by (3.18), (3.13), (3.3), and (3.17),
lp(t, 7) —dE, S)lcy <z =9t —1) " +c [(t — )" *dqg
—l—Cg/t(t —0)* Mt =9’ — 1) + (r — 9)*] do,
and the result follows. O

Lemma 3.3 [AT5, Lemma 6.4]. Under Hypothesed.1-1.7 let P(t) be defined by
(0.5).Then

=A@ T P@) — [-AS) T PO lcH) < C(xr —9)°
for 0<s<1t<T—¢.

Proof. Starting from (0.5) we split
[—A@) TP () — [-A©®) T P(9)
T
= / [[-A@T U@ D) — [-A®)T U@, 9" M(@¢(q, 7) dq
T

+f [—A®G) 7 U@, s)*M@)]¢(, T) — ¢(d, S)] dg

—f [—A®G)* 17U, s)*M(@)¢(q, s) dq

+ [[-A@ T U(T, D — [-AG) T U, 9)*] Pro(T, 1)

5
+[—AG T U T, 9 IPr[¢(T, 1) — ¢(T,9)] =1 Y _ Ii.
i=1
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Now we have

T
Mallean < c f T —-9'@-0)"* T —g* tdg<c(r—9)°
(by Hypotheses 1.4, 1.6, and by (3.3));

2l zHy =

T—e/2
/ [—A®S)T U@, 9*M@[¢(q, 1) — ¢(q, 5)] dg

T L e
+ —A(S) 17U (g, 5)*M T -2
/T | rAeTTUE@ M@ (a.T - 5)

[olr-50)-e(r-5 9] a

T—¢/2
- cs/ @—-9* " —9°@q - dg

L(H)

T -8
to [ @-9riT g ie-9'(T-5 1) da
T—e/2 2

<c(t -9’
(by Hypotheses 1.3, 1.6, by (3.1), (3.3), and by Lemma 3.2);

aleon ¢ [ @=9° T > tdg <. - 9"
S
(by Hypotheses 1.3, 1.6, and by (3.3));

Nallzwy < ez =9 (T =)’ <c(x —9)
(by Hypothesis 1.4 and by (3.5));

sl cy = [[[=AGS)T U, 9)*IPro(T, T — &)
X[p(T =&, 1) =T =& 9] .,
<c(T-9*"Yr—-9lc? <c(r—9)°

(by Hypothesis 1.3, by (3.1), (3.5), and by Lemma 3.2),

and the result follows.

213

|

Lemma 3.4 [AT5, Lemma 6.5]. Under Hypothese$.1-1.7let K(t, 7) be defined by

(3.8).Then

(i) 1K, 8)—K(, 9l <ct—1)(r—9* 1 for0O<s<t<t<T-—eg,
(i) IK@, )—Kt,S)llem) <cC(r—9°t—1)* % for0<s<t<t<T-g,
(i) K, 9)—K(z,q)—K(t,8)—K(z,S)llzH) < C:(t—1)°(q—9)°(r—q)* 1%

for0O<s<g<t=<t=<T-s¢.
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Proof. (i) By (3.8), (3.18), and (3.10),

o500 (2

<c(t—1)’(r —9)* 1.

K, ) —K(z, Sl =

L(H)

(i) We have, by (3.8),

K(t, ) = [[-A@T Ut O] [[-ADI“G(D) ] N(x)*
x [[-A@I*GO] [[-ADT"*P()]., 0<t<t<T, (3.19)

so that by Hypotheses 1.4-1.6, by (5.8) of [AT5], and by Lemma 3.3 we obtain in a
straightforward way

IK(t, o) — Kt S)llem <G [t =9t —0)* P+ (-9t —0)* ],

and the result follows.
(iii) We have, by (3.8), Hypothesis 1.3, and (ii),

K, q) — K(z,q) — K(t,s) = K(z, S)l| hy

t
[ row (a5 < (50) - (52

L(H)
<c /Tt <p— #)l @-9°(c - dp
<Ct—0)’@T—-’@-9°( -9,

and the result follows. O

Remark 3.5 [AT5, Remark 6.6]. (i) In view of the results of Proposition 2.6, Lemma
3.4 tells us that the operatokg, and(1 + Kq)~! beong tol(l,(]q, T —¢], H)), v €
[1, 1+ §[, for eachg € [0, T — ¢[, with norms bounded independently @{the space
I, is introduced in Definition 2.5).

(ii) The kernelR(t, o) introduced in (3.12) satisfies the same estimatds @so)
does, i.e., (3.13) and

IR, 8) — R(z, 9) |l cHy < Ce(t — 7)°(z —9)* 717

for O0<s<t=<t<T-—g¢g, (3.20)
IR(t, ) — R, S)ll ) < Ce(r —9)°(t — 7)* 17

for 0<s<t<t<T-—e¢, (3.21)
IR(t, a) — R(z, @) — R(t, ) = R(z, 9)llz) < Gt — D)@ —9)°(x —q)* 2

for 0<s<g<t=<t<T-¢. (3.22)

This is proved in Remark 6.6(ii) of [AT5].
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Lemma 3.6 [AT5, Lemma 6.7]. Under Hypothese4.1-1.4 there is an operator V
(t,s) € L(H), continuousfol0 <s <t <T,suchthatfoO<s<o <t <T we
have

(i) (d/d9)U(t,s) =V (t,s), V(t,s)x = —U(t, S)A(S)X, VX € Da);

(i) IV, 9)llem) <ct—s)™h

(iii) IV (t,s) + A9 L) < ct —s)°

(V) IV(t,0) = V(t,9)lcm) < Cylo —9)(t —o) 17", ¥y €]0, 8;

(V) IV(t, o) + A@0)e=A@) — V(t,s) — AS)e" 94 .y < c,(oc — )"
(t—0)17,vnelo,d;

(Vi) IV, o)=V(t, 9IAG) ich) < Gyl —9)"(t—0)1+(0—9)*(t—0)"71],
vn €]0, §[.

Proof. Statements (i)—(iv) follow by Theorems 6.4 and 6.5 of [AT3]; part (v) is im-
plicitly proved there, taking into account also Lemma 2.2 of [Al]. Finally concerning
part (vi) we have

[Vt o) =V, 91A® ™ 4,
< [[Vtt,o) = V(t, 9)] [1n — e PA] AGs
+ ”V(t, O’) [e(t—(r)A(s) _ e(t—(r)A((r)] A(S)_lng(H)
+ [U(t, o) [A(0)e AP — A(s)e' DA As)
+ ||[U (t, o) —U(t, 9)]et9A® ”E(H) ;

)_1||£(H)
e

the result then follows in a straightforward way, using (iv), (ii), (3.18), and the estimate

I[A@)Me” " PAD _ A(5)Me A A(s) | L)

o0—S
<c [(q -9 - "+ / émds}
o—q
for 0<s<g<o=<T, me N, (3.23)
which is a consequence of Lemma 1.10(i)—(ii) of [AT1]. O

Remark 3.7. As shown in Remark 6.8 of [AT5], it follows by Lemma 3.6 that for each
x € H the functionV (-, s)x belongs to the spade(]s, T], H), and in addition, for each
n €10, 4,
V('v S) € Zl,ﬂ(]s’ T]v E(H))a V(v S)X € Zir](]sv T]’ H)s
Vx € H, (3.24)
V(.9 + A@S)e O e 73 5,(s, T], L(H)). (3.25)

Now we return to the integral equations (3.15) and (3.16). By (3.11) we can rewrite
them as
d(t,s+h) —a(t,s)
h
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. s+h t
_Utt.sth —U.s) +}/ K(t, )¢ (. S) df+/ R(t, o)
h h Js s+h

_ s+h
X(U(a,s—i—hr)] U(U,S)+%f K(o,t)q)(r,s)dr) do.

tels+h T —el (3.26)

—h

_ uc,s h)h U(.s) _,_% K(t, t)¢(r,s—h) dr—i—/ R(t, o)
— s—h s
9 (U(U,S_h)h_U(G’S) +% K(o, 1)¢(r,s—h) d‘L’) do,
— s—h
tels, T —el (3:27)

Proceeding formally, letting — O+ we find

os(t,s) = V(t,s) + K(t,s) + /t R(t, 0)[V (0, s) + K(o, 5)] do,
s
ie.,
ps(t,s) = [(1+ K)S) V(.9 + K(, 9)]] 1), tels, T —¢l. (3.28)
Notice that this formula has no meaning4itH), since the operatafl + Ks)~* acts
in 11(s, T — €], £L(H)) but does not operate idy,(]s, T — €], L(H)), whereas, by

(3.24),V (-, s) is in the latter space but is not in the former one. HoweVer, s)x €
I1(s, T — €], H) for eachx € X, so that instead of (3.28) we may write

d
Jelot. X = [+ KV, 9%+ K, 9)x]] (1),
Vte]s, T —e¢],Vx € H. (3.29)

Nevertheless, we are going to show thatt, s) exists in the sense d@f(H); in fact we
have:

Theorem 3.8 [AT5, Theorem 6.9]. Under Hypothese%.1-1.7,let ¢ (t, s) be the op-
erator defined by0.6).For0 <s <t < T it holds in the sense of(H), that

t
d%¢(t,5) = V(t,s)+/ R(t,0) [V(0,9) + A(5)e949] do
t
- / [R(t, o) — R(t, )] A(s)€ 94 do — R(t, 5)et"9A®

where t, s) = (d/ds)U (t, s) and Rt, s) is defined by3.12).

We remark that this formula reduces to (3.29) when applied toxasyH, as is
easily seen.
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Proof. We need the following, tedious computation. Fix ]0, T[,takes € [0, T —¢]
andt € ]s, T —¢], and assume that@ h < (t —s)/2. Denote byT;, withi = 1, 2, 3, 4,
the terms appearing on the right-hand side of formula (3.26); then we have

_Ut,s+h) —U(,s)
N h
(by Lemma 3.6(i))

= V(t,s) +o(1) as h— 0";

1 s+h
T, = E/ K, )¢(z,s) dr
(by (3.6))

1 s+h
= ﬁ/ [K(t, ) — K(t,9)] ¢(r,9) dr

T1:

1 s+h
+ K(t, S)E/ [U(r,s) — e7949] dr
S

1 h 1 s+h T
+ K(t,s)H/ ePAS dp + K(t,s)H/ / K(t,q)¢(q,s) dq dr
0 S S

1 h As 3
K(t’s)ﬁ/o gPAs dp+;T2i. (3.30)

Now, by Lemma 3.4(ii) and (3.3),

1 s+h
||T21||L(H) = H H/ [K(tv T) - K(t7 S)] ¢(T’ s) dt

L(H)

1 s+h
sop [ @-9t- o T - o tdr < ot 9N
S
next, recalling that
[U(z,s) — A loqp ez =9  for 0<s<t<T (3.31)

(see (2.6) and Lemma 2.2(i) of [A1]), we get, by (3.10),

1 s+h
T2zl ) = K(t,s)H/S [U(z,5) — 7949 dr

L(H)
< c.(t —s)**h? = c(e, t, s)h?,

whereas, by (3.10) and (3.3),

T3l cehy =

1 s+h T
K(t,S)H/ /K(r,q)cﬁ(q,S)dq dr

< C.(t —9)*h* = c(e, t, S)h".

L(H)
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Thus we deduce that

1 t
T, = K(t, S)ﬁ/ ePA® dp+ o(1) as h— 0", (3.32)
0
Concerningls, using Lemma 3.6 we split it as follows:
t U (o, h) — U (o,
Ts :=/ R(t,0) &S+t =U@.9
s+h h

t 1 s+h
N f R(t"’)‘/ V(0. q) dg do
s+h h s
t
1
= R, 0)—
/s+h h
s+h
X / [V(a, Q) + A(q)e(n—q)A(q) ~V(o,s) — A(s)e((r—S)A(s)] dq do
Ss+h
_/ R(t, o) [V(a, S) + A(s)e("—SWS)] do
S
t
+ / R(t, o) [V(U’ S) + A(S)e“*S)A@] do
St 1
_/ [R(t,0) — R(t,s+h)] =
s+h h
s+h
X/ [A(q)e(U*q)A(q) _ A(S)e(afs)A(S)] dq do
S
t
+ [R(t,s+ h) — R(t, s)] f A(S)e(“_S)A(S) do
s+h
s+h
+/ [R(t, o) — R(t, 9)] A(s)e 94O dg
S
t
_/ [R(t, o) — R(t, 5)]A(s)e” 94 do&
) 1 psth
o [R(t’ s+h) — R(t, S)]H /S [e(t—q)/'\(q) _ e(s+h—q)A(q)] dq
1 [sth
— R, S)HL [e(FQ)A(q) _ e(t—s)A(s)] dq+ R(, S)e(tfs)A(s)
Lo (s+h-0)A@) _ gs+h—a)A(s)
— S —-q qQ _ s+h—q S
+R(tas)hfs [e e ] dq
1 [sth
+ R(t, s)—/ ePAS dp
h S
t
=2/ R(t, o) [V (o, S)—i—A(s)e(“—S)A(S)] do
S

t
_/ [R(t, o) — R(t, S)]A(5)e” 92 dg

8

1 s+h
— R(t, 5)e'™946) 4 R, S)H/ ePA® dp + ZT3J'.
S j=l
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Now we have

I T31ll 2cHy

t 1 fsth
/ R(t, O')ﬁ / [V (g’ q) + A(q)e(‘T*Q)A(q)
S s

+h

~V (o, s) — A(s5)€"949] dq do

L(H)
(by (3.13) and Lemma 3.6(V))

t 1 psth
< Cs/ (t _ O.)O(—l_/ (q _ 5)6/2(0. _ q)S/Z—l dq do
s+h h s
< Cg(t —_s— h)a+8/2—lh6 < C(8, t, S)hs;

next, by (3.13) and Lemma 3.6(ijii),

s+h
I Ta2llcchy = / R(t,0)[V(0,9) + A(9)e“ 4] do
S

L(H)

s+h
5%/1 (t—0)"Yo —s)tdo < c(e t, s)h’.
S

219

Now we recall the following property, similar to (3.23) andtruefot@ <q <o <T

andm € N, which follows easily by Lemma 1.10(i)—(ii) of [AT1]:

” A(q)me(afq)A(m _ A(S)me(U*S)A(S) ”ﬁ(H)
o—S
<c [(q -9 —q)F "+ f gom ds} :

—q
AsS§ = u+ p—1,(3.33) implies that

I Ta3ll 2¢hy
t

[R(t,0) — R(t, s+ h)]%

s+h

s+h
X/ [A(q)e(a—Q)A(q)_A(S)e(a—s)A(s)] dq do
s

L(H)

t
1
<G| (@-s—-h’t-o0) 7=
s+h h

s+h o—S
x/ [(q—s)*‘(o—q)p—2+/ g2 ds} dq do

-q

t 1 s+h
<c / (0 —s—h’Ht—o)y 1= / (q-9*s+h—-qrtdq
S S

+h h

t
1
+c. | (6—-s—hlt—o) 1=
s+h h

s+h
< / -9 -9 o - tdqd

(3.33)
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t
<ct—-s—h* M 4+c [ (6-s—h’tt—-—0)"1°h206—-952do
s+h
< c(e, t, s)h? + c(e, t, s)hY2.

Concerninglsg, Tss, andTse We have, by (3.21),

t
[R(t, s+ h) — R(t, 9)] / A(S)e(U*S)A(S) do
s+h

I T3all cHy =
L(H)

< Cgha(t —s— h)ol—l—s He(I—S)A(S) _ ehA(S) ||£(H) < C(E, t, S)hts’

s+h
[ Tasll )y = / [R(t, o) — R(t, 5)] A(S)e“ 94O (g
S

L(H)

s+h
< CS/ (0 =9t —0)* 1 do < c(e, t, S)N?;
S

1 s+h
I Ts6ll c(hy = [R(t, s+ h) — R(t, S)]Hf [e(FQ)A(q) _ e(s+h7Q)A(O|)] dq
S

L(H)
<c.h’(t —s—h)* 1% < (e t, )N,

Finally by (3.13) and (3.33) we obtain

1 s+h
S

L(H)
t—s

1 s+h
<c(t —s)“—lﬁ / [(q—s)**(t—q)ﬂ—1+ gt ds} dg

t—q

1 [sth q-s
< G (t — s)‘”*lﬁ/ [(q —9s)*(s+h-— q)p*1+log [1+ ﬂﬂ dq
< _

<c(t—95)*th +c.(t —s)* Xt —s— h)7?°h’
< cet,9)h’,

1 s+h
I Tagll cHy = H R, S)ﬁ/ [eCTN-PA@ _ gH=AD] dq
S

L(H)
1 s+h
<c(t— S)“‘lﬁ f -9"s+h—-qrtdg <c.(t—9s*h’
S

< c(s, t, S)h°.

Summing up, we get

t
T3 = / R(t,0) [V(o,5) + A9 249 do
S
t
— / [R(t, o) — R(t, 9)] A€ A% do — R(t, )" "9A®
S

1 s+h
+ R(t, S)H/ ePA® dp+ o(1) as h— 0", (3.34)
S
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We finally consideiT,. Taking into account (3.6) we split it as follows:
t 1 s+h
Ty = f R(t,a)—/ K(o, t)¢(z,s) dr do
s+h h s
t 1 s+h
= / R(t, 0)—/ [K(o, 1) — K(0o, 9)]¢ (1, s) dt do
s+h h S
s+h 1 s+h
—/ R(t, o)K (o, S)—/ ¢(t,s) dr do
S
s+h
+/ R(t, 0)K (0, s) = / [U(r,5) — €7 9%9] dr do
S
t
+/ R(t, 0)K (0, s) do—/ ePA® dp
s h Jo

t 1 s+h T
_/ R(t,o)K(G,S)H/ / K(r,9)¢(Q,s) dq dr do

t L .
= B)
_'/s Rt o)k (@9 d"ﬁ/(, A dp+ 3 Tan

We have, by (3.13), (3.8), Lemma 3.4(ii), and (3.3),

t 1 s+h
1 Taall ceny = / R(t, a)H/ [K(o, 1) — K(o, 9)]¢(t,s) dr do
s+h s L(H)
t 1 s+h
<c (t— a)“—l—/ (=9 —0)* T —)*tdr do
s+h h
/ t—0)"Yo —s—h* 1 doh’® < c(e, t, s)h’,
1Tzl ekt = f R(t.0)K (0, 9) - f b(z.5) dr do
s L(H)
s+h
< CS/ t—0)"Yo —9)* T —s—h)*1do < c(e,t, s)h?,
S
t 1 s+h T
I Taall o) = / R(t. 0)K (o S’ﬁ/ / K(z. (. 9 dg dr do
s s s L(H)

t 1 s+h p1
< CE/ (t—0)""Yo — s)"‘lﬁ/ (t —* AT-q)* 'dqdr do
S S S
< c(e, t,5)h",
whereas, by (3.13), (3.8), and (3.31),

t 1 s+h
/ R(t, 0)K (o, S)E/ [U(z,5) — e 9%9] dr do
S S

I Tasll cchy =
L(H)

t 1 s+h
< cE/ t—0) Yo — s)“‘lﬁ/ (t —s)’ dr do < c(e, t, S)h°.
S S
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Thus we deduce that
t 1 h
T, = / R(t, 0)K (o, S) daﬁf ePA® dp+o0(1) as h— 0%, (3.35)
s 0

By (3.30), (3.32), (3.34), and (3.35) we finally obtain

o, s+h)—o¢(t,s)
h

t
=V(t,S)+/ R(t, o) [V(0, ) + A5 949 do

t
- f [R(t, o) — R(t, 9)]A(s)e“ 949 do — R(t, s)et9A®
S

t h
+ [K(t,s)+ R(t,s)+/ R(t, 0)K (o, s) d0i| %f ePA® dp
S 0

+0o(1) as h— 0";

but observing that
t
K(,s) + R(,s) + / R(t, 0)K (o, s) do
S
Ki(t.s) + Y (=D™Km(t,9) + Y (—D)"Kmya(t, 5) =0,
m=1 m=1

we can conclude that

o, s+h)—o(,s)
h

t
= V(t,s)+/ R(t,0)[V(o,9) + A(9)e“ 949] do

t
_/ [R(t, o) — R(t, )] A(5)e" 92 do
S
- R(t,9e"9%® 1 0o1) as h—0F, (3.36)

i.e., the right derivative o (t, s) with respect t® exists inL(H) foreacht € ]s, T —¢].

In a completely similar way, starting from formula (3.27), we obtain that the left
derivative of¢ (t, s) with respect tcs also exists inC(H) for eacht € s, T — ¢], and
equals (3.36); hence the proof is complete. O

Corollary 3.9 [AT5, Corollary 6.10]. Under Hypothese&.1-1.7, let ¢ (t, s) be the
operator defined by0.6). Then for0 < s <t < T we havein the sense of (H),

d t
|:d—s¢>(t, s)} Ais)t=-U(,s) —/ R(t, 0)U (0, s) do — R(t, s)A(s) ™.
S
Proof. Itis an easy consequence of Theorem 3.8 and Lemma 3.6(i). O

Remark 3.10. (i) As shown in Remark 6.11 of [AT5], the result of Theorem 3.8
guarantees thaps(t, s) exists for 0< s < t < T; in addition, for eachy > 0 and
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O0<s<t<T,
ps(t, )l £y < Cros(T —)* Lt — )71, (3.37)
|65t HAS) ™ 1y < Crs(T —0* Mt —5)* ", (3.38)

(i) Using (3.5) we deduce tha?Tl/2¢>s(t, S) exists even wheh = T, and for each
s € [0, T[ we obtain

PY2p(T.s) = PY2p (T, T ;S> bs (T e s) , (3.39)

pl/2 T,s” <cr.. 3.40
|PH0uT)| | <o (3.40)

4. Uniqueness of the Riccati Operator

In [AT5] we proved that the operatd?(t), defined in (0.5), is a classical solution of
the differential Riccati equation (0.4); moreover, it is self-adjoint and nonnegative, and
satisfies
PeL™0,T; Z(H)NC(O, T[, £(H)),
[-AOTP() € Bio([0, T[, L(H)), (4.1)
IPt)x — Prx|ly — O as t—>T". 4.2)
In particular, by the general results of [AT1] on nonautonomous parabolic equations, for

eache € 10, T[, P(-) solves the Riccati equation in mild form in the interval JO— ¢],
ie.,

T—¢
Pt) = U(T — &, )*P(T —e)U(T —&,1) +/ ua, t*
t
x [M(r) = POAMGEONE) TG AM)*PM)]U(r, t) dr. 4.3)

We are unable to prove uniqueness of the Riccati opeRxDrin its full generality, i.e.,
within the class
{QeL™(©, T, Z(H)NC(O, T[, £(H)): [~AC)* ¥ “Q() €C1 ([0, T[, L(H)),
Q(t) > 0,vt € [0, T[, Q(t)x — Prxin H ast - T~} .
We need some regularity of the final datn, which allows us to get a better behavior

of the Riccati operator near the poiht In fact, following Theorem 6.4 of [LT3], we can
prove:

Theorem 4.1. Under Hypothese4.1-1.7, assume in addition that there exigtse
]1—2a, 1—«] suchthat R € L(H, D([—A(T)*]#)). Then the solution of the differential
Riccati equation(0.4)is unique within the class

[QeL™O.T,2(H)NC(O0,T[,Z(H): [-AO* T *Q()eCra—p([0.T[, L(H)),
P(t)>0,vt € [0, T[, P()x - PrxinHast— T}. (4.4)
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Proof. To start with, if P(t) is the operator (0.5), the assumption Bn along with
Hypothesis 1.3 yields

||[—A(t)*]1""P(t)H£(H) <c(T —t)* P, vt [0, T[; (4.5)

this follows by Theorem 3.13 of [AFT], but can be proved directly by adapting to
the nonautonomous situation the argument of Section 6 of [LT3]. Now assume that
P1(t), P2(t) solve the integral equation (4.3) for eack 10, T[ and both belong to the
class (4.4). The integrand in (4.3) is boundedcby — t)2@*+#=D in view of (4.5) and
Hypotheses 1.5 and 1.6, and we canslet> O since 2o + 8 — 1) > —1. Hence the
operatorQ(t) := Py(t) — Py(t) solves

T
QM) = —/ U@, * Q) AMGI)N(T)IG(r)* Arr)*Py(r)U(r, t) dr
t
T
—/ U(r,t)*Pg(r)A(r)G(r)N(r)‘lG(r)*A(r)*Q(r)U(r,t)dr. (4.6)
t

Hence applying £ A(t)*]*~ to both members we find for eatte [0, T[, due to (4.4)
and Hypotheses 1.3, 1.5, and 1.6,

I=AOT QM) 1)
= c/tT(r — ) HT —r)2etf-b dr”[_A(‘)*]l_aQ(')||lea7,;([o,T[,c(H));
thus, setting
K= |- AOT Q0 e, rpccny
we obtain
K¢ < o(T — )2 HA-1K,, vt € [0, T[.

Finally, if t € [T — §, T[, with a sufficiently smalls > 0, we deduce thaky_s = 0,
whichin turnyieldsP; = P, in [T — 4§, T]. This argument can be iterated, starting again
from (4.6), which now holds witi" replaced byT — §; in a finite number of steps we
getP, =P, in [0, T]. O
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