o

UNIVERSITA DI PISA

DIPARTIMENTO DI MATEMATICA

SEZIONE DI ANALISI MATEMATICA E PROBABILITA’

P.Acquistapace

Boundary control for non-autonomous parabolic
equations in non-cylindrical domains.

2.119(678) Ottobre 1992




BOUNDARY CONTROL FOR NON-AUTONOMOUS PARABOLIC EQUATIONS
IN NON-CYLINDRICAL DOMAINS

Paolo Acquistapace

§0. The problem
We consider the feolleowing initial-boundary value problem:

t
alj(t,-]DJy vl[t.-) + c][t,-JvJ(t,-)y = ult, ) on BQt, t>0,
y(0,:]) = yo(-) inQ;
we assume that:
@ is a bounded open set of R with 4@eC’,
whereas Qt, the moving domain, is defined by
Qt= Tt(no}.

where the map Tt:Rn—eRn salves

dt

4T, 00 = V(LT (x)), 50 .
. with veC {10, =[xR",R");

To(x) = x

a;j’CJECI[E]‘ bj,heCO(ﬁ], where Q =

({tha}:
>0

2, (t.Enn = vit) ] vneR®, V(t,£)ed; »(t)>0 viz0;

t

v(t,€} is the unit outward normal vector to Bnt at EEBQ“

2 2
Y el (R,); uel™(Z}, where I = tL),iu({tl»xant).

We want to study the following control problem:

minimize
T(u) = I n(t,€) |y(t,£[%dtag + f nlt, ) |ult,£)|%dE0t, &)
Q z

among all ueLz(Z] subject to the state equation (0Q.1);

here

v, D (a,,(t,")D )+ b (.30 y - D (e (t,-)y) + ht, ")y = C inQ, t>0,
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neC’ (T}, nec’{F), and m=0 in §, n>0 in I. {0.10)

The case of distributed control in (0.1) was studied in [7] (finite
time heorizon) and in [9] (infinite time horizon}; the case of Dirichlet

boundary control was treated in [10}. In all these papers however a”EBij

and bj’cj'hED' Non-autonomous parabolic equations in moving domalns were
also considered in {8].
We rewrite the state equation in weak form:
o
2+ b Dy %+ hy &|dfdt =
J I FA a, DyDe+cyD oy y ¥]dg
ov'Q
{0.11)
o .1 @ 1,2 =
=.H' ue aH (@)t veec" Wl E@.

o ant

Following [11] we are going to tramsform equation {0.11) into a similar
che in the cylindrical domain Q0=]0,mfxﬂo, by a suitable change of wvariable.
The latter problem will be studied in abstract form, using the results of
[2,5].

§1. The change of wvariable

We set
£ = Tt(X)’ xeﬁ; (for fixed t>0),
z{t,x) = y(t,Tt(x)), [t,x)éﬁ;, (1.1}
vit,x) = u(t, T (), (t,x3e0 .
Then a routine calculation shows that y satisfies {0.11) if and only if
z satisfies
0
Iofn [Jtztw + Athkz th + Chz th + JtBhth [ JtH z @}d&dt =
t (1.2}
- -1 =] 1,2 —
=J.J Bv g di "(xJdt  veeC AW ' Q) .
0 ane

where

J,(x) = [det DT {x)],  (t,x)eQ, (1.3)

_ -1 3 =1y * .
AL (Ex) = S (DT, (x) Jy, (B TGN (0T, 0 )1 (e,
C{E%) = 5 DT ) 7), o (1, T (x)), (&, :)ed,

- -1 . 3
B (t.x) = (DT, G0)7) o (£,T () - VLT D], (ke
H{t,x) = h(t,T, (=), (t,x)eﬁ;,

Blt.x) = J 6| (0T, 07) T v(0x)], (42T

here we have set Eu=lo,m[xﬁﬂo.
Thus the function z sclves the following non-autonomous problem:

- -1 . - —_ -1 =
z,~ D, (A, (0D Z) ¢ B (t,-)D 2 - J7°D (C, (t,-)z) + H{t,")z =0
in @, t>0,
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ALt Dz v (0,-) + €.t v (0,-0z = 8(¢,-3v(t,-) on eQ . -t>0, (1.9)

hk

z(Q,-) = yo[-) in Q.

We recall that the "area" element dE(f,£) can be wriltten as

daz(t,8) =V 1+ (Vi € ev(t,0)% ™ (g)at =

= Bt Y 1V, T, [x)]ov(t,Tt(xJJ]i dE™ T ()dt;
consequently the cost functional I{u) transforms into
;m 0a
1,0 = [ [ Mgzt Faxat + [ ] w0 vieo Par™ Goat,
o QD o ano

where

Mit,x) = Jt[me[t,Tt(x]), (t,x}eﬁg,

N(Ex) = ntt, T IRV 14(V06, T ) v, T 0))2 | (&, x0eE,.

The problem is now to minimize (1.11) among all veLz(EQ) sub ject
state equation {1.9) {or (1.2)).
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§2. The absiract formulation

We set H=LZ(QO), U=L2[BQD) and consider the abstract linear operator
A(t):DAu)QHAAH defined by:
= 2,2 . . =
DA(t)— {zeW (QU). B{(t,-,D)z = 0 on anﬂ}
{2.1)

Alt)z = (%, ,Dlz,
where

ot A _ . -1 . _ .
4(t,-,Mz = J7D (A (t,-)B z) - B {t,-)D z + JO'D (C (¢,")z) - E(t,-)z,

(2.2}

hk
B(t,-,D)z = Ahk(t,')th vk(G.-) + Ch(t,-)vhfﬂ,-}z

We want to show that, under suitable assumptions, {A{t},t=0} fulfills
the abstract hypotheses of [5].

LEMMA 2.1 Under the assumptions of §§0,1, suppose in addition that
u(t)‘l[[c(t.s}12+|b(t,e)-vtt,g))]2] sk V(6D (2.2)

then

2
(A(t)z!Jtz}LZ( =K jn J ) ]z{x){"dx  vzeD, .. (z.4}

ﬁn]

Proef Straightforward. o

As a consequence of Lemma 2.1 we have:

PROPOSITION 2.2 Under the assumptions of §§0,1, suppose in addition that
(2.3) holds. Then the control preblem (1.9)-{1.11) fulfills Hypotheses 1.1,
1.2, 1.3 and 1.4 of [5].

Proof By Lemma 2.1 we see at once that if AeR and A»X, then A cannoi be an

eigenvalue of A{t). On the other hand, in particular, each A(t) is the
infinitesimal generator of an analytic semigroup in H, whese reselvent
operators {A—A[t)]_1 are compact:; thus, clearly, there exists Auem such that
Aoep[A[t)) and the operators [AO—A(t]]a are well defined for each tz0 and
z>0. This shows that Hypothesis 1.1 of [5] holds true.

It is alsoc clear that we can apply to both {A(t)} and (a{t)"} the

abstract results of [4,3,1], so that there exists the evolution operator

T

g

U(t,s) associated to {A(t)}, with its usual properties. Moreover by [2,§2.3]
we deduce that Hypothesis 1.2 of {5) holds; namely, for each 8,pe [-1,1],
[a,b]cl0,»] and a=s<t=b the operator iAo*A{t]]BU(t,s)[AU—A(S)]-“ can be
continuously extended to E, it is strongly continuous as a function of (t,s)

and there exists M >0 such that

[

_ B _ —H u-8
I1A,-ACE) 170t 5) [A -ACs)] [P MB,H£1+[1:—SJ ] Va=s<tsb. (2.5)
Next, for each t>0 we define the "Green map" G(t) by:

AM =~ dlt,,Dw=0 inQ
w=G(t)g e= ° (2.6)
Blt,-.DIw =g on Bﬂo

By the results of [2,§2.5] and [6) we easily get Hypothesis 1.3
of [5], i.e.

t—)iAG—A(t)]aG(t] € LTDC([O,M[,E(U,H]) Vee]0,3/4(. (2.7

Hence, following [5], we can now rewrite the state equation (1.9) in
abstract form:

t
z(t) = U(t,Dly + J [[a,-a(s) 17%0CE, 817 1n -ats)*1a(s) [Bis)v(e)ids; (2.8)
O

(writing z(t),B(s},v(s) instead of z{t,-),8(s,-),vi(s,-)).
Similarly, introducing the operators C(t)e£(H), N(t)ef(U) given by

1s2

COE)E = M(t, )7 f(-), N{tlg = N(t, )g(-), (2.9)

the cost functicnal Io{v} can be rewritten as

2
I (v} = J:{”c(t)ﬂt)ﬂa + (NIvitdfvit)) Jat, {2.10)
and by (0.10) it is clear that Hypothesis 1.4 of [5] is fulfilled, i.e.

C(-]eLToc({D,m[,f{H}}, N(-yel® c([D,w[,E+(U)), and N(t)>0 vt=0. (2.11)

la
This concludes the proof of Proposition 2.2. o

Thus the control preblem (2.8)-(2.10) is covered by the theory of [S51.
In particular, by [5,82] we can solve the assoclated Riccati equatlion - and,
consequently, get the synthesls of the control problem - if and only if the
following finite cost condition holds true:



for each t =0 there exists c[to}a{} such that to each yUeH there
corresponds a control veLz([tn,w[,U) for which (2.12)
2
1, = ety 2

i}
where

el
2
I ) =I (lectiyendf; + (Nitdvied |vir)) Jat, (2.13)
s} to
with z given hy (2.8).

$3. The finite cost condition

We want to prove:
PROPOSITION 3.1 Under the hypotheses of §§0,1,2, assume in addition that:

(i) there exists &>0 such that

zh{t,€) = v(t) }|clt, ) +b(t,8) [+ &  VIt,&)el, (3.1)

{11} the norm 7{t) of the trace operator Qi—eaﬂt satisfies (3.15) below
{this is a condition on QU and Tt, see [3.12) below).
Then there exists ¢>0 such that to each yDEH there corresponds a control

veLz([O,m[,U) for which

= 2
L) =Ty 2. (3.2)

Proof Firstly we remark that, dus to the well known property

d -_—
get. (®) = 3 G0 div VIt T, (%)) vE>0, vxen , (3.3}
for each smooth y:0—R we have the formula
i—t lyte.€)|%€ = 2[ y(t, £y, (t,£)dE + J [v(8, €33Vt €3 wit, £)dH™ (5],
Q, G aQ,
* (3.4)

Hence if y is a solution of (0.1) with given contrel u, we easily get

13
3
&
3
i
H
&+
H
i

Sl P = ylzoey vie o v elar e -
a, aa
(3.5}
2
- zJ‘Q [3,,(4. €Dy Dy + (e, (£,840 (€D )y v + h(z,8) v7ag.
t
Now we choose the feedback control
Wt ) = - 2 y(E,E) V(EE)D(t,E), (1,8 (3.6
inserting (3.6) into {3.5) we easily get:
d 2.0 . ) 2
gl vI%aE = - 2wtn)| joy|fae + 2[9 [fe(t,€)+b(t,£) | |y]|Dy]=h(t,£)y7]de
* * b (3.7
s - u{t}J' [Dy|%dg + I [p(t)7 et £)+b(t, 83| *-2n(t, &) ]y ac.
nt nt N
By {3.1) we deduce
gt vIPag = -8 [ yPa - v [ poyiae, (@.8)
2 Q o)
t t t
so that
t
f ly)%ag = e'atf Iy, | ax - I e‘s“"”v(s)f [Dy| %agds; (3.9
Q 9] 0 Q
t o B
hence inserting (3.9) into (0.9} we easily obtain
I{u) = I e_at"m(t,-)ﬂ dtj ly [2dx -
0 L) g 7%
t o
Lo k-] 5
- v(s)[ e ST e, ) at| |py|%agas + (3.10)
o s @) “a
t g
1" 2
+ 7 I EICRST I e o, J- y2H" "t (g)dt .
0 L{an) L (ant) arzt

Now by the inciusion (for instance) H3/4'2(9t)cL2(89t) and by

interpelation we have, for each £{t)>0:
3
j yar gt s vyl s e(t)J fDy|%ag + 3“_’3]' l¥i®e  (3.11)
BQt : I (ﬂt] Qt e(t) ﬂt

vwhere y(t) 1s the norm of the trace operator nt—eﬁﬂt; taking intc account



(0.2), (0.3) and (0.4) it is easy to show that

HOERICR] | ol o BT . - (3.12)

L (ﬂol Lo (G}

Al BN
! ca t w0
L Q) L (ﬂo) 0,

By (3.10) and (3.11) we easily deduce

re

4]

1A

I(u) -8t [nm(t,-Ju +

w

L (Qt)

1 2 7(ty° 2
+ Yate, Jvee, -] 7L Nae[ | Pax -
4 L™(30.) L"(aa,) e(t)’ fn °

{:=] e
-T {p(s)J' e‘a”""[||m(t,-)|| L (3.13)
Q s L (Qt]
1 E 'ar(t]3
+ f|nlt, - vite, - ——-]dt -
4 REYR L*am,) e(t)”

1 2 2
Hnts, ) Ives, 1] e(s)} [Dy| 2agds.
al "L“’(ans ) x_“’(ans 3 JQE

Now we take e(t) sufficiently small, in such a way that

s, Ve ), els) s
P8R ) L¥(on )
s s (3.14)
o 3
-3{t-8} 1 2 r(t)
= vis)| e [;pnct,-)}l + Ynce. ) V(e ) ———]dt
L Py b L708q ) P(a) e(e)?
t £ t
(which is always possible); thus if we assume that
o
e mct, 3 + nce, [vie, -5} T Mgt < w, (3.15)
[~} 4 w0 ) 3
o L Q) 1 (aa ) L (ant} e(t)

then by (3.13) we conclude that there exists o>0 such that for each yUeH we
can find a control uel®(Q} for which I(u]sc“ynﬁz; hence the same is true for

Io{v), i.e. (3.2) holds. The proof is complete. o

In particular, Proposition 3.1 shows that the finlte cost condition
{Z.12} helds true for I{u) and hence for Io[v): in fact it helds uniformly
with respect te t, i.e. Hypothesis 3.1 of [5] is fulfilled too. Thus by [5,
Proposition 3.2], the Riccati equation associated to the control probiem
(2.8}~-(2.10) has 2 unique minimal solution P(-)eLm([O,m[,E+(H}}; hence,
following [3, §2.5], we get a unique optimal pair (Q,G) for problem (2.8)-

T
!
P
s
¥
i
%
t

-{2.10). Going back to the corresponding (Q,ﬁ] we obtain a unique optimal
pair for problem (0.1)-{0.9).

£4. Further properties

Fellowing [5], we look for further properties of our controi preobles.

We have:

PROPOSITION 4.1 Under the hypotheses of §§0,1,2, assume in addition that

[div V(t,€)] = L v(t,£)eq, (4.13
and
max J = m_ min J V0sSs<t<m. (4.2)
a s ﬁ t
Q Q

Then Hypothesis 3.3 of [5] holds true; in particular the evelution operator
U(t,=s] introduced in Sectlon 2 decays exponentially as t-5s — o .

Proof Set w(s)=U(t,s)yb. Then w golves

{ wolt)=A(t)w(t), t>s,

(4.3}
H(s)=y0.
By (2.4) we have:
(v ) 3 w(e)) = (ACWCE) |5 e(e)) = X J‘n J 0wt x| % (£.4)

o
on the cther hand

d

( (O[3, 0(8)) = 5 T (o) (9 0] = (w0 w(t)Ses

t)H'

se that using {3.4) we get
5 FOww) sk [ 5 o2+ ate vit, 10
5 T . u g xHult,x)]| v VEE, T ()} jdx ,
o
and by (4.1} we obtaln

d
*J 70 [wit,x){2ax = 2K1 j J ) |wlt,x) {%ax
dt t t
] Q
o ]
which implies



A
i
B
i
]

-8}
I J () fwlt, ) [Pax = I J )|y (%) {%ax &,
nt QB [+]
Finally by [£.2) we easily deduce for O=s<t
KL(t-s)
weedi, = futt.s)y fi, s Vo] lly b, e ; {4.5)

the other properties of [5, Hypothesis 3.3] are siraightforward. o

Let us now try to verify Hypothesis 3.4 of [5}, i.e. that

[AD-A(-)1“3(-1eL”(ro.m[.£(u,a)} vas10,3/40. (4.6)

PROPOSITION 4.2 Under the hypotheses of §§0,1,2, assume In additien that
condition (3.1} holds and that

(1) min(3, ()[DT,()[7F) = >0 vix0, (2.7)
nD
a b -V ,c hel”(Q), (4.8)
1373 3 )
- -1
sup |D(3, (27" , sup [IDT (27 <a ., (4.9)
£Z0 I * JilLW(QD) t=g t Lm{ﬂD]

Then [5,Hypothesis 3.4] is fulfilled, i.e.{4.6) holds.

Proof Set w{t}=G(t)g, i.e. w(t) is the solution of problem (2.6]. If

1/2,2

gEW (QO), then by classical results w(t]eﬂz'z[nul and

= .10}
[Wweed] = c |zl , V=0, (4
HZ,Z{n ) 1 wl/‘Z,Z(an )

[} 0

On the other hand, multiplying in (2.6} by th(t) and integrating by

parts, we easily get, after siraightforward calculatiens:

[ |ttt oo - 3 vt ™ fele, T, G)wbte,T (x))|]J {x) |wit,x) | 2dx +
o t 2 t t t _
-2 2
+ 2 v{t)Jn 3,6 |DT, )| 73| ow e, %) | Pax s
0

3

= 'I g(x)w(t,x)dHn-l(x)
ano

s g ity
I "u“’z’ztano) ui'g(nu)

which implies, taking into account (3.1),

10

"w{t)"whzm Js c2|]g]|w_1,2,2(3Q , vi=0, (4.11)
aQ

The result follows by interpolation between (4.10) and (4.11). o

Finally, Hypotheses 3.5 and 3.8 of [S] are clearly satisfled provided
we strengthen assumption (0.10) by requiring

neC’AL® (@), neC’nl®(E), n{t,£)=m > in G, n(t,£)=n >0 in E. (4.12)

By [S,Theorems 3.10 and 3.11] we obtain the following result:

PROPOSITICN 4.3 Under the hypotheses of §80,1,2, assume in addition that
cenditions (3.1}, (4.7), (4.8), (4.9) and {4.12) hold. Then the optimal
trajectory £ of the control problem (2.8)-(2.10) is stable, and consequently

the associated Riccatl equation has a unique bounded solution. o

§5. An example

The list of 21l assumptlons required in the various propositions above

is rather long and invelved. Here 1s a very simple example where almest all
of the abave conditions are fulfilled.

Take as Qo the open unit ball of R", and set

V(L,8) = 2

T+t
then T (x)={1+t)x, Jt[x]={1+t)" and

q={€sR": |§]<1+t}.

Next, choose
2-n -1 n~3
={1+t & . ={i+t . c =07 h= 1+ ,
3, =177 b=(ivt) 7, € 1+t 1+ €])

m=t®,  n=(1+t)°, with a,b>0.

Then it is a straightforward task to verify that the hypotheses of
§80,1 and conditions (2.3), (3.1), (3.15), (4.1), (4.2}, (4.7), (4.9) hold
trae, whereas (4.8} and (4.12} do not. In order to satisfy (4.12) we just
need obvicus modifications in the cholce of m and n; on the contrary,

condition (4.8) essentially says that V is bounded as well as b]’ a and h:

1]
this in particular requires a strong restriction in the choice of Qt.

il
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