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We study existence, uniqueness and regularity of the strict, classical and strong
solutions u € C(|0, T]. E) of the non-autonomous evolution equation u'(f)—
A u(t) =f(t). with the initial datum u(0)=x, in a Banach space E, under the
classical Kato-Tanabe assumptions. The domains of the operators A(t) are not
needed to be dense in E. We prove necessary and sufficient conditions for existence
and Holder regularity of the solution and its derivative.

0. INTRODUCTION

Let E be a Banach space, {4(f)},,r a family of closed linear operators
on E. We consider the following Cauchy problem:

u'(t)y—A@ut)=,0). t€]0.T],
(P) u(0) = x
x € E,fe€ C(|0, T], E) prescribed.

We suppose that for each ¢ € [0, T') 4(¢) is the infinitesimal generator of an
analytic semigroup, and moreover A(¢) has a domain D(A4(¢)) which varies
with ¢ and is not necessarily dense in E.

Problem (P) has been discussed by several authors under the assumption
that D(A(z)) = E for every t € [0, T}. The case of variable domains was first
studied by Kato [11], who supposed D(A(f)) to vary “smoothly”: more
precisely, a bounded operator R(f) was assumed to exist, with bounded
inverse R(¢f) ', such that D(R(t) A(¢) R(¢) ') = constant; moreover R(f) was
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10 ACQUISTAPACE AND TERRENI

subject to very strong differentiability properties. Similar hypotheses are also
considered by Tanabe (see Section 6 of [31]), with a slight weakening of
regularity assumptions about R(¢).

A first generalization was carried over by Sobolevski [27. 28] and Kato
[12]. In [27] the evolution space E is a Hilbert space and —A(r) is positive
definite and self-adjoint for each ¢ € [0, T]; in [28] and |12| a Banach space
situation is considered and in both papers a number p > 0 is supposed to
exist, such that D((—A(¢))?) = constant, with the further requirement in [12]
for the number p~' to be an integer. All these papers also require a Holder
condition for (—A4(¢))* (—4(0))° of order a € |1 —p, 1].

Such assumptions are, in a certain sense, intermediate between the case of
a constant dense domain and that of variable (dense) domains. Now it is
difficult in general to examine D((—A(f))?): on the other hand many
examples can be made in the opposite direction. relative to domains which
vary very “badly”: namely, there are cases of dense domains D(4(¢)) such
that D(4(¢)) N D(A(s)) is nowhere dense or even equal to {0} for any f#s
(see, e.g., Dorroh [9]. Kato [11], and Goldstein [10]).

It was therefore desirable to avoid any direct assumption about the
“regularity” of the domains. A great improvement was attained by Kato and
Tanabe [15], who replaced any assumption about D(4(¢)) by a differen-
tiability condition for R(A, A(r)) and a Hélder condition for (d/dt)A(t) .
These assumptions also generalize those of Chapter 7 of Lions’ book |[18]
(see also [19]), where the variational case in a Hilbert space E is considered.
In recent years the hypotheses of [15]| have been slightly modified and
weakened by Tanabe [32] and Yagi |36, 37]. In all these papers Problem (P)
is solved by constructing the fundamental solution with the use of integral
equation techniques; the density of domains makes it possible to find
solutions which are strongly differentiable in |0, 7|, for any x€ E and f
Hélder continuous in [0, T.

From a different point of view. Da Prato and Grisvard [6] studied
Problem (P) without assuming D(A(¢)) = E, as a special case of their theory
about sums of non-commuting linear operators. They restrict themselves to
the case x=0 and discuss evolution both in L”-spaces and in spaces of
continuous functions with values in £ and £(0)=0.

In the present paper we will assume the same hypotheses of |15] and use a
large part of their results, but we are mainly inspired by the techniques of
[6]. We only consider evolution in spaces of continuous functions, discussing
also the case x # 0 and proving existence and uniqueness of various kinds of
solutions of Problem (P), namely. strong, classical and strict solutions. In
particular we prove a representation formula for the solution of Problem (P),
without passing through the construction of the fundamental solution.

Our formula can be heuristically derived by the following argument: we
look for a solution of this kind:
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~t

u([) = My + ‘ e"’”‘””g(s) ds. (0_1)
-0

where g(¢) is a suitable (integrable) function with values in E. Of course
when A(t) = A = constant, this formula with g =/ gives the ordinary mild
solution of Problem (P). Thus in the general case g may be considered as a
“modification” of f. Taking the formal derivative of (0.1) we get

~

é
u'(t tye'x +
(H=A() P

Utt)J x+g([)
£=t

+‘ A(t)e" sy (s)ds-l-‘ [3 !4(1)] g(s)ds

{=1—5
—A@un + s+ [ | 5o | swass|ze| k).
0 Le f=t—s =t

Hence, if we want (0.1) to be a solution of Problem (P). we must choose g
such that

g(t) + |'t P(t,s) g(s)ds + P(1,0) x = f (1),
-0
where

P(t.5) = [:{ e“‘”J . 0.2)

{=t—s

Denote by P the integral operator ¢ — [ P(t, s) o(s) ds; then the represen-
tation formula for the solution of Problem (P) is formally given by

u(t):e"“”x+ N e(r—s)A({)(l +P)~l [f_ P(,O)YI(S) ds. (03)
-0

We also study the “maximal regularity” of the solution. We say that there is
maximal regularity for the solution of Problem (P) if it has Holder
continuous first derivative for some exponent « € |0, 1[, whenever [ is
Holder continuous with the same exponent a, provided the vectors x and
f(0) satisfy some suitable compatibility conditions. Here we get a necessary
and sufficient condition on x and f(0), which generalizes the regularity
results of [6, Theorem 7.21]| relative to the case x=f(0)=0, and the
analogous condition of Sinestrari [25, 26] and Da Prato and Sinestrari [8]
in the case A(t) = 4 = constant. When A(¢) is not constant, partial results in
this direction are due to Poulsen [24], who proved (a — ¢)-Holder regularity
of the derivative for each ¢ >0 provided f is a-Holder continuous and

x=f(0)=0.
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Let us now introduce some notations. If 4 is a linear operator on a
Banach space E, we denote by D(A4) its domain and by R(A4) its range: also,
p(A) is the resolvent set of A, a(4) its spectrum, and the resolvent operator
(AI —A)~", which is defined for each A € p(4), will be denoted by R(1. A ).

We will consider the following Banach spaces:

C(|0, T|,E)={u:[0,T] - E : u is continuous},
with norm

”u”alo.rl.m: sup [Ju(e)]l
te[0.7)

for any € |0, 1],
C?([0, T), E)={u: [0, T| - E : u is Hélder continuous

with exponent 8},
with norm

() — u(s)lle

lullcoqo.rr.er = ll#llcqo. e + sup —sP

CY[0, T),E)={u: |0, T| - E : uis strongly differentiable
andu’ € C([0, T, E)},

with norm
”u“(‘l([O,Tl.E) = ||u”C([0.II.E) + ||”'||u[o,r|.1;)1
for any 4 € 10, 1],

C"([0, T}, E)={u: [0, T] - E : uis strongly differentiable
and u’ € C%([0, T|. E)},

with norm
lullcroqo.rr.er = Nllcrqo.rr.er + 114 leogo. r1e)-
In addition, we define the spaces
C(]0, T, E), Cc?]0, T}, E), C'(Jo, T}, E), C9(]0, T|, E)
as the spaces of the functions u : |0, 7’| — E belonging to
C(le, T, E), C%le, T, E), C'(le, T), E). C"“(e, TI, E)

for each ¢ > 0.
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Similarly, for any p € [1, oo | we define the Banach space
LP(,T;E)={u: |0, T| - E : u is Bochner measurable
and || u(-)|l; € L?(0, T)},

with norm

.T Iip
[ luonzar| it <o
| lloc0.7:6) = ’
ess sup || u(t)|le if p= .
te]0.7TI

Finally if E is a Banach space, denote by Z#(E) the Banach space of all
continuous linear operators with domain F and range contained in E, with
norm

[Ax|g

ee—t0 |Ixli;

”AHthD =

Now we list our assumptions.

(I) For each t€ [0, T|, A(¢) is a closed linear operator on the Banach
space E with domain D(A(t)), which generates an analytic semigroup
{et*™},.o; in particular:

(i) there exists 8, € |n/2, x| such that

pAN)S Zp BizEC:pe', pE€ [0, +o0|, 0 € | -y, 6,[}
vt €10, T;

(i1) there exists M > O such that
IROLA@N, oy <ML YAEE,. VIE[O.T].

(IT) The operator-valued function t+— R(A, A(t)) is in C'(|0, T|. #(E))
for each A € X, ; moreover there exist L >0 and a € |0, 1] such that

s

0 L
P R(A, A1)

| A1

<
£ (E)

Vi€ Z,, vYte€[0,T|.

(IIT) There exist B > 0 and n# € |0, 1] such that

| A0 = S

< B|t—1)" vt,t€ [0, T

L (E)
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Let us specify now what we mean as a “solution™ of Problem (P). First of all
we set

D& jue C(|0.T|.E): u(t) € D(A(1)) vt € |0. T|. and
t— A(t) u(e) is in C(]0. TI.E)}

Dy2{u€ C(|0, T|. E) : u(t) € D(A(1)) ¥t € |0. T|. and
t— At u(t)is in C(]0. TI.E)}.

Now we define our solutions.

DefrINiTION 0.1, u:[0,T| > E is a strict solution of Problem (P) if
u€ D and

w' () —AQ@)ul)=,() YIE|0.T|. u(0)=

DEerINITION 0.2. % : [0, T| - E is a classical solution of Problem (P) if
u€ D, and

u'(t)y— A u(t) =) Vie |0, T]. u(0)=x.

DerFINITION 0.3, w:[0,T|—> E is a strong solution of Problem (P) if
u € C(|0, T|, E) and there exists {u,},.y S D such that
(i) u,-»uin C(|0, T}, E);
(i) u,(t) =A@ u(t) 2f,(¢) € C([0, T|. E) and £, - f in C([0, T|. E):
(i) u,(0)-xin E.
Remark 0.4. Hypothesis III will be used only to prove existence and

regularity of classical and strict solutions, while it is not necessary for
uniqueness and for what concerns strong solutions.

Remark 0.5. Yagi [37| has shown existence and uniqueness of the
classical solution of Problem (P) under Hypotheses I, II and the following
condition, weaker than III:

(III") There exist B>0, kEN and a,...ap. B, B € R with
—1<a; <p; <1 fori=1.., k, such that

“A(t)R(A,A(t))—%A(r)‘ — A(2) R(A,A(r))%A(r)*

2 {E)
k
BN APit—t)%  VAEZX,. VLt€[0,T]

o

1:

It should be observed that in the present paper condition III’ instead of Il
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would be sufficient to get all our results about classical and strict solutions.
In fact, existence is guaranteed by the fact that under this assumption the
Dunford integrals, formally defining the derivative of the solution, are
actually convergent; on the other hand, by a direct but very tedious
calculation based upon our representation formula, it can be shown that our
maximal regularity results still hold under condition III’ instead of III.
However, we prefer to assume the stronger condition III, for it allows much
simpler proofs, mainly in the case of maximal regularity, and in addition in
concrete situations it seems more difficult to verify directly condition III’
rather than III.

Remark 0.6. It follows directly by the definitions that every strict
solution of Problem (P) is also a classical solution and a strong solution. It
is not true, however, that a classical solution is necessarily a strong solution
(see Remark 6.5 in Section 6 below).

Remark 0.7. Kato and Tanabe [15] also consider weak solutions of
Problem (P), i.e., functions u € C(|0, T], E) such that

[ w000 — A0 o0 dr + | 0000 de + (x,0(0)) =0

for each ¢ € C'(|0, T), E*) satisfying the following conditions:
(i) e@)EDMA@*) Ve |0, T]. and > A()* @(t) € C(|0, T|. E*):
(i) o(T)=0.

Here (-} denotes the duality product between E and its dual space E*, and
A(t)* is the adjoint operator of A(¢). Then, it is easy to verify that every
strict or strong solution of Problem (P) is also a weak solution in this sense.
The same is true for every classical solution of Problem (P): to prove this,
one has just to integrate by parts the equation in |, T[. and let ¢ > 0*.

Let us now describe the subjects of the following sections. In Section 1 we
establish some preliminary results and give sense to formula (0.3), i.e., our
candidate to be the representation formula for any solution of Problem (P).
In Section 2 we derive some necessary conditions for existence of solutions
of Problem (P), and prove uniqueness of such solutions. Section 3 is devoted
to the basic results which are needed to get our existence and regularity
theorems. In Section 4 we discuss classical solutions. Section S concerns
strict solutions and their maximal regularity. In Section 6 we study strong
solutions. Finally, in Section 7 we describe some examples and applications.

409,99 -2
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1. PRELIMINARIES

Let A be a closed linear operator on a Banach space FE, satisfying
Hypothesis I; then D(A4), equipped with the graph norm. is itself a Banach
space continuously imbedded into E. We recall the following definitions of
the intermediate space (D(A4), E), _,. .. between D(A) and E (see Lions [17]
and Lions and Peetre [20]):

DErINITION 1.1. Let E be a Banach space, and let §€ 10, 1[. If x € E, x
is said to be in (D(4), E), ., if there exists u : |0, co[ = D(4) having first
derivative in the sense of distributions u’ : |0, co[ — E, such that

(i) "7 %u(r), t' " CAu(r), t' Pu'(t) € L™ (0, 0} E).
(ii) u(0)=~x.
Remark 1.2. Condition (ii) of Definition 1.1 is meaningful since it is

easily seen that condition (i) implies u € C?(]0, oo[, E). Moreover it is clear
that

D(4)< (D(4),E),_p.. SD(A) YOE|0,1].

The space (D(A),E),_g o is also customarily denoted by D,(f, ). In
Peetre (23] and in Butzer and Berens’ book {4]| (see also Da Prato and
Grisvard |7]|) many properties and characterizations of D (¢, co) are proved
under the assumption that D(A4) is dense in E. In the general case we can set

Z={xED():Ax € D(A)}
and define the restriction of 4 to Z:
DA)Y=Z
A'x =Ax VxeZ.

Obviously, D(4") is dense in D(A) which is a Banach space with the norm
of E. Moreover we have:

ProposiTION 1.3. (D(4'), D(4)),_g... = (DA E),_4.,, VOE |0, 1].

Progf. Obviously (D(4’), D(A4)),_¢... € (D(A),E),_g.: conversely if
xE(D(A),E)_g.. let u be the vector-valued function appearing in
Definition 1.1. Then if we set w(t) = e*'u(t) it is easy to verify that t' ~%w(r),
t' A w(t), ' Cw'(t)EL*(0,0;D(4)) and w(0)=x, which means
x€(D(A'), D(4)) g, -

Remark 1.4. By Proposition 1.3 and the density of D(4’) in D(A4) it
follows that the space D,(f, o0) has the same well-known characterizations
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which are valid (see [4]) when A has dense domain. Therefore the following
equalities hold:

D0, 0)={xEE:supt ?|ex—x|; < o}
t>0

or equivalently

D (0, 0)={xEE:sup A°||[AR(A,4) x||; < 0}

A>0

={xE€EE: sup |A|°|AR(A, 4) x| < o}
dep(d)

Now we go back to our situation and represent the analytic semigroup
{et!4 _, by a Dunford integral.

Let y be an arbitrary continuous path contained in 2y joining +ooe "
and +ooe'®, 6 € |n/2, 6, being fixed. For our purposes it is convenient to
choose

ig

y=rYr,Yr_,
where
R IMEC A =1,|arg | < 6}
1A MAEC: A=pet® p>1}.
For each 7 € |0, T| we define
LE{AEC TAE Y}

Then, for example, the following equalities hold:

ettt = —1— ] e R(4, A(r)) dA, (>0, re [0, T,
2mi (wD
A(r) et = 3:; | A" R(4, A(1)) dA, E>0, t€[0, T,
Jy

the integrals being absolutely convergent.
The following lemma is very useful.

LEmMA 1.5. Under Hypotheses 1, 11 we have:

(i) If x EE then | x| < C|x|lz Ve E [0, T).
(i) If x EE then |A(t) """ x| < C/t| x| Vt€ |0, T}, VT € [0, T].

(i) If xE€ Do 0) BE 0 1], then [[A(x)e" x|, < Clx)/t'~
vtE |0, T], ¥r € [0, 1].
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(iv) If x € D(A(0)) then || A(t) e"'"x||, < ClA(0)x||, ¥ € [0. Tj.
(v) If x € D(A(0)) then lim, . ||tA(s)e'""x], =0.

Proof. (i) and (ii) are evident by (1.1).
(iii) We have
A(T) C’HH)X:A(T elAlr)[x H‘“'V-{- (A(O A( ) I)A(O)ernn)
4 eM(r)A(O) H(OD

so (iii) follows by (i), (ii) and the estimate (coming from Remark 1.4)

i

C(x)

{1—15‘

|41 4(0) R(A, 4(0)) <

l .
A(0Q) et410; —
14(0) e x| HMJ”AB

(iv) By (i), (ii) and
A e Px =A() e [A(0) ' — A1) "' | A0) x + €7 4(0) x

the result follows.
(v) If x&€ D(A(0)) the result follows by (iv); the general case is a
consequence of (ii} and the density of D(4(0)) in D(A(0)).

Under hypotheses I, II it is possible to define the linear operator on E (see

(0.2))

P(t,5) & [8[ UML
=t—s

(1.2)
1 Ate—s) E
— ' — R(A, A(1)) dA, 0 t<T.
2m ¢ ot ( ) s <
Observing that (see [31, Lemma 1.1])
1 . é 1
P(t, ) ;= I| — T —R(EAQ .—d0
1P M }hJﬂf[& ¢ “4!“,“z_s »
H [ R@Amﬂ do
f=oitt-5) =5 E)
‘ 1
ylo I“ (t—s)'-e’
we conclude that there exists K > 0 such that
K
”P(tas)H./tE)< 0Ls<egT. (1.3)

(t_s)l—a N
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Therefore we can associate to the kernel P(r,s) the integral operator P
defined by

Pe)2( Ps)gs)ds, €[0T, gEL'OTE).  (14)

The properties of the operator P will be discussed in Section 3 below; for the
moment we will just remark some basic facts (whose proofs will be found in
Section 3).

Remark 1.6. P is a Volterra integral operator with integrable kernel, so
that P€ Z(L'(0. T; E)) N #(L™(0, T} E)), and 1 + P can be inverted, with
the operator @& (1 4+ P)~" being in Z(L'(0, T; E))N A (L (0, T; E)). In
other words, the integral equation

<t
g0 +| PLs)gs)ds=p(1), €0, T), (1.5)
1]
can be uniquely solved in L'(0, 7T E) (resp. L*(0,T:.E)) for any

@€ L'(0, T, E) (resp. L*(0, T; E)).

Remark 1.7. As a trivial consequence of (l.1), the vector-valued
function ¢ — P(1,0) x is in L'(0, T; E) for each x € E.

Now we are able to give sense to formula (0.1); for the moment. it will
define just an element of L *(0. T E).

PROPOSITION 1.8. Under Hypotheses 1, 11, let x € E and f'€ C(|0, T), E).
The formula

u()2 e x4 [ U014 P) N (f= P(L0)x)] (s)ds  (F)

defines a vector-valued function u € L>=(0, Ty EYN C(]0, T, E); moreover, if
x € D(A(0)), then uec C((0, T|, E).

Proof. It is a consequence of Propositions 3.4, 3.6 and 3.7 of Section 3
below.

Formula (F) will play a very important role in the following, namely, to
prove existence and regularity results for classical, strict and strong solutions
of Problem (P). It is possible to get another representation formula for a
strict solution u of Problem (P). Introduce the operator (analogous to (1.2))

~ 7

P o] L]
’ i=t—s

1

- 8
Zﬁi et o RO A@e)di,  0<s<i<T:
vy
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clearly an estimate similar to (1.3) holds for P(¢. s). so that all properties of
Remark 1.6 still hold for the operator

ﬁg(z)gj'o B(t,s)g(s)ds. 1€[0.T|. g€L'(0.T:E).

Then we have

ProposITION 1.9. Under Hypotheses 1, 11, suppose u is a strict solution
of Problem (P). Then the following formula holds:

u(t) = (1 _ﬁ)—x [em(mx + ‘.[e1[‘5).4(5y(s)ds i te [0, 7. (F)

Proof. If t € |0, T, define
v(s) 8 e =916y (s), s€ [0, ¢];
then it is easy to verify that v € C'(]|0, t[, E) and
v/(s) = P(t, 5) u(s) + e MG f (s)

(see also Proposition 3.4 of Section 3 below). Consequently by integrating
between O and ¢ — ¢ and letting £ » 0, we obtain

~ -1
u(t) — e = Put) +| "M fs) ds.
S0

from which formula (F) follows.
The representation formula (F) will be used in Section 2 to get uniqueness
results for classical, strict and strong solutions of Problem (P).

2. A PRrIORI ESTIMATES: NECESSARY CONDITIONS

THEOREM 2.1 (A Priorl ESTIMATE). Under Hypotheses 1, 11 let u be a
strict solution of Problem (P); then

ol < el + [ IrGNeds|  vee (o1l @D)

Proof. It is a trivial consequence of formula (F) and the fact that
(1—-P)~'e A(L*(0,1 E)) for each t € |0, T.

COROLLARY 2.2. Under Hypotheses 1, Il let u be a strong solution of
Problem (P). Then (2.1) holds.



ABSTRACT PARABOLIC EQUATIONS 21
Proof. Obvious, by Definition 0.3 and Theorem 2.1.
CoroOLLARY 2.3. Under Hypothesis 1, 11 let u be a classical solution of
Problem (P). Then (2.1) holds.
Proof. Fix £ >0 and set
v t) = u(t+¢), te [0, T—¢l
Then v, is a strict solution of
vty =A(t+e)r {t)=S(t+¢), te [0, T—¢l,
v (0)=u(e).

Hence by Theorem 2.1
futc+ X <€ futell, +[ 176 + el ds|  ¥r€ [0.T—ef:

as ¢ » 0" the result follows.

CoroLLARY 2.4 (UNIQUENESS). Under Hypotheses 1, 1, Problem (P)
has at most one strict (resp. strong, classical) solution.

Progf. It follows trivially by Theorem 2.1 and Corollaries 2.2 and 2.3.

We will discuss now some necessary conditions on the vectors x and £(0)
for existence of strict and strong solutions; we will see in Sections 5 and 6
that such conditions are also sufficient, provided f is sufficiently smooth in
the case of strict solutions.

THEOREM 2.5. Under Hypotheses 1, 11, let x € E and f€ C(|0, T}, E).
and suppose that the strict solution of Problem (P) exists; then the vectors x
and f(0) satisfy the following condition:

x € D(A(0))

and
d - e
A(0) x +f(0)—[EA(t) ] . - A(0) x € D(A(0)). (2.2)

Proof. By Definition 0.1, we have u € D (see the Introduction); in
particular, x = u(0} is in D(4(0)), and moreover

WX 40)x +£0):

lim
t—0 t
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on the other hand

u(t)’~x _ AW TA(O)' A () + 4(0) A(1) u(t):A(O)x‘

hence
u(t) —x _ A(t) ' —A0)!

[ - A(2) u(t) € D(A(0)).

As t— 0% we conclude that

A(0) x +£(0) —[%A(z)‘J 4(0) x € D(4(0)).

=

THEOREM 2.6. Under Hypotheses 1, 11, let x € E and f€ C(|0, T|. E),
and suppose that the strong solution of Problem (P) exists; then the vectors x
and f(0) satisfy the following condition:

Hxetren S DA(0)). HhenE E such that

X=X Yy~ Sf(0),
(2.3)

d
AQ0) X, + 3, — [EA(t)"J A(0) x, € D(4(0)).

t=

In particular, x € D(4(0)).

Proof. 1t is an obvious consequence of Theorem 2.5 and Definition 0.3.

3. SoME Basic RESULTS
This section contains all auxiliary results which will be needed in the
following sections. Our first two lemmata have been proved in |15, Lemma

4.1]; see also Tanabe’s book [33, Lemma 5.3.2].

LemMma 3.1. Under Hypotheses 1. 11, 111 we have

Proof. Since

SCHlr—1|" +]A' |t — 1|}

A(E)

ER(A’A(I)) - ER(LA(I))

VAEZ,, Vi,1€(0,T].

é d
5 RA A1) =—A() R(4, A1) 210 A(1) R(4, A(t)),
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we have

0 0
n R(A,A(1)) — ER(/L A(1))

~ [40) RALAW) ~ A() RG, AD)]| 5 4() 40) RG. AW)
_A() (R(L, A(2)) A(t —%A(r)” A(t) R(A, A(1))
—A(r)R(LA(r»%A(r)”[A(r)R(A, (1)) — A(D) R, A(D)]:

but
[A(£) R(A, A(£)) — A(t) R(A AN i)

:H AJ a—R( (0)) do

T

SCle—rlfal =,

LAE)

and the proof is easily completed.
The next lemma concerns the operator P(t, s) defined in (1.2).

LemMMA 3.2. Under Hypotheses 1, 11, 11l we have for 0 s <<t T

1P, 5) = P(2, 5)| sy S CE)E =) (=)' *17#1 ¥G€ |0.n Aal.

Proof. We start from the equality

P(t,s) — P(1.5) = % _"’e-‘“”’ [% R, A@1)) — % R(.A(r) | di

1 \a
+5-] | Ae R(/l )) dA do.

which, by Lemma 3.1, implies

| P(t, 8) — P(7s S| )

C [(t— e—s) 2+ (—-0)"(t—s5)""+ ’ o *te doJ(3.1)

“T—95§

<C[([—‘[)" ([—S)fl+(T—S)_l+n—([—s)’l+“]:
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since t —7<t—s and 7 — s —s. we get the estimate
| P(t.s)— P(t.s)|. s,
SCl—tP (=) """ {e—1)e—s) ' °
+(r—s) " —T)Nr—s) Y|
KCU—1)°(t—5)2(r—5) ttnte

from which the result follows.
Our next statements concern the properties of all the operators and vector-
valued functions appearing in formula (F).
(a) The Function t+— P(t,0) x
ProPoOSITION 3.3. Under Hypotheses 1. Il we have:
(i) If x€E, then P(t,0)x€C(]0,T|.E)YNL*(0.T:E) V¥p€E
[, (1=a)-'].
(i) If x€D,,B. ) PEa 1. then Pt 0)x€L?.T:E)
Vpe [1.(1—p) [
(iii) If x € D(A(0)), then P(t,0)x € L*(0, T, E) and, as t - 0™,

P(t,0)x=0(*) — [e"" — 1] [ d A@)~! } A A(0) x

= 0(1°) — [e® — 1 [ 4 40 J AO)x.

Under Hypotheses 1, 11, 111 we have:
(iv) If x € E then P(1.0)x € C"(]0, T|, E).
(v) Ifx€D(A(0)) then,as t—1- 0",

P(t,0) x — P(z,0) x

— 0(([ _ T)afxn) _ [el.-l(r) _ er.ur)] [%A([)_l} A(O) X

t=0
ahn t4¢0) TA(0) d -1
=0((t—1)*"") — [P — ™V | — A(r) A(0) x.
dt i=0
Proof. (i) Suppose ¢ > 1 > €. The equality

1 - % 7
P(t,0)x — P(1,0) x = 2_m‘ Ie'” [% R, A(1) — % R(4, A(r))J xdA

+m| [t — e¥] = R, 4(0) x d (3.2)
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implies the continuity of ¢ - P(z.0) x on |0, T]. The L‘-integrability when
pE[L, (1 —a) [ is a consequence of (1.3).

(ii) We have
P(1,0) x = P(t.0)[x — " Vx| + P(t,0)[4(0) " — A(t) '] A(0) "'V x

Ar

1 e’ @
— R4, 4 HO e g3
,1 ar (A, A()) A(0) e

+ [1 !4(1)] A([) A(O) 14(0)
which implies, by Lemma L1.5(ii),
[Pt 0) x|l S Cr'*e*8 4 Crm 18 L Cr '8,

this proves (ii).
(ili) As in (ii) we have

P(t,0)x

_ 4! Liete
= P(t,0)[4(0) A@) ' A0) x + i l R R(A, A(1)) A(0) x dA
+ [1 t4(l)] A(t) lA(O
therefore as r—» 0%

P(,0)=0(t*) — [e""'" — 1] [%A(t)’l

| E—
S
_—
(=]
~
=<

= 0(°) — [e"® — 1][‘%/1(:)1] A(0) x,

and recalling (i), (iii) follows.
(iv) Suppose t > 7> €. By (3.2) and Lemma 3.1,

|| P(£,0) x — P(z, 0) x|

KClt—1)"e '+ (t—1)e 7] +H [ ’ Ae“’—R(/l A(r)) do dA

E

L CE(E—1)".
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(v) Suppose t > 7> 0. By (3.2). as in (iii) we get

P(t.0)x — P(r,0) x

1T
Zz—m.’y[""'k[a—’* 4() 52 RG “”J [40) ' =4

‘ SR ] N
+ER(A,A(1'))[A(I) — A(t) ]+A[E‘IR(/LA([)) ETR(/{.A(T))

1[ d o d o d o
b1 A0 A0 = RO AO) - RAAGN F 40

_ R, A(t))[ PTAST :TA(r)'H

~

H] e ) ZRAADMAO) "~ A ]+ 5 £ RUA)

+%%A(r)“—R(A,A(r))[%A(r)'
[ A(t) '} }(A(O)xdi—[e"““—e”‘”][%A(l)‘J A(0) x:

s t=0
consequently it is easy to deduce that, as r —7—-0",

P(t,0)x —P(r,0) x

=0((t— 1))+ 0((t —1)") — [ — eV I[ %A(t)"J A(0) x,

t=0
and the proof is complete.

(b) The Function t— e"x
Proposition 3.4. Let x € E. Under Hypotheses 1, 11 we have:

(i) e"“xe D) Vte |0, T);e""xe L=, T;EYNC'(]0, T|, E)
and

d
p e'x = A(t) e"""x + P(1,0) x vi€ 10, T).

(i) e“xe€ C([0,T|.E) if and only if x € D(A(0)); in this case
[e"““’x] =x
=0 .
(i) If B€0,a], then e""xeC*(0,T|.E) if and only if
x € D 40)(B, ).
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(iv) IfBE Ja, 1| and x € D (B, ), then e*'"x € C5([0, T}, E).
(v) Ifx€ D(A(0)), thenas t—» 0"

) £A(0)

¢ X=O(1)+—[_—x—[€“(m—I]I:%A(t)_lJ

A(0) x

=

and

A(t) e x = o(1) + e 4(0) x — tA (1) e"“”[ %A([)* 1J A0) x

=0

=o0(1) + e*'V4(0) x — t4(0) e"“o’[ —(—id?A(t)_ l} A(0) x.

=0
Under Hypotheses 1, 11, 111 we have:
(vi) e"Wxe C""(]0, T|, E).

Proof. (i) Obviously, e"'”"x € D(A(t)) Vt€ ]0.T]. Next, e“'"x¢&
L0, T.E) by Lemma 1.5(i): finally, suppose f,7>¢ and let r—( By
Lebesgue’s Theorem

4 _ L) A _

e e 14(7)

e TA(T)

X = X+ X
t—rt t—r r—r

- A(t) e"x + P(1,0) x.

Ay

€ € [4

We have to prove that A(f) e*"x + P(t,0) x € C(]0, T, E). The continuity
of P(t,0) x follows by Proposition 3.3(i). while the equality

A 0% — () Vx = = [ 16" [R(LA®) — RO, AD)] 5

1 ’ 1. T.
+2_m'J, [e"' —e™ | R(A, A(1)) x dA

tA(t)

implies the continuity of 4(¢) e x, via Lebesgue’s Theorem.

(i) It is enough to show that

lino‘l le"*"""x — x|l =0 if and only if x € D(4(0)).
(=0

We have as r—» 0"

etAmx —x = 0(1") + [et.-l(ﬂ) - 1] X
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now it is easy to verify that

lim fle“®x —xl;=0  ifandonlyif x€ D(A(0)).
{0+

and (ii) follows.

(ili)-(iv) Let x&€ D, (B, ov) and suppose t>71>0. We have, as
t—1-0"%,

[etA(t) _ erA(r)] x

- [emm _elA(r)] X+ [(emm —eriiey (ez.uo» _ em(m)] X

+ [etA(O) _ etA(O)] X

=—21?J‘y[etl ;Jta—R(i A(o))[x — e’ Ox

+[40)" —A(o)‘]A(O)e"A‘O’x} do
~t 1 & 1 d

+J [TE%R(/{,A(U))-}-TEA(O’)-l
R/{A dA -1 AO UJ(O’d(

~ R A©) 5 A@) | 4©) e o]

+.j'tae*‘°.|’r [%R(A,A(r))[x— e 4 [4(0) ' —A4(r) '] A(0) e x
[/11 ar —R(4, A(r))+—1—iA(r)‘

—R(A,A(r))%A(r) ]A(O)e”‘o’ Jdrda] di

+ er.um[eu—ﬂ.uo» _ 1] X

=0((t =1+ O((t — 1) = O((t — 1)°).

so e'"“x € C([0, T}, E). Suppose now that e"*""x € C3([0, T, E); then, in
particular, by (ii) we get, as t->0".

[etA(m _ 1] x= [etA(O) — elA(r)Ix + [e”“" _ l]x

=0(t*) + O(t3) = O(¢*"®),

hence we deduce that x € D, ,,(f A a, 00), and (iii), (iv) are proved.
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(v) Suppose ¢ > 0. Then, as =07,

tA() 1
X

e
t

et _

=_—t—l— [A(O)‘l —A() '+t [%Am_l},:o] A(0) x

tA(0) _

et.4(t)_ . e 1 L
[ - a0 4o

e —1 i o] 9
_— —e" — A ! A0
Pt e e | 20| a0)x
— et _ 1][ A(t) ! } A(0) x
t=0
etA(O)_ d
=0(1)+0(t“)+——x—[e”‘°’—l]l—A(z)"} A(0) x.
: dr .
Similarly we have, as t > 07,
A(t) e"'x
A0 ' —A4@)!
=tA(t) e [ ©) i + [1A(t)'J ] A(0) x
t dr —o

+ [eH0 — D] 4(0) x + e 4(0) x

— [tA(r) e — tA(O)e“‘O’][dA(t) '] A(0) x

t=0

— tA(0) e [%A(:)‘} A4(0) x

t=0
=o(1) + 0(t*) + "4 (0) x — tA(0) &"*? [%A([)‘ ‘J A(0) x,
t=0
which proves (v).

(vi) By Proposition 3.3(iv), P(t,0)x € C" (|0, T]. E), so by (i) it is
enough to prove that A(¢) e*”x & C"(]0, T], E). Indeed, if > 7 > ¢ we have

HA(I) erA(t)x —A(T) er,ur)x”
< ||A(t) erA(t)x A(T) et“ﬂ’CHE + ”A(T LD A(Z‘) er4(r) H
LClt—v)e e+ (t—1)e’).

The proof is complete.
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(c) The Operator Po(t) = | P(i.5) o(s) ds
PrROPOSITION 3.5. Under Hypotheses 1. 11 we have:
(i) PEXWLPO.T-E)VpE|L +aol; PE £{C(|0, T|. E)).
(i) Ife€C(0,T].EYNLY 0, T.E). then Pp € C(|0.T|. E).

(i) If ¢ €CUO, T|.EYNLP(O.T-E), pE€ la"'.+o|. then PpeE
c([0, T}, E) and Po(0) = 0.

Under Hypotheses 1, 11, 111 we have:

(iv) If 0€C(0.T),EYNL'0,T;E), then Pp€ C¥]|0,T|.E)
Vs € 10, 7[ M 10, al.
(v) Ifo € L*(0,T:E) then Pp € C*([0, T|,E) Vé € 0.7 M ]0. a].

Proof. (i) A standard calculation shows that

KT*°
l P(p“LP(O.T:E) < “a ”(p“LP(O.T:I:) Vp € [1, 4w},

where K is the constant appearing in (1.3). Hence it is sufficient to prove
that Pp € C([0. T}, E) whenever ¢ € C([0, T|, E). This is a consequence of
Lebesgue’s Theorem and of the following equality. which is true for any
t>t>0asr—1-0":
Po(r) — Po(r)
N3 ~T
=| P(t, ) o(s)ds + | |P(t.5) = P(z,5)] o(s) ds
! Jo
—0(e= )+ [ 5o | e (5 RA40) ~ - RG4)
do 2mi J, ot ar
¢
+ (et —etr ) ER(A, A(‘t))] o(s) dA ds. (3.3)

(ii) Let ¢ >0, and let us show that
lim || Pp(#) — Po(®)l; = 0.
We can suppose ¢, 7 > ¢ and, for example, ¢t > 7; then we have

|| Po(t) — Po()|,

E

<= Dol + | ]| 1206.5) = Pes.5) ols) ds
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so we have to show that the last term on the right-hand side goes to O as
- t~. First of all we prove that

lim [[[P(2,5) = P(z, )] 9 =0 Vs € ]0,¢[. (3.4)

We start from the equality

[P(1,5) — P(r, 5)] (s)

1 2 8
z—mj et [ER(A,A(t))—ER(A,A(r)) o(s) di

zmj [ek(t 5) __ A(r s)] R(/l A(T))(D(S)d/l

for each A € y the first integrand on the right-hand side goes to 0 as 7 — ¢~
and is dominated by const - 1|~ - exp(Re A(z — 5)); hence its integral over y
goes to 0 as t—¢~. For each A1 € y the second integrand also goes to 0 as
7—¢~, and we have

H 21”[ A(t~s) el(r s)] R(/{ A(T)) (/)(S)

L CeReAr=9) |}~ YAEYy, Vi€ ]s, (.

Now the (integrable) functions {F,(1)} defined by

T€]s,t]?

Ft(/l)=ceke.l(r—s) Ml“a* Y= 7,

converge to F,(A) as t—¢~, and moreover [, F,(A)dA— | F(A)dA ast—1".
This implies that (3.4) holds.
Next, we can write

J[ 1P5) = P9 06 ds = [ 0, IP5) ~ PLe.5)] 06) s

and we have

0. (P 8) = P(r, ) @)l < Go(s)  VYs€ 02, Ve 0, 4],

where
C-(e/2)7" " Nlo(s)lle if s€]0,¢/2],
Gs)=(C-[t=s)"""*+(@—5) "*llolcqwrrrey if sE[e/2,7],
0 if s€ |zt

409,99/1-3
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The functions {G (5)},c., have the following properties:

lim G, (s)=G(s) vs € 10,1,
T~
N -t

lim | G(s)ds=| G(s)ds.

T/ L0

This shows that

=0,

E

lim “ ’.t [P(t,s) — P(7, 5)] 9(s) ds

Tt

and (ii) is proved.
(iii) It is sufficient to prove continuity at t = 0. The estimate

-t
| Po@)lls < KJo lo(s)lle (¢ — $)"' e ds KK -tV ol oy

implies the result.
(iv) Suppose ¢ > > ¢. Then (3.3) and (3.1) imply that

1 Po(t) — Po()ils < Ct — 1)* |0 llcerre
rcf [(t—r)" (=)' ] o do} o), ds
LCUt =) Nolce e
+C[(t—1)"- et (t—1)- g e @l 1o.e2:6)
t—¢g/2
-7

; +(t—¢g/2)*+(@—1)°

+C [(t— 7)7 log
—(t—¢/2)" ] lellcqe2.rre
< C(e, )t —1)° v3 € 0. 7] M ]0. al.
(v) Suppose ¢t > 1> 0. As in (iv) we get
[ Po(t) — Po(t)lle < C @l xi0,7:k) [(t —0)% + Jo (t—7)"(t—s) 'ds
AT 1—3 N d
+ “fte do s]
"0 JI-S 7

< CE)t—1)° vé e 10,7[ M 10, al.



ABSTRACT PARABOLIC EQUATIONS 33

(d) The Operator Q& (1 + P)~!
Let us consider now the operator 1 + P; the next proposition proves that it
is invertible and describes the properties of Q = (1 + P)~' (see Remark 1.6).
PROPOSITION 3.6. - Under Hypotheses 1, II we have:

(i) Q exists and Q€ X(L°(0,T;E)) Vp€|[l,+x]; Q€
2(C(|0, T), E)).

(i) Ife€C(|0,T),EYNLY0, T;E), then Qo € C(]0, T|, E).
Under Hypotheses 1, 11, 111 we have:

(i) If €LY 0, T;EYNC(]0,T|,E), 6€)0,7[MN]0,a], then
Qo € C%(]0, T, E).

(iv) Ifee C3(J0,T),E), 6€ 10,7 N 10, al|, then Qo € C*(|0, T|. E).

Proof. (i) We confine ourselves to the case of C([0, T], E), since in the
case of L?(0, T; E) the proof is identical.
For each w > 0, define a new norm over C([0, T, E) by

1S e & sup e (@)l
tel0,T]

Obviously
1o <N Mleqorrey <€ 1 flwe  YFEC(O, T E), Y >0
(3.5)

moreover it is easily seen that
T .
1Pl <K| e et dr|gll,.,  Y0EC(O.TLE).
0

Set M(w) = |3 e “"t~'*e dr; it is clear that

lim M(w)=0,

w— X

hence there exists w, such that K - M(w) < 1 Yo > w,. Choosing w > w, we
conclude that (1 + P) is an isomorphism over C([0, T], E) with the norm
|- |y By (3.5) we get the result.

(ii) The following argument is in |15, proof of Lemma 3.2|. We have
(1+P)"f=f+ X3, (=P)"f; define

ot
P\(t,s)2P(s)  Pyt,s)=| PP P,_\(p,s)dp  ¥n>1;
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then it is easy to verify by induction that
-t
[(=PY"f1() = | P,(t.5)/(s)ds,
-0

and again by induction we get

K"I(a)"

_ na -1
————r(na) (r—7s) .

(| P (2 S)”_'{’(E) <

Hence

& KTT@ 4
— T(na) ~— (t—s)'""

n=1

Z [Pt $Hooie) < (t—s)yttere 3.6)
n=1

and if we set

[ 1=

R(t,5)& P.(t5)

b3
1
-

we check
ory=r()+ jot R(t, 5)f(s) ds.

A

R 8|y < W

Hence it suffices to show that ¢+ [{ R(t,5)f(s)ds is in C(]0, T}. E). By
(3.6), via Lebesgue’s Theorem, we get

~f x al

] R(t,5)f(s)ds= N J P,(t,5)f(s)ds, Vt€]0,T]
©0 n=1"0

so that it is enough to prove that the series on the right-hand side converges

uniformly in [e, T] for any & > 0. But

tim sup > [ 1Pt K 176 ds

k-0 tele,T] n=k°0

, _o [KTI(a)}" ot Clta
< fim T  y BJ Oe —) 7 de =0,
and (ii) follows.

(iii) It is a consequence of (ii), Proposition 3.5(iv) and the integral
equation (1.5).
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(iv) It is a consequence of (i), Proposition 3.5(v) and the integral
equation (1.5).
e) The Operator To(t) 2 [} e~ Vp(s) ds
Jo
ProPOSITION 3.7. Under Hypotheses 1, 11 we have:

(i) IfeeL"0,T,E), then Tp € C(|0, T, E) and Te(0)=0.

(i) If ¢€LPO,T;E), p€]l,o], then Tp€C¥[0,T]E)
vée 10,1 —1/p[.

i) If 0€cC(0,T),E)NLY0,T;E), then Tp€ C*(|0,T],E)
vée 10, 1[.

(v) If ¢€L'O,T;E)NC]0,T],E), 6€10,1[, then To(t)E
D(A(2)) YVt € 10, T), and

A@) To) = [ AW €= p(s) — 0] s

+ e —1])o@t)  Vie |0, T]. (3.7)

V) If 9€L'(0,T;E)YNC*]0,T|,E), 6€]0,1[, then Tp€
c'(0, T), E) and

(To) (0= A~ 10(s) = (1) ds + ¢ 0(0)

+ J’t P(t,s)o(s)ds  Yt€10,T). (3.8)

Under Hypotheses 1, 11, 111 we have:
i) If 9€L'0,T;EYNC3(|0,T),E), 6€10,7[M]0,a|, then
Tp € C"%(]0, T|, E).
(vii) If o€ C¥[0,T),E), 6€10,n[N]0, ], and ¢(0)=0, then
To € C'%([0, T|, E) and (Typ)' (0)=0.
Proof. (i) It is an easy consequence of Lebesgue’s Theorem.
(i) Suppose t > 7> 0. Then

N3 T

To(t) — To(t) = ‘ =MW p(s) ds + ( [0 _ gU=94®)] 4(s) d
T Y0

AT ot

] 7 A(7) e”* doa(s) ds; (3.9)

(U ]
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hence

ITo0) = Tole <€ [ ol ds +Cu—n) | lotslletr =)'+ ds

+C‘J o)l log [1 +’_—rst. (3.10)
-0 T—35
By (3.10) we have
| To(t) — To(t)le

< COV@lLro. 7.5 3(’ -4 (t—r)ete [l; (t—s)"% ds]

+ (-1 [‘OT (t—s)~% ds] l/q\(,

where g = p/(p — 1). This proves (ii).
(iii) Suppose ¢ > r > ¢&. Then (3.9) yields, ¥d € }0. 1].

| To(t) — To(t)le

<Ce—-Doleqer.e + Clt— T)JO o)y (t—s) ' ds

~T f—§
+C[ | o 'doje(s)]yds
Y0 Yr—5§
€ —l+a
<C(—r) [“(0||c<[e.r].5> + [7} ”(p“Ll(O.e 2E)
a £ -
+ 1% @llcqerre + [‘i‘J H‘p”Ll(O.e/‘Z:E)}
-T 1—1 s
+Cllolcqen.ne | log |14+ — | ds < Ce, d)e — )",

(iv) Fix ¢ > 0 and observe that
1
To(t)=| e“ 21 P[p(s) — o(t)] ds + [e" — 1] A(1) " ().
70

The fact that To(t) € D(A(t)) is easily proved by observing that the integral
in (3.7) is absolutely convergent since, choosing ¢ < ¢, we can write
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C(e)
4(8) e“=29o(s) — o(0)]ll <
’ Ce)
([ _ s)l -4
(v) Suppose ¢t > 7> ¢. Then

To(t) — To(t)

t—7
1 : B e(t—r)A(t) —1 _
= T-[ e =MD [g(s) — p(t)] ds + —t—T—_A(’) 0
 pU=9AW _ px-94®)
-~ d:
+] — [o(s) ~ o(z)] ds
e=DAM _
+'—t_7—[ e — 11 4(t) " [o(r)—o(0)]
plt—0AM _ |
+ _tr—_ [e-rA(t) _ erA(t)] A(t)—l (0(1)
e(!—t)A(t) -1
+————— [~ 114() " 0(t)
-7
(1 YAy (r s)4(7)

s

i

7
o(s)ds2 N B,
i=1

if s€10,¢],

if s€le¢.

37

Terms B, B, and B, on the right-hand side go to 0 as t — r— 0" ; moreover,

by summing terms B, and B we check

elt—mA) _

A t —1 _td4(t) X
Py (07 e Po(r)
which converges to ePp(t), as it is easily seen.
Term B,, by Lebesgue’s Theorem, goes to [g P(t, s) ¢(s) ds.
Finally, term B, is equal to

Me=s) _ gAlr—s)

T 1
Jo Tm,[;,ET_R('L A()[o(s) — o(r)] dA ds;

now we have, ast—r-0",
e.w-:» _ e.l(r—s)

= R(A, A(1)]o(s) — o(1)]

S AeMIRM, A1) [0(s) — 0()] YAEYy, VYs€ 10,1,
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and

A=) _ Hlr—5)

2 R AW)|0(s) — 0(7))]

t.~
< Ce M lg(s) — 0(0)ll £ w.(A),

E

where the (integrable) functions {¥ (A)},c(c., satisy. as 17,
¥ (4)— P(4) YAE

J‘ Y, () di— | ¥2)dh

This implies that, as t— ¢,
1 e.l(t—s) _ e.l(‘t-s’

Cn Y—T— R(A, A(t)[o(s) — o(r)] di

— ﬁj‘,le"“"’R(l, AD)|e(s)—o(t)]dA  Vs€ 0, ¢].

A similar argument proves that, as 11",

Alt—s) __ e.l(r—s)

Tl e
JO z_m-Jy—,_—f—— R, A(®)|o(s) — o(r)] dA ds

J; z%‘ Ae* R, A(D)[o(s) — p(1)] dA ds

and this proves that, as - ¢,

Tp(t) — To(r)

[ 40 =1 L(5) — 0(6)] ds + e p(0)

-t
+| P, 5) 0(s) ds.
-0
It remains to prove that the derivative of Tg(¢) is continuous at every
t > 0. By Proposition 3.5(ii), £+ [} P(t, 5) ¢(s) ds is continuous; now we will

show that the remaining terms are Hélder-continuous in 10, T]. Suppose
t>1>e Then

J 4@ 1 106) — o) ds [ A(5) eV o) — )] ds

=J,1A(t) e(:—s)A(t) [(p(S) _ ¢’(t)] ds
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+JJ [A(£) =949 — A(1) et =94 [o(s) — 0(t)] ds
+ [0 — e p(r) — o(0)

+J‘1 [A(z) e~ — A(1) 91D |[o(s) — (1)] ds,
0
which implies

[ 40240 106)— 000 ds = || 4(0) e lo(s) ~ ()] ds

<CE—1)° +Clt—1) J %ds

@0 |

+Clog (145 ) o) - 0(2,

+C(—1) J’:” "“'(2%:’)(2’)'“— ds + C(s)_;;_j: % (c—5)* ds
<Ce)e 1) (3.11)

On the other hand

em([)(a(t) _ er.»l(r)(o(r)
— et [(p(t) _ (p(T)] + [er,ut) _ em(r)] (D(T) + [eM(r) — er.ur)] (o(f);

hence

”etAm(p([) _ em(r)(p(r)”E
SCENt—P +Ct—le”" " +e eleqer.n
< Ce)(t — )%, (3.12)

and (v) is proved.
(vi) It is a consequence of (3.11), (3.12) and Proposition 3.5(iv).
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(vii) Suppose t > > 0. As in (3.11) we have

“ l-'A([) =MW [p(s) — o(t)] ds — ’JA(I) e MM o(s) — o(r)| ds
Jo Yo

C([ — 'l')‘s + C ' __)Z_st + C Hw(t) - (/)(T)HL

=S

T
+cf | G—Z(r—s)‘sdsgat—r)“,

and as in (3.12) we get

”etA(t)(p(t) . erA(t)(p(r)“E

-1yt tdo
.

<Cllo() — o)l + C [(’t_ ; 76] <Cl—1).

tT

By Proposition 3.5(v) and (iii) the proof is complete.

4, CLASSICAL SOLUTIONS

In Section 2 we have shown under Hypotheses I and II the uniqueness of
the classical solution of Problem (P). We will prove now that under
Hypotheses I, II, III a classical solution of (P) does exist, and can be
represented by formula (F), provided x & D(4(0)) and f is Holder-
continuous in |0, T'].

THEOREM 4.1. Under Hypotheses 1, 11, 1II suppose x € D(A(0)) and
SEC(O, T),EYNC’(]0.T|,E), 0 € [0, 1]: then the vector-valued function
u(t) defined by

u(ty=e""x + jJ DI (L + PY N (f— P(+, 0) x)) (5) ds. t€10.T),

(4.1)

is the unique classical solution of (P). Moreover, u€ C"“°"*(]0, T|. E)
Yd € 10,7 M0, a].

Proof. First, we observe that u € C([0, T], E) by Propositions 3.4(ii).
3.3(i), 3.6(i) and (ii), 3.7(i); in particular u(0) = x. Next, by Propositions
3.4(i), 3.3(iv), 3.6(iii) and 3.7(iv), we have u(t)€ D(A(t)) vt€ |0, T]. It
remains to show that

u€ECM(|0,T|,E)  VSE |0, 7] |0, «l
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and
u' () =A@ u(t)y=,(0) Yt€ 10, T].
Propositions 3.4(i) and (vi) imply that ¢*®“x & C'"(]0, T|, E) and

% ePx =A(t) e""x + P(t,0) x. 4.2)

Define
g=(1+P)"" (f—P(.0)x)

and observe that f—P(-,0)x€L'(0,T;EYNC°""(]0,T],E) by
Proposition 3.3(iv), so that Proposition 3.6(iii) yields g€ L'(0, T; E)N
C°"%(10, T),E) Y6€0,7[M]0,a]. Thus, by Proposition 3.7(vi) Tg€
C"°"%(]0, T}, E) Vé € )0, n[ M |0, @] and

150 = [ A@) & g(5) = g(0) ds + ¢

+ J" P(t, 5) g(s) ds. (4.3)
By (4.2), (4.3) and (3.7) we deduce
u')—A@ u(t) =P, 0)x + “t P(t,s) g(s)ds + g(¢t) Yte 10, T,

and the proof is complete since (1 + P)g=/— P(-.0) x.

Remark 4.2. If in Theorem 4.1 we suppose x€ D(4(0)) and
SELYO,T; EYN C°(]0, T, E) only, then the function u(t) defined by (4.1)
is still the unique classical solution of Problem (P), and all properties stated
in Theorem 4.1 still hold (with the same proof).

Remark 4.3. In Theorem 4.1 it suffices to suppose that f€ C([0, T], E)
and there exists ¢, € |0, T] such that the oscillation w(-) of f satisfies

JAtO—CL)E—T)dr < +o0. (4.4)

0

This assumption, together with x € D(A4(0)), still guarantees that (4.1) is the
unique classical solution of Problem (P) (but not, of course, its Holder
regularity). We omit the proof, which is similar to the previous one; in
particular condition (4.4) assures the absolute convergence of all Dunford
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integrals involved. This generalizes a result of Crandall and Pazy |5 | relative
to the case A(f) = A = constant.

We note that the only assumption f€ C([0, T|, E) is not sufficient to
guarantee the existence of the classical solution, even in the case A(f) =4
and x = 0. If, for instance, E is reflexive and 4(¢) = 4 is unbounded. then a
continuous f does exist, such that Problem (P) has no classical solutions (see
Baillon [3] and Travis [35]; see also Da Prato and Grisvard |7]).

5. STRICT SOLUTIONS AND MAXIMAL REGULARITY

In Section 2 we have shown under Hypotheses I and II the uniqueness of
the strict solution of Problem (P); moreover, we know that condition (2.2) is
necessary for the existence of such a solution.

In this section we will show that under Hypotheses I, II, III condition
(2.2) is also sufficient for the existence of a strict solution of Problem (P),
provided f is Holder-continuous in [0, T].

THEOREM 5.1. Under Hypotheses 1, 1I, Ul let x€&€ D(4(0)) and
SEC([0,T|,E), 0 €10, 1], and suppose that x and f(0) verify

A(0) x +£(0) — [%A(t)"] A(0) x € D(A(0)). (5.1)

t=

Then the vector-valued function u(t) defined by (4.1) is the unique strict
solution of Problem (P). Moreover, u € C'°"°(]0, T), E) Y6 € |0, n[ N 10, a].

Proof. By Theorem 4.1 u(t) is the unique classical solution of Problem
(P), so it is enough to prove that u’(¢) exists at t =0 and u’ € C([0, T, E),
for this will also imply that A(¢) u(t) € C(|0, T], E) and

w'(@)y—A@u@)=r() vt € [0, T].
Put
g=({1+P)"" (f—P(,0)x),
then, by Proposition 3.4(v), as t > 0",

u(t)—x e —1 1o
- — p x +TJO e! “’““g(s)ds

t4(0)
=o(l) +e—t—x— [ 1] [%A(t)"] A0)x + ; Tg(t).

t=0

(5.2)
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Since f€ C°([0, T], E), by Propositions 3.5(iv) and 3.3(iii) we check, as
t—-0",

A _

1
L 140 = 2 T Pg 4710 PC0) 00 + S 4() ' /©)

|-
— O(Ia) +0(°) + — ‘ [e(l—sM(H _ E"’S)‘“O)][—P(S, 0) x] ds + O(t*)
“0

1 d
+— ‘ [etA(O) _ e(t—S)A(O)] [_A(t)—l] A(O) xds + O(ta)
[ dt (=0

oA _

1
+ —[—A(O)“f(O)

= 0(°"7) + " [%A(t)"] AQQ) x
t4(0) -1 d
+£—T—A(O)"[f(0)—[EA(t)']tzoA(O)x]
¥é € ]0,n[ M 10, a].
By (5.1) and (5.2) we deduce that
u’'(0)=A(0) x+£(0). (5.3)

On the other hand we recall that
~t
w(t)=A(1) e4Dx + P(1,0) x + | A(tye" [ g(s) —g(t)] ds
Y0
~t
+ ey + | P(t,s)gls)ds VL€ TI;
“0
now Proposition 3.4(v) implies

A([) etA(t)x — 0(1) + etA(O)A(O)x

—14(0) e ® [%A(t)“]

as (-0, (5.4)

A(0) x

t=
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while Proposition 3.3(iii) vields

P(t,0)x =o(l) — [ — 1] [%A(t)l} A(0) x

t=0

=o(1)ﬂ[e"“”—1][%A(z)"] A(0) x as —0".

t=0

(5.5)

Moreover, recalling Propositions 3.3(iv) and 3.5(v) we have, V6 € |0, 7| M
10,al, as - 0%,

[ 4w e=401g(5) — g(0)) ds

= [ 4@) =240 |=Pg(s) + Pa()) +£(6) 10
— P(s,0)x + P(t,0) x| ds

— O(fa) + 0(t°) +J-t [A([) elt—94w —A(s) e(l—s)A(S)]
X [—P(s, 0) x + P(t, 0) x] ds + J.IA(s)e“*‘M‘“ [O(([—s)"““)

+ [e546) — 4] [%A(t)“] OA(O)x] ds

t=

-t
— 0(t6/\u) + ‘ [A(S) etA(si(l _e(tfs)A(s\) —A(O) etA(O)(l _ e(hsM(O))
Y

+A(0) etA(O)(l _e(tfs)A(O))] [%A([)-l] A(O)xa’s,

=

so that

[ 4@ 10 g(5)— 5)) ds

= o(1) + [tA(0) 4@ — g4 (g™ _ 1) [%A(r)"] A(0) x

=

as -0"%. (5.6)
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Next, by Proposition 3.3(iii) we have, ¥é € 10, n[ M |0, a},
e g(t) = e [—Pg(t) +£(t) —f(0) — P(t,0) x] + &£ (0)

:0(1) +et.4(0y‘(0) + etA(O)[etA(O) _ 1] [%A(t)—l] OA(O) X

t=

as -0,

hence

elA(t)g(t) — 0(1) + etA(Oy'(O) + etA(O) [etA(O) _ 1] [ditA(t)—l] A(O)x

as t—0". (5.7)

Finally, since g € L*(0, T; E) by Proposition 3.3(iii), estimate (1.3) yields
-t
| P(t,5)g(s)ds=0(%) as 1-0". (5.8)
-0

Now (5,4), (5.5), (5.6), (5.7) and (5.8) imply

u'(t)y=o(l) + 1@ [A(O)x +(0)— [%A(t)"][:OA(O)x]

[

and the result follows by (5.3).

A(0) x as t-0"%,
0

Remark 5.2. As in the case of classical solutions, Theorem 5.1 still
holds (except for the Holder regularity of u’(¢)) assuming f€ C([0, T], E)
and condition (4.4) instead of Hélder continuity for f.

About maximal regularity of the strict solutions we have the following
result:

THEOREM 5.3. Under Hypotheses 1, 11, 1l let x¢& D(A(0)) and
SECY|0,T|,E), € 10,7[ N ]0,a], and suppose u is a strict solution of
Problem (P). Then u € C'*(|0, T), E) if and only if the vectors x and f(0)
verify the following condition:

A(0) x +£(0)— [%A(t)“ ] A(0) x € D, )(8, ). (5.9)

t=
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Proof. Consider the following problem

/() —A@) z(t) = A(0) x + f(0) — [%A([)l] A(0) x, t€[0.T|.

t-

z(0)=0

which has a unique strict solution z(t) by Theorem S5.1; z{(t) can be
represented by

-t
2(6)=| e“ "M Oh(syds, 1€10,T], (5.10)
‘0

where A(¢) is the solution of the integral equation

Y0

h(t) + (tP(t, S)h(s)ds =f(0) + A(0) x — [%A(r)"} A@©)x. (5.11)
Now define
w(t) L u(t) —A(t) " A4©0) x —z(1); (5.12)

we claim that w € C"?(|0, T, E) for any o € |0, n[ N |0, a]. Indeed, w(r) is
the strict solution of

d d
w0 = A0 w0 =10 =10~ [ 407 = [ F407| |40
te 0, 7).
w(0) =0
and can be represented by
w(t) = ;"e“—“f'“’k(s)ds, t€ [0, T,
where
k(1) + |' P(t, 5) k(s) ds
=10-1O) - |Fa0 = [F40 | |40

thus by Proposition 3.6(iv) we have k € C°(|0, T], E) for any o € {0, 5[ M
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]0, @] and, in particular, k(0) = 0. Hence our claim is proved by Proposition
3.7(vii).

Then, by (5.12) we deduce that u€ C"%([0,T),E) if and only if
z€ CY([0, T), E). Newt, by (5.10) and Proposition 3.7(v), we have

2/(0)= [ A(0) e [(h(s) — h(0)) — (h(r) — h(O))] ds
+ et’””[h(t)* h(O)] + etA(t)h(O)

+ j" P(t, s)[h(s) — h(0)| ds + _(' P(t, s) h(0) ds

= % [T(h(t) — R(0))] + e (D) + P(R(0)) Vi€ [0, T).

Since, by (5.11) and Proposition 3.6(iv), # € C°(|0, T}, E) Yo € |0, 5] M
10,a], we deduce, by Propositions 3.7(vii) and 3.5(v), that
z&€ C"(|0,T),E) if and only if e"”a(0)€ C°(]0, T}, E). Therefore, by
Proposition 3.4(iii) we conclude that « € C'*([0, T}, E) if and only if k(0) €
DA(O)(é’ ). .

The proof is complete, since

h(0) = A(0) x +£(0) — [%A(z)"] A(0) x.

t=

6. STRONG SOLUTIONS

We know from Section 2 that under Hypotheses I and II there is at most
one strong solution of Problem (P), and a necessary condition for the
existence of such a solution is the following:

X, b eeNnS D(A(0)) and {y,},en S E such that:

x,—»x in E, y,=f(0) in E,
(6.1)

AO)x, +y,— [%A(t)"] A(0) x, € D(A(0)).

t=

In this section we will prove that condition (6.1) is also sufficient for the
existence of a strong solution.

Condition (6.1) seems somewhat involved: thus we will see some simpler
conditions which imply (6.1), being therefore sufficient (but not necessary)
for the existence of a strong solution. First of all we need the following
lemma.

40999 1.4
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LEMMA 6.1. Under Hypotheses 1, 11 let xED(A(0)) and g€
C%([0,T), E), 6 € 10, 1]; define

z8 [%A(t)“] OA(O)x

t=

-t
U(,)éemmx + I e(lvs)A(t)[g(S) + e:A(:)Z] ds. € [0’ T].
‘0

Then v € D (see the Introduction) if and only if A(0)x + g(0) € D(A(0)); if
this is the case, then we have

v'(1) — A1) v()
=P, 0)x + ez +g(t) + "ﬂt P(t,s)| g(s) + ez ds

ecC(0,TLE), t€[0,T]
2(0) = x € D(4(0)). (6.2)

Proof. Obviously v € C([0, T], E), by Propositions 3.4(ii) and 3.7(i),
with v(0)=x. Moreover, by Propositions 3.4(i) and 3.7(v) we have
v€ CY(]0.T], E) and

~l
(1) =A(t) e Ox + P(1,0) x + | A() "V g(s) —g(1)] ds
<0
-t
+e“Og(t) + | P(t,s)g(s) ds
<0
+ ‘.’A(t) e(r—s)Am[esA(s» — 5D st _ etA(t)] 7 ds
)
-
+ ez 4 j P(t,s) ez ds, te 10, T).
0

Hence Propositions 3.4(v) and 3.3(iii) yield, as t - 0",

v'(t) =o(1) + e VA(0) x — tA(t) e Pz — [V — 1] z + €"'"g(0)
+ tA(t) etA(t)z _ [[et.'ﬂt) _ eZlA(l)] z+ eZIA(f)Z]

=z +0(1) + e [4(0) x + g(0)].
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Similarly, Proposition 3.4(v) implies, as t > 0*,

(1) — e _ ] ot
o )t Coo(l)+ —— X+ ————A() 7" g(0) + ¢z
400y _

=z +o(1)+i—t—A(0)“ [4(0) x + g(0)].

This shows that v € C'((0, T], E) if and only if 4(0)x + g(0) € D(4(0)).
Next, we have for each t € |0, T,

At v(t) = A(t) e"Px + r A(t) e 1D g(s) — g(t)] ds

+ [e" — 1] g(1) +.‘:A(t) el 91l [gsA(s) _ gsd (0}
+ 80 — 0]z ds 4[240 — @t D] 4,
which implies, as t = 0%,
A1) v(£) = —g(0) + o(1) + @ [4(0) x + g(0)].
Hence A(f)v(f)€ C([0, T),E) if and only if A(0)x + g(0)+ D(A(0)).

Finally, it is clear that if 4(0)x + g(0) € D(A(0)), then v'(¢) and A(r) v(r)
are in C(|0, T], E) and

v () —A@) v(t) = P(t, 0) x + "z + g(¢)

+ I‘t P(t, 5)[ g(s) + e z] ds, tE€ [0, T}

Observe that the continuity of the right-hand side also follows directly by
Propositions 3.3(iii) and 3.5(iii). The proof is complete.

THEOREM 6.2. Under Hypotheses 1, 1, let x& D(A(0)) and
SEC(0, T), E), and suppose that x and f(0) verify (6.1). Then the vector-
valued function u(t) defined by (4.1) is the unique strong solution of Problem

(P).

Proof. Let {x,},en S D(A(0)) and {y,},cn S E the sequences appearing
in (6.1). Define
z, & [iA(t)’lJ A©) x
" dr 0 "

t=
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Consider the functions

ou(t)=[1+P|"" [—P(r. 0) x, — ez,

— ’-l P(t, 5)[e 'z, ds + v, — f(0) +f(t)}, neN.
Yo

By Propositions 3.6(i), 3.3(iii) and 3.5(iii), ¢,€ C(|0, T], E). Since
C?([0, T}, E) is a dense subspace of C([0, T|, E), for any n € N there exists
g, € C%([0, T], E) such that

182 = Callcqorrn < 1/n 8,000 =0,(0)=y,—z,.
Put

~
v,,(t)ée"“’xn + | e“‘”"””[g,,(s) + eSA(slzn] ds:
Y0

by Lemma 6.1 v, is the strict solution of the problem
0a(0) =A@ )= [(1 + P) g, (1) + P(1, 0) x, + €1z,
+_‘: P(t,s)e* 'z, ds.  t€[0.T].  (6.3)
v,(0)=x,.

Now as n— +00 we have
-t

[(1+P)g,|(t) + P(t,0) x, + €10z, + J P(1.s) €'z, ds
0

=[(1+ P) g — o)1) + 3, —fO)+ /() - f()  in C([0,T], E):

X, - x in E. (6.4

n

On the other hand it is easily seen that

£,(5) + ¢z,
=g, (5)+ [1+P]' [l +P|]e¥yz,
=(gn—0))+ [1+P] 1 (2, —f(O) +f(s) — P(5,0) x,,), s€ 0, T];

therefore, as n — +oc0.

gu(8) + ez, - (1 + P)~' [f(s) — P(s,0) x] in LY0,T;E),
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which implies, as n —» + o,

f
v,,(t)—»e”‘"’x _|_J e(t—sm(n[(l +P)—l (f_ P(,O) X)](S) ds
0
in  C([0, TV, E). (6.5)
By (6.5), (6.3) and (6.4) we conclude that u is the strong solution of

Problem (P).
About regularity of strong solutions, we have the following result:

THEOREM 6.3. Under Hypotheses 1, 11, let x€ D(A(0)) and f€E
C(|0, T), E), and suppose u is a strong solution of Problem (P). Then we
have:

(i) u€C*(]0,T],E) for any 6 € |0, 1[;
(i) if pE10,a], then u€cC*]O0,T),E) if and only if
XE Dy(8, ©);
(iii) if BE [a, 1], and x € D, (B, ), then u € C*(|0, T}, E) for any
s€10,4].
Proof. (i) It is a consequence of Propositions 3.4(i), 3.3(i), 3.6(i) and
3.7(iii).
(ii) If x € D (B, o), then by Propositions 3.4(iii), 3.3(i), 3.6(i) and
3.7(ii) u€ C?([0,T},E). Suppose conversely u€ C*([0,T|,E); then
Propositions 3.3(i), 3.6(i) and 3.7(ii) imply that

|~te“‘”’””[(1 +P) ' (f—P(-,0) x)|(s)ds € C*(|0, T}, E) Vo€ |0, af;

hence, by the representation formula (4.1) one deduces that
e“Wx e C¥|0, T), E),

and Proposition 3.4(iv) implies x € D (8, ).
(iii) It follows by Propositions 3.4(iii), 3.3(ii), 3.6(i) and 3.7(ii).

Remark 6.4. Here are some conditions, simpler than (6.1), which are
sufficient, but not necessary, for the existence of a strong solutions of
Problem (P).

Obviously (6.1) is true when D(4(0)) is dense in E; thus in this case the
strong solution of Problem (P) always exists whenever x € E and
feC(0,T),E).
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More generally, (6.1) holds for any x & D(4(0)) and f€ C(|0.T]. E).
provided

d |
R([EA(I) ][vo)gD(A(O)). (6.6)

indeed, if (6.6) holds, then

X + A(0)~' £(0) € D(4(0)) = D(4(0)?),

hence there exists {w,},.n S D(4(0)?) such that w,— x + A(0)~' £(0) in E
as n— 00. Defining

X, =w,—A©)'/(0).  »,=f(0) VnEN.

it is easy to verify that (6.1) is true.
Finally, we observe that (6.6) is obviously true if there exists {f,},.n&
[0, 7] such that

t,~» 0%,  D(A(t,))=DA0)) VYneEN; (6.7)

for instance, this is the case when D(A4(¢)) does not depend on t. Hence (6.7)
is also a sufficient condition for (6.1) to hold whenever x € D(4(0)) and
S€C([0, T], E).

Remark 6.5. A classical solution of Problem (P) is not necessarily a
strong solution. Indeed, suppose that the hypotheses of Theorem 4.1 hold.
but condition (6.1) is not true; then the classical solution of Problem (P)
does exist, but it is not a strong solution, for if it were, then by Theorem 2.6
condition (6.1) would also hold: a contradiction.

7. EXAMPLES

(a) First Example
Set E=C[0, 1], ||u|lz = sup,¢o,1; [#(x)|, and define for each 1 € [0, T:
D(A(1)) = {u € C*[0, 1] : u(0) =0, a(t) u(1) + B(t) u'(1) = 0}
AQYu=u" (7.1)
a(-) and f(-) being two real functions in C'[0, T| such that

a®)>0,  pH>0,  inf @+p)>0. (7.2)
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ProposITION 7.1. We have

({ue€ Cl0, 1] :u(0)=u(l)=0}  if B)=0.

(i) D(A(t))—, € C[0, 1] : u(0) =0} i B()#0.

In particular, D(A(t)) is never dense in E.
(i) o)< |-0,0]; moreover, if 0<6<n and AEZ, L
{(A€C — {0} :|arg A| < B}, then A € p(A()) and
IRA, AN ey < M/|A].

Proof. (i) Obvious.
(i) If A€ X, with |8| < 7, then the problem

Au—u"=f€E, x€ [0, 1],
u(0)=0
a(®)u(l)+p(1)u’'(1)=0

has the unique solution
-1
u(x, t) = J K,(x,1)f(x) dr,
0

where (assuming Re /2 > 0)

- sh/At a(t) sh\/A(1 —x) +\/A - B(t) ch /A (1 — x)
Vi a(t) sh /4 + /4 B(t) ch /%

if <X,

K60 = g0\ JTx a()sh/A(1— o)+ VA B) ch /A (1= 1)
( Vi a(t)sh /A + /4 Bty ch /2

if >x

Then

IRG AN < ISl sup. | 1Kifx, o) d. (1.3)
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Setting p = Re \/4, 0 = Im /4, we have p > 0 and

. chpt a(t) + V4] - Bl)
F———— - chp(l — =
VAL T s VI VE B en i
if <X
[K,(x, 7)< - chpx cho(l - 1) a(t) + |\/,I|,B(t)
a |a(t) sh /A + /7 B(e) ch /4|
‘ if >x;
hence

1
f | K (x, )| dr < [shpxchp(]l — x) + chpxshp(1 — x)]
0

« at) + V2] - B)
pIVAL-a(e) sh /2 + /3 B(t) ch /2|
__shp a() + V4| B()
pIVA| (@) sh\/A + /3 Bty ch /|

On the other hand a direct calculation shows that

|a(t) sh /A + /A B(t) ch /7|

%{[(a + pB) cos ¢ — aff sina| + i[(a + pf) sino + of cos o]}

e
2

+ 4 {[(pB — a) cos 6 + af sin +i[(a—pﬁ)sina+oﬂcoso]}'

!

2 ‘ezi{[(a+pﬂ)cosa—aﬂsina]+i[(a+pﬂ)sino+oﬁcoso]}’

e*D
2

{{(oB — @) cos 6 + 6B sino| + i[(a — pB) sino + of cos o]} f

e’ ., e’ ,
=5 e +pB) + B === [(a—pp)* + 0°F*]'"
> shpla® + p*B + 2paB]'’?,

which implies

|a(t) sh /A + /4 (&) ch\/A| > shpla(t) + pB(D)), (1.4)
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and consequently

! shp_ a(0) +|V/4| B(®)
x:ﬂfu Jo K 7)l de < p /4| shola(t) + pB(r)]
Since |arg /A | < §/2 < n/2, we have

0 1/2
0<p<IVAIL [1+tg27] p VAEZy

hence the result follows by (7.3) and (7.5).

ProposIiTioN 7.2, If|A|>€e>0and A —e &€ XLy then t+— R(A, A(¢))
C'(|0, T\, #(E)) and satisfies

L
<

e AN

Proof. We can rewrite u = R(4, A(¢))f as
[R(A, A1) f ](x)
_ shy/Ax a(t) [ shy/A(1=1) f(t)dr+/AB(E) [ eh/A(1—1) f(7) dr

0
ER(L A1)

Vi a(t) shy/A+\/AB(1) chy/2
1 X
- 2 —
ﬂ JO sh f(x 1) f(7) dr,
and an easy calculation yields
Y,
|5 RG4S | @
I P L GL: R 40YG

~1
. 1) sh\/Atdr.
la(t) sh\/A + /A B(t) ch /4| Jof( )sh /4
Thus, remembering (7.4) and (7.6), we get
0
— R(4, A(2)
5 R4, 40) e
shp C
< h/Ax| - 222
SR VA e s BT
C
_ 2 ) 12
xg}:)}?l] [sh"px + sin” ox] pshpla(t) + pB(1)]?
shp +p C 1

pshpla(t) + pB)] ~ pla(0) + pBO]” " €A1
and the result follows easily.

55

(7.5)

(7.6)

is in

(7.7)
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ProposITION 7.3. If a,f€ C'"0, T}, n € |0, 1|. then 1+— R(1, A(1)) is
in C'"([0. T|, 2 (E)).

Proof. 1t is an easy consequence of (7.7).

ProrosiTioN 7.4. Let ¢ € D(A(0)) and f€ C(|0.T|,E)=C(|0, T| X
|0, 1]). Condition (5.1), with A(0) replaced by A(0) — 1. holds if and only if

BO)#0  and  f(0,0)+¢"(0)=0

or

B'(0)
(0)

p(0)=0 and  f(0,0)+¢"(0)=/(0, 1)+ o"(1) + p'(1)=0.

Proof. Condition (5.1) in the present situation can be rewritten as

4O = 110+/0.)+ [£RUAO) | [40)-1)0 € DAOY:

if it holds, then by (7.7) and Proposition 7.1(i), it becomes

0"(0)+/(0,0)=0 if B(0)#0,
9"(0) +/(0,0)=0

(0
w"(1)+f(0,1)+%((7))<o'(1)=0 it 4(0)=0.

The converse is also easy.
ProposiTioN 7.5. Let ¢ € D(A(0)) and f€ C([0,T], E)=C([0, T] X
[0, 1]). Condition (6.1) with A(Q) replaced by A(0) — 1, is always true.

Proof. Condition (6.1) in the present situation becomes

3{(pn}neN’ {gn}neNgC[O’ 1] such that
0,0 and g, f(, ") uniformly in [0, 1];
0, € D(A(0)) ¥n & N;

4©)~ 1) 0, + £+ | 5 ROAW) | 140) =110, € DAD) ¥neEN.
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By Propositions 7.4 and 7.1(i), it can be rewritten as:

HOubnens  {8alnen=Cl0, 1] suchthat
0,0 and g, S, ") uniformly in [0, 1}];
2,(0)=9,(1)=0 ( VnEN,
, L, BO o o
27(0) + 2,(0) =0, (1) + g,(1) + —==9,(1) =0
«(0)
K if B(0)=0.
0)= ! =
9,(0) = a(0) 9,(1) + B(0) ¢,(1) 0‘ vnEN.
01(0) + £,(0) =0
\ if B(0)+#0.

Now if fe C([0,T] X [0,1]) and ¢ € D(4(0)) it is clear that such a
condition can always be satisfied.

Remark 7.6. R([(d/dt) R(1,A(t))],_,) < D(A(0)) if and only if f(0)# 0
or #(0)=f’(0)=0. Indeed, suppose §(0)+ 0; then, if x € E, the function
¥4 [(d/dt) R(1, A(t))],.of is in D(A(0)) since ¥(0)=0; on the other hand
if B(0)=p'(0)=0. by (7.7) we derive that [(d/dr)R(1,A4(t))},_,=0.
Suppose conversely that R([(d/dt) R(l,A4())],_o) S D(4(0)); then if
B(0)=0, by (7.7) and Proposition 7.1(i) we must have

B'(0)
a(0) shl

H%R(I,A(t))]tzof](l)= j:f(r)shrdf=0 vfe Clo, 1],

which implies 8'(0) =0. This shows in particular that condition (6.6) is
actually stronger than (6.1).

By Propositions 7.1, 7.2, 7.3, 7.4 and 7.5 it follows that the operators
{A(t) — 1},eq0.71» With A(t) defined in (7.1), verify Hypotheses I, II and
possibly III of the Introduction. Hence all results of the previous sections are
applicable to the problem

u,(t, x) —u, (1, x) + Au(t, x) =f(t, x), (£, x)€ [0, T] X [0, 1}

u(t, 0) =0, t€ [0, T];
a(t) u(t. 1) + B(t) u (e, 1) =0, € [0, T);
u(0, x) = p(x), x€ [0, 1],

where 1 € C, f€ C([0, T] x [0, 1)), ¢ € C[0, 1].
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(b) Second Example

Let 2 be a bounded open set of R", n > 2, with boundary of class C".
Consider the differential operator with complex-valued coefficients:

A([, x,D)= Z aij([* X) Dx,-Dx

- el
i.j=1

4

+ N bt x)D, +et,x) . (L.x)E[0,T| X 2,

i

under the following assumptions:

(A.1) (Strong uniform ellipticity). There exists £ > O such that
Re Y ayt,x)&E>ENE] VEER", VY(L.x)E[0,T]X Q.
ihJj=1

_(A.2) For each t€ [0, T| the functions ay(t, -), b(t, -), e(t, -) are in
C(£2), with bounds independent on ¢.

Consider also the boundary differential operator with complex-valued coef-
ficients:

B(t,x,D)=N B, x)D, +a(t,x)],  (tx)E[0,T|x éQ,

i=1
under the following assumptions:

(B.1) (Normality condition, see [1]). For each x € 802 let v=r(x)
the outward normal unit vector of 402 at x. Denoting with B(t, x, D) the prin-
cipal part of B(t, x, D), the following condition holds:

B(t,x,v)#0  Y(t.x)€E [0, T] x é9.

(B.2) For each ¢ € [0, T|, the functions /¢, -), a(t, -) are in C'(612).
with norms bounded independently on .
Suppose, moreover, that A(t, x, D) and B(¢, x, D) satisfy the following con-
ditions:

(AB.1) (Complementing condition, see [1,2]|) For each x € 602, let &
be an arbitrary (real) vector tangent to 0f2 at x, and let v be, as above, the
outward normal unit vector of 82 at x. Then, condition (A.l) implies that,
for each ¢ € [0, T|, the equation in the complex variable r

: aij(’» X+ z"’i)(éj + T"j) =0

.y



ABSTRACT PARABOLIC EQUATIONS 59

has exactly one root t* =1*(t,x, ) with positive imaginary part (“root
condition”; see Morrey [21, p. 255]). The complementing condition says that
the polynomial 7+ B(t, x, £ + tv), where B is the principal part of B, must
not be divisible by (r — 7*); in other words, it is required that

Bt,x,E+ 1t )0  VY(,x)€ [0, T| X éQ.

(AB.2) The functions a;(-, x), b,(-.x), (-, x), B;(-. x), a(-, x) are in
C'[0, T|] uniformly in x, i.e., their derivatives with respect to ¢ have moduli
of continuity which do not depend on x.

(AB.3) The functions a;(-,x), b,(-, x), c(-.x), B(-,x), a(-,x) are in
C'"0,T], n€10,1], uniformly in x, ie., the Holder norms of their
derivatives with respect to ¢ are bounded independently on x.

Define now

E= C(ﬁ)’ ”f”E = S:g |f(X)|.

and set for each ¢ € [0, T

D(A()) = {u € C(Q)N H**(Q) for some g > n: A(t, -, D) u € C(Q)
and B(t, -, D)u=0o0n 002}

A(t)u=A(t, -, D) u. (1.8)

We observe that, by Sobolev’s imbedding Theorem, the condition
B(t, -, D) u =0 on &0 is meaningful; moreover, well-known regularity results
in L?-spaces (see Agmon [1]) imply that

DAY () H*?Q).

pell.oc|

Note that D(A(¢)) may be not dense in E, since the boundary condition may
reduce to a Dirichlet one if §,(t, x)=0in [0, T| X 622, i = 1,..., n. Following
Stewart [30], we will verify now that under the previous assumptions there
exists 4, > 0 such that the operators {4(t) — Ao},c(0. 1 Satisfy Hypotheses I,
IT and possibly III of the Introduction. We will sketch most of the proofs;
details can be found in [30]. First of all, consider two differential operators
A(x, D)} and B(x, D), independent on ¢, and satisfying Hypotheses (A.1),
(A.2), (B.1), (B.2), (AB.1), and from now on let g > n be fixed. If 1 € C,
consider the stationary problem

Au—A(G.Dyu=f in £,
B(-,.D)u=g on &0, (7.9)
SfE L), g E H'~V9(00).
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It is well known (see Agmon |1]: see also Theorems 3.8.1-3.8.2 and Lemma
5.3.3 of [33]) that this problem has a unique solution u € H*%(£2), provided
A belongs to a suitable sector (depending on q) 290‘.\(,% AeC:|ii = 4,.
|arg 1| < 6,}, with A, > 0 and 8, € |n/2, n]. Moreover, the following estimate
holds:

[A] - ”u”m(m + M|l & ”D““L-um + “D Uy < “fHLa(m + 11 gl -1 weo |

Consider now a function ¢ € C5°(R") with support contained in B(0, 1) and
such that ¢ = 1 on B(0, 1). For each x, € 2 and r > O define

60 =8,.)88 (*). 6,=G,, L Bx.N 2

In |30, p. 306}, the following key inequality is proved:

LEMMA 7.7. Under the above assumptions, there exist A,>0, 8,€
|n/2,7), ry>0 and Cy, >0 such that, for each K sufficiently large, the
solution u of (7.9) satlsf les the following inequality for each A€ X, , and
r<ry 8 (Kry/2) |27V

|A] - Nullcam + 1A | Dulle + 14172 SUP 1D*ull, o

r((

C Illn/lq[ Sup ”f”Lﬂ(G ' Xg) + Sup 1nf ” w- ¢2r \'OHHI-HG
weH" ”(.Q) w=gondR}|

2r. xg)

Proof. See the proof of Theorem 1 in [30].
A first consequence of Lemma 7.7 is the following

ProPOSITION 7.8. For each t € [0, T), let A(t) be the operator defined by

(7.8). Under Hypotheses (A.1), (A.2), (B.1), (B.2), (AB.1) and (AB.2), there
exist 0, € |n/2, z], Ay > O such that Z, , < p(A(r)) and

C —
IR@A, AW S llean < T Iflca YA€ Zg, 4, WECEK)

Proof. Suppose u € D(A(t)); then by Lemma 7.7 it follows easily that
A ullen < CIA—A@)] ull e

thus it remains to prove that 1 — A(¢) is surjective. Take f€ C(2): then in
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particular f€ L9(f2), and therefore there exists u € H*?(2) satisfying the
problem, analogous to (7.9),

[A—A(t, -, D)]u=f in £,
B(t,-.Dyu=0 on ¢&f.

It follows that u € C'(). and this implies A (¢, -, D) u = Au — f € C(R2). This
shows that ¥ € D(A(t)) and the proof is complete.

Remark 7.9. Under the hypotheses of Proposition 7.8, if wu(r)&
R(A, A(2))f, Lemma 7.7 yields in particular:

|A] ”u([)“am + |'1*|1/2 | Du(®)ll¢oay + Slé% ”Dzu(t)“Lq(G <Clf e
Xo

(7.10)

"l")

ProposiTiON 7.10. Under Hypotheses (A.1), (A.2), (B.1), (B.2), (AB.1)
and (AB.2), suppose A€ X, , . Then the function u(t)=R(@,A(t))f is
differentiable in C(Q2) for each f 6 C(Q), and

”%R(LA(t))f

1 “f”C(G) er C(ﬁ)
c( | |

Proof. Fix t,s € [0, T|; then u(t) — u(s) is a solution of

[A—A(t, -, D) (u(t) - u(s)) = [A(, -, D) — A(s, -, D)] u(s) in 0,
B(t, -, D)(u(t) — u(s))=— [B(t,-, D) — B(s, -, D) u(s) on 090,
(1.11)

and by Lemma 7.7, (7.10) and (AB.2), it can be deduced that

|Alllu(®) — uSlcay =01t =sD [ fea,  as s—t  (7.12)

Let now /i(t, x, D) and B(t, x, D) be the differential operators whose coef-
ficients are the derivatives with respect to ¢ of the corresponding ones of
A(t, x, D) and B(t, x, D); let w(t) be the solution of the following problem,
similar to (7.9):

[A—A(t, -, D) w(t)y=A(t, -, D) u(t) in

, (1.13)
B(t, -, D) w(t) = —B(, -, D) u(t) on é£n.
Then if we apply Lemma 7.7 to v(f, s) & (u(t) — u(s))/(t — s) — w(t), by
using (7.12) we easily get

[A] - ]lo(s, 5)||c¢m=0(1)||f“am as s— L
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This shows that (d/dt) u(t) exists in C(2). and

d , I
w(t) = —u(t) = 2 RAL AW

Applying again Lemma 7.7 and (7.10), one sees that

4] < CllSf e

cn

é
RG0S

PROPOSITION 7.11. Under the hypotheses of Proposition (7.10), suppose
moreover, that (AB.3) holds. Then for each t,s € [0, T| we have

<C|[_s|anl|C(§) vfe C(ﬁ)

c(n

d d
|5 R 407~ 5 RO 4GS

Proof. Set w(t)& (d/dt) R(Aq, A(t))f. Then w(t) — w(s) is the solution of
the following problem, similar to (7.11):
[Ay — AL, -, D)|(w(t) — w(s)) = |A(t, -, D) — A(s, -. D)] w(s) in 0.
B(t, -, D)(w(t) — u(s))= —[B(t, -, D) — B(s, -, D)| w(s)  on é&Q.

By Lemma 7.7 and Proposition 7.10 one deduces that

[ w(t) = w(s)lean S Clt=s|" | fllca-

By Propositions 7.8, 7.10 and 7.11 we conclude that all results of the
previous sections are applicable to the problem

u(t, x) — A(t, x, DY u(t, x) + Au(t, x) =f(t, x), (t,x)€ |0, T} x £,
B(t, x, D) u(t, x) = 0, (t.x) € [0, T] X &2,
u(0, x) = o(x), xXEQ,

where A € C, f€ C([0, T| X 2), ¢ € C(R).

Remark 7.12. TFhe same example can be discussed in a more general
situation, i.e., by considering an unbounded open set 2 and a differential
operator A(t, x, D) of order 2m > 2. The assumptions (A.1), (A.2), (B.1),
(B.2), (AB.1), (AB.2) and (AB.3) have to be suitably modified, and in this
case the Banach space E will consist of the functions ¥ € C() tending to 0
as |x| - +oo. For the details see [30].

Remark 7.13. The first example is not a special case of the second one.
Indeed, assumptions (B.1) and (AB.1) do not hold, since the principal part of
B(t, x, D) vanishes at x =0.
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