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INFINITE-HORIZON LINEAR-QUADRATIC REGULATOR PROBLEMS FOR
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Abstract. This paper concerns the classical linear-quadratic regulator problem for general nonautonomous
parabolic systems with bouncary control over infinite time horizon from the point of view of semigroup theory. Under
appropriate assumptions we prove existence and uniqueness of the optimal pair, as well as existence, uniqueness, and
further properties of the solution of the associated Riccati equation. Several examples are discussed in detail.
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Introduction. This paper concerns the classical linear-quadratic regulator (LQR) prob-
lem for general nonautonomous parabolic systems with boundary control over infinite time
horizon. Under appropriate assumptions we prove here existence and uniqueness of the opti-
mal pair as well as existence, uniqueness, and further properties of the solution of the associated
Riccati equation. Such results generalize the similar ones known in the autonomous case [F3],
[LT2], [BDDM] and those of [DI3] relative to nonautonomous problems with distributed con-
trol; they also constitute a development of the theory of [AFT] concerning the case of finite
time horizon.

Our assumptions are, generally speaking, not uniform with respect to £, with few excep-
tions concerning the spectra of the elliptic operators A(t) appearing in the state equation and
the regularity of the Green maps G/(t) associated with them: see Hypotheses 1.1 and 1.3 be-
low. In particular, we do not assume any global exponential estimate for the evolution operator
U{t, s) or any boundedness for G(t) and the operators appearing in the cost functional.

On the other hand, some uniform requirements arise in the study of certain features of the
Riccati equation. Thus, in order to construct a minimal solution P, () of such an equation and
to solve the synthesis, we need the “finite cost condition” (Hypothesis 2.2), which is necessary
and sufficient; moreover a uniform version of this condition (Hypothesis 3.1) is necessary and
sufficient for the existence of a bounded solution of the Riccati gquation. Further uniform
assumptions (Hypotheses 3.4, 3.5, 3.6 and 3.9) guarantee other properties, such as stability
of the optimal state and uniqueness of P (t). The periodic case is also analyzed. All these
results seem to be new even in the case of distributed control of [DI3].

We now list some notations. If X is a Hilbert space, we denote the inner product and the
norm of X by (-,-)x and || - || x. If ¥ is another Hilbert space, £(X,Y’) is the Banach space
of bounded linear operators from X into Y, and | - | z(x,y) denotes its usual norm; we write
L£({X) instead of L(X, X).

IfA: D(A) C X — Y isaclosed linear operator with dense domain, the adjoint operator
A" : D(A") C ¥'* — X* is defined in the usual way. In particular we denote by (X)) the
set of operators A € £(X) such that A = A*, and we set

THX) = {4 € B(X): (Az,z)x 20V € X},
SHH(X) = {AeZHX): v > 0: (Ax,z)x = vlz|lx Yo € X}

If 7 C R is an interval, we will use the spaces LP(I, X)) 1= {f: I — X : f is strongly
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2 PAOLO ACQUISTAPACE AND BRUNELLO TERRENI

measurable and [, || f(£)]|% dt < o0} (1 < p < o), and L=(1, X}, C(1, X'}, whose defini-
tions are similar. Finally we will also use the spaces

(LX) = [ IP(/,X) (1<p< ).

loc
Jeal
1. Problem formulation and hypotheses.

1,1. Abstract formulation of a parabolic differential system. Let & C R be a
bounded open domain with boundary 8 of class C2, and consider the following parabolic
systern:

wit,z) = Alt,z, Dylt,z)  in[0,c0[x
(1.1) B(t,z, D)y(t,z) = u(t,x) in [0, oo[ x 842,
y(0,z) = yo(z) inQ.

Here the strongly elliptic differential operators {.A(t,-, D)}¢»0 and the boundary oper-
ators {B{t,-, D)}e»o are assumed to be such that the abstract hypotheses listed in the next
subsection are satisfied (see, for instance, the conditions of [AFT, §2.2]).

For each t > 0 we define A(t) as the realization in L?({2) of the operator A(t, -, D) with
homogeneous boundary conditions determined by B(t,-, D), ie.,

Dywy:={y € LA | A, -, D)y € L*(Q) and B(t, -, D)y = 0on 842},
A(t)y = 'A(t1 . :D)y Vy = DA_(t)'
If we choose Ay € IR large enough, we can define simultaneously {for { > 0) the fractional

powers (X — A(t))* with 0 < a < 1. We also require that for each u € L*(8%) we can
solve (in the sense of [AFT, §2.4]) simultaneously for ¢t > 0 the following elliptic problems:

{ 2@~ Alt,, D)® =0 inQ,

(1.2) Bit, .- DY®=u on 88,

in other words, we can define the map G : [0, 00) x L*(8€) — L*(Q2) as G{t)u:= &, where
® is the unique solution of problem (1.2). In the next section we shall need certain regularity
properties for G{t): for instance, we shall assume that

t = (ho — A[)*G() € Lin([0, 00} LIL*00), L*(2)))

for some a € )0, 1[. It is shown in [AFT] that systems of type (1.1) fulfill this condition.
We remark also that the map G depends on the initial choice of Ao.
Let

#(t) = e~y (1),
where y solves problem (1.1); then z solves the following problem:

zp = (A(t,-, D} — N)z  inf0,00[x Q,
B(t,, D)z = e~ My(t) on[0,00] x 8L,
Z(O) = Yo in Q,

50 using the representation formula proved in [AFT, §2.5] we have

(.3 2(t) = U (¢, 0)go + fo Vst 8)(h — A(S))G(s)u(s)e™ ds.
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Here Uy, (t, 8) = e™™¢=9) (¢, s) where U(t, s) is the evolution operator associated with
{A(t)}tzg. Thus

i
(L4) y(t) = U(t, 0o + fo Ut 5)(ho — A())G(s)u(s) ds.

We must recall that formula (1.4) is very useful for our calculations, but we understand that
its exact form is

(1.5) y(t) =U{t,0)yo + j; (Ao — A(8Y*)' 72U (t, 8T (o — A())°Cs)u(s) ds;

for more details we refer to [AFT, (2.80)—(2.74)].
Throughout this paper, equation (1.4) or (1.5) will be considered the state equation for
our abstract control problem.

1.2. Standing assamptions. In the following discussion we will consider three Hilbert
spaces: H (state space), U {control space), and V' (space of observations), and we will study
the optimal control of equation (1.4) over an unbounded time interval I (which could be
[Ty, oo| for some T € R, or even IR, as for instance in the periodic case). We will consider
equation (1.4) as an abstract evolution equation in the Hilbert space H, subject to the abstract
assumptions listed below. Thus, equation (1.4) can also cover concrete problems different
from those explicitly described above and in the examples in §4, We assume the following
hypotheses.

Hypothesis 1.1. {A(t)}ic1 is a family of infinitesimal generators of analytic semigroups
in H; the spectrum of A(t) is such that the fractional powers (A — A(2))* are well defined
for any a > 0, simultaneously with respect to ¢ € I, for some fixed Ay € R.

Hypothesis 1.2. The assumptions of [AFT] hold locally, i.e., over every bounded interval
J <c I, possibly with constants depending on the interval. More precisely, given J =
[a,b] C I, we assume

(i) the evolution operators {/(£,s) and U(t,s)* are strongly continuous in A, where
A= {(t,5) € [a,b : t > s}, and there exists M > 0 such that

U, 8)| ey U 8) ogn < Mo V(E,s) € A7
(i) forevery 8, p € [—1,1] and (£, s} € A the operators
(Ao = ABYPU(L,8)(ho — Als)™, (Ao — A())PU(t, 8)* (o — AR)) ™
have continuous extensions to H, the maps
(t,5) = Pa—AE)PU (L )Mo= A(s) ™, (t,8) = Do—A(8)")?Ut, 8)" (do—A(t)")*
are strongly continuous, and there exists Mg ,, > 0 such that

[0 — AU, 8) (2o — AL8)) |2 + (R0 — Als) VU, 5)* (o — A(E)") ™ |ccan)
< Mp [t =8P +1] Vit,s)eA..
(1.6)

Hypothesis 1.3. There exists o € |0, 1].such that, for each ¢ € I, G(¢) maps U into the
domain of (Mg — A(£))*, and (Ao — A(-))*G(-) is strongly measurable and bounded over each
la, 8] C I.




4 PAOLO ACQUISTAPACE AND BRUNELLO TERRENI

Remark 1.4. (i) The only novelty with respect to [AFT] is the uniformity with respect to
t in Hypotheses 1.1 and 1.3 for the choices of Mg and ¢, respectively. In particular, we do not
assume any global exponential estimate for U (£, 5) and (Mg — A())PU (2, 5)(ho — A(s))™*
or uniform boundedness for (Ao ~ A(£)*)*G(t), C(¢), N(¢), and N(t)~! (defined below).
Under these assumptions, the representation formulas (1.4), (1.5) can be studied as in [AFT]
over any bounded time interval [a, b].

(ii) In§2 the sentence “c depends on [a, b]” will mean that ¢ in fact depends, besides [a, b]
itself, on all constants involved in estimating functions and operators defined in [a, b]. In §3
some questions of stability are treated, and there we shall assume the necessary uniformities
and point out the independence of the constants.

(iii) We formulated Hypothesis 1.2 in terms of the evolution operators U(t,s) and
U(t, 8)*, rather than of the family {A(t)}:>0; this choice is motivated by the existence in
the literature of many independent sets of assumptions on the family {A(¢)}+>0, each of
which implies Hypothesis 1.2. In [AT1] and [A1] one can find a review of these assumptions.

1.3. Formulation of the infinite-horizon LQR problem. Given ty € [ and yg € H,
we will consider the problem of minimizing the cost functional

wn Jiooo{11) 1= f NICEHYBIR + (N Eu), u®)v) dt

over all u € L, (g, 00; U), subject to the state equation (1.5).
Concerning C(-) and N(-) we assume the following hypothesis.
Hypothesis 1.5. For every interval [a, b} C T,

C() € L®(a,b]; L(H,V)) and N(-) € L®{[a, b; T+ (U)).

(This means that there exists v > 0, possibly depending on [a, b], such that N(t) > vVt €
[a, 8], ie., (N(tu,u)y > v||u|}, Yu e U, Vi € [a,b].)

2. Solutions of the Riccati equation and related questions. The aim of this section is
to solve the integral Riccati equation

Q(s) = U(t, 8)* QU (5, )
+ f U(r, 5)"[C(r)"C(r)

5

—Q(r)(do — ArNG(rIN(r)'G(r)* (o — A(r))Qr)U(r; ) dr,
2.1)

with s, ¢ € I, g < t, and to prove some further results related to this equation. We follow here
along the lines of [F3), mutatis mutandis; in particular we shall need a new local existence
resuit (see Theorem 2.5 below).

We recall that a solution Q(-} of equation (2.1) is an operator-valued function Q@ €
Co(I; T (H)) such that (1) £ — (Ao — A(£)*)' ~*Q(t) is well defined and strongly continuous
from [ into £{H), and (ii) Q(-) satisfies the following meaningful version of (2.1):

Qs) = U(t, )" Q@)U (L, 8)

-i-/t Ur, ) [C(r)*C(r)
= [(ho = A(r)") Q)" K(r)[(Xe — A(r)*) QU (r, 5) dr
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with s, t € 1, s < t, and where

K(r)y:={(d = A(r))*GOIN ()~ {(ho — AF)*C(r)}s
but in order to simplify our calculations and for sake of clearness we will always use equation
(2.1).

2.1. Definition of the operator Pe, (£). Let us denote by Pr(t) the solution, defined for
every { < T (and ¢ € I; we will not repeat this detail in the following discussion), of Riccati
equation (2.1) with value O at £ = T

Pr(t) = [ Ut orer)
(0 — ()Y Br (P K (r)[(o — A(r))=* Pr(r)][Ur, 8) dr:

(2.2)
This equation was solved in [AFT, Thm. 3.13]. We recall that
(2.3) (Pr(to)yo, yo)u = min Jyo 7 (v)

under the condition y(Zy) = %o, where for each u € L2 (%o, o0; U) the functional Jy, 7 () is
defined as

) |
Jioir () = / HCEUON + (V(E)u(t), u())o] dt

and y satisfies the state equation (1.4).
Let us introduce the following important condition:

2.4,) there exists ¢ = e(fp) > Osuch that to each yy € H there corresponds
o a controlu = w(yo) € L (ty, 00; U) for which Ji,,c0 (%) < cllyolly:

in other words condition (2.4y,) requires the existence of an admissible control with respect
to a given £y € I for each initial state 319 € H.

The following lemma holds.

LEMMA 2.1. Under Hypotheses 1.1-1.3 and 1.5, we have

i) Pr(t) € Pp(t) foreacht < T < T

(i) condition (2.4y,) implies condition (2.4¢) for each t < ty;

(iii) ifcondition (2.4,) holds, thensupps, |Pr(to)|scmy < coandthere exisis Poo(to) €
T+ (H) such that Pr{ty)1FPao(te) strongly as Ty co.

(iv) if condition (2.4,) holds, then for each fixed Ty < ty we have

{2.5) sup |PT(t)iL(H) < 0Q;
To<t<to, T >t

moreover Poo (1) is well defined for eacht < ty, and
t .
(2.6) Py (s) S Ult,s)" Poo(t}U (£, ) +/ Ur,s)*C{r}*C(r}U(r, s) dr;

in particular, for each fixed Ty < tg we have

@2.7) SUp | Poo(t)] £y < 00.

ToStSto
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Proof. 1tis standard and follows from [F1], [AFT]. o

Our main assumption in order to obtain a solution of equation (2.1) is the following
hypothesis.

Hypothesis 2.2. Condition (2.4;) is satisfied for every t € I.

By the preceding lemma, if Hypothesis 2.2 holds, we can define Py, (t) for each t € I;
this operator-valued function is the candidate solution of the Riccati equation.

Remark 2.3. As we will see, Hypothesis 2.2 is necessary and sufficient to construct
Py (%) and to solve the synthesis; hence it is important to know when it is satisfied in concrete
examples. Two general remarks in this direction are the following:

(i) if system (1.4) is exactly controllable at O in finite time, starting from any time ¢y and
initial position yg, then Hypothesis 2.2 holds;

(ii) if (1.4) is exponentially stabilizable, starting from any to, and if C(t) and N (t) are
uniformly bounded, then Hypothesis 2.2 holds.

The analysis of these properties in concrete cases is under investigation; however, for
certain classes of systems property (ii), hence Hypothesis 2.2, has been proved to hold true
(see, for instance, Example 4.2 below). Note also that in the case of periodic systems it is
sufficient to show that (2.4, ) is satisfied for some ¢ € R, because this implies that (2.4;) holds
for each s < ¢ and thus for each s by periodicity.

2.2. A priori bound on (\g — A(#)*)*Pr(t). The following result plays a basic role
in solving the Riccati equation (2.1). The same result was proved in {F1] in the case of
autonomous parabolic systems, but the proof given in [F1} cannot be extended (at least in an
obvious way) to the present case; thus, the proof given here is new. See also [F2], where a
similar proof provides the a priori bound needed to get a global selution over a finite time
horizon.

LEMMA 2.4. Assume Hypotheses 1.1-1.3, 1.5, and 2.2. Then for each § €10, 1/2[ and
each interval [0, b] C I, we have

2.8) sup (o — AR Y Pr()(ho — AP ooy =i (8, [a,8]) < -+oo,
a<t<h41,Tob+2 .

(2.9) sup (o — A()*)? P (8) (Ao — A1)’ |c sy < +-00.
agigh] .

Proof. Let us fix an interval [a,b] C I. Fixt € {a,b+ 1], z € D({do — A(t))?) and
set 4, := U(b+ 2,1)(\o — A(t))Pz. By Hypothesis 2.2 there exists a control @ belonging to
L2 (b +2,00;U) such that Jy42,00(@) < c||ytl|%; hence by Hypothesis 1.2(ii) we also bave
Jot2,00(@) € cliz||}. Consider the control & € L, (¢, co; U) defined by

. 0 fort <s<b+2,
sy =1 _
a(s) forb+2<s< o0

Using {2.3) we have
(Pr(t)(ho — A())Pz, (Ao — A£))Px)H
< Jy (i)
b4-2
(2.10 = [ 1CEU e )00~ AE)Palfy ds + Tszon()

b2 '
< |:sz U (s, £) (Mo — A@)® gy ds + | Nzl < ezl
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Recalling that Pr(¢) > 0, by (2.10) we easily obtain (2.8); moreover, as Py (t) 2 0too, (2.9)
follows by letting ' — oo in (2.10). O

We state now the following local existence theorem, proved in the Appendix. Its proof is
the nonautonomous version of that of [F2, Lem. 2.1].

THEOREM 2.5. Assume Hypotheses 1.1-1.3, 1.5, and 2.2; fix 8 € ]1/2 — e, 1/2[, L €
1,7 > 0,and let Q, € 5 (H) be such that |(ho — A®)* )P Qi(Do - At)P ey < ro. Then
there exists To = To(ro, B) > O such that the Riccati equation

QR(s)=U(t, s)*QU(t, 5)
+/ Ulr, 3)*[C(r)*C(r}
~ Q(r)(xo — A(P)G(FIN(r) T G(r)* (Ao — A(r)")Q(MU (7, 5) dr

(2.11)
has a unique solution Q(-) in [t — o, t| such that Q(s) € T (H) foreach s € [t — To, t[ and

2.12)  |(ho — A& 2Q(8)| cuany < e(By o)t = 8)PHT! Ve [t —m, i

LEMMA 2.6. Assume Hypotheses 1.1-1.3, 1.5 and 2.2. Then for each ji € |0, 1[ and
each interval [a,b] C I, we have

(2.13) sup [(ho — A(8)* ) Pr(s)| oy := cali, [a, b]) < o0
a<s<h,T>b4+2

Proof. Using Theorem 2.5 and estimate (2.8) (having fixed any 3 € ]O, 1/2[), we find
two constants T € ]0, 1] and ¢ > 0, depending only on [a, b] and on the constant ¢, of (2.8),
such that for each 5, € [a,b+- 1] with s < tand { — s < 7 we have

(2.14) (t = 5)! iAo ~ A(S)") T Pr(s)| e < ¢

Fix s € [a,b] and choose t := 8+ 7/2 < fri=5+7 < b+ 1. As Pr(s), in particular,
solves (2.2) for s < t; with final datum Pp(%), we deduce

Pr(s) = Ult,s)" Pr(t1)U (41, 8) + ) Ulr, s)*C(r)*C(r)U(r, s} ds
- / M U(r, 8)* [0 — A(r)*) ™ Pr(r}* K (7)o — Alr)") =@ Pr(n)]U(r, s) dr.

Applying the operator (Ao — A(s)*)* to both sides and using Hypothesis 1.2(ii) (and the
estimate (2,12) with ¢ = %), we get

]

¢ c
— A *YH < 2
(R0 — A(s)" ) Pr(s)|can < Ty VPr(¢)]ecen + A= ds r?;fbl \CrM e a0
‘ 4 & ,
+ C/ (.,- — 8)“(t2 _ ,’.)2(1_0_3) dr S C(Tac 1ﬁ1 [a'a b],u),

and the proof is complete. )

2.3. Existence of solutions of the Riccati equation. We prove here the following result.
THEOREM 2.7. Assume Hypotheses 1.1-1.3, 1.5, and 2.2. Then
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(iy for each u €10,1] and t € I the operator Poo(t), defined in Lemma 2.1, maps H
into the domain of (Ao — A()*)}* and

(2.15) (Ao — A(L))*Pr(t) — (Ao — A(t) W Poolt) stromgly as T — o3

(ii) the operator Ps,(+) is a solution of equation (2.1); i.e., foreacht, s € I'withs <1
we have

Pao(s) = U(t,5)* Pual®)U (2, )

/U(’rs C(r)*C(r)

— Poo(r) (2 = A(r))G(r)N (r) 7' G(r)* (Ao — A(r)") Poo(r)]
x Ulr, 8) dr.

Remark 2.8. (i) Itis possible to show that the convergence in (2.15) is uniform in ¢ over
bounded intervals. However, we omit the proof because we do not need this result in what
follows.

(ii) Inthe special case where the resolvent of A(t) is compact, the proof of Theorem 2.7
is very simple (see Theorem 2 in [F1]). However, we prefer to deal here with the general case,
where the proof is considerably more difficult, since it is easy to construct examples with lack
of corepactness (see the remark at the end of Example 4.1).

The proof of Theorem 2.7 is based on the following lemma, which has also other appli-
cations (see, for instance, [F3]). Consider the following Riccati equation for s € [to, £[, with
fixed &g, ¢ € I:

Q(s) = Ult, 5)*Q:U(t, 8)
+ / Ur, sy*[C(r)*C(r)

— Q(r)(2o — A(r))G(NIN(r)~'G(r)* (Ao — A(r))QMIU(r, s)dr
(2.16)
under the assumption that Q; € £+ (H) and that the operator (Ao~ AY)EQ: (1) Do — Aft))?
belongs to L(H); denote by @(s; Q,) its solution in a suitable interval [t — o, [, given by
Theorem 2.5.
LEMMA 2.9. Assume Hypotheses 1. 1 1.3, 1.5, and 2.2, and fix § €]0,1/2[ Let

{ @t n}nsn, e a family of operators in L+ (HY) such that
(i) there exists a constant ¢3 > 0 such that

(A0 — AE) Y Qea(Po ~ AP |y S & ¥ > no;

(ii) Qtn converges strongly as n — 0o to an operator Qy € LT (H) for which the
operator (g — A(t)*YP QMo — A(t))? also belongs to L(H).
Then for each s € [t — 1o, ]

(o — A{8)")%Q(5: Q1) — (o — A(8)*) 7*Q(s; Q¢)  strongly asn — 0.

Proof of Lemma 2.9. This proof is adapted from [F3]. We denote by [I'(@)](s) and
[Tn(@)](s) the right-hand side of (2.16) when we consider the final data Q¢ and Q) , respec-
tively. Thus equation (2.16) can be rewritten as

(2.17) Q(s) = [L(@1(s), s €tot],
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if the final datum is Q;, and

(2.17,) Q(s) = [Ln(@)(s), s € [to, t],
if the final datum is Q¢ .
Next set  := min{1 — o — 3, 8} and consider the following space:
X(t—ry,t)i={ Q: [t —ro,t] ~ LT (H): Q(s)maps I into the domain of
(Ao — A(s)*)!"for each s € [t — 7o, t[, and both (Ao — A()*)'~*Q(")
and its adjoint are strongly continuous in [ — ro, ¢[; moreover
[0 — A()) Q) e
S C(Q)[I + (t - s)—(l—ﬂ:—ﬁ)] Vs € [t - rO)ﬂ!
(%o — A()")"=*Q()U (8, 7)Mo — A(8))Plcom)
< Q-7+t~ 8) "7 N(s ~r)7F
Vs & t—ryt,Vrel(0,s]}
endowed with the norm
|Q|x := max{A, B},

where

A= sup (t—8)'""% P — A)")' 7Q(8) |z (a»

SE{t—Tﬂ,t]

_ e - g)[—a—4
Bi= sup (6 —r)[14(t—3) ]
! t—rpLr<s<t (t - 7-)1

x|(ho — A(8)*)' TQ(8)U (5,7) (%0 — A(T))°|cqay-

It can be easily shown, arguing as in the Appendix below, that the maps I',, and I are
equicontractions on any sufficiently large ball of X (tq, ), provided that ro is suitably small.
Hence, possibly replacing the constant ¢ in (i) by a larger one, we may say that I and [', are
equicontractions on the ball

(2.18) Bt —ro,tie3) = {Q € X{t —ro,1) : |Q|x < c3}-

Now we apply the contraction principle to equations (2.17,,) in the ball B{t — o, t;¢3)

uniformly with respect to n. Namely, let Qo(-) be the initial iteration point in B(t — ro, ¢;¢3)

for I" and T,;; then, remarking that

(2.19) klim 1QC, Qen) — [(TR)*(Q)]|x =0 uniformly with respect ton,

(2.20) Jim [Q(, Q) — [(D)*@)]lx =0,
we deduce foreach k € N*, s € [t — 7o, t],and z € H

(o — A(s)")'2Q(8: Qe,n) — (ho — A(8)*)' " Q(s: @)zl
< Q3 Qen) — (L) (Qo)Ix Nlzll

+ (2 — A(s)*) = (Ta)* Qo) (s} = (Ao = Als)") (D) Qo)) ()=l
+[(0)*(Q0)] = Q5 Qe)lx Nzl -

(2.2
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Thus we just need to show that for each k & Nt and s € [t — 70,1

(Ao ~ A(8)*)'7*[(Tn)*(Q0)l(5) — (Ao — A(s)")' *I(D)*(Qo)}(s) strongly asn — oo,
This result is obviously true when & = 1, since foreach s € [t —rg,t] andz € H

(Ao = A(sy)'*[[Tn(Q0)](5) — [M(Qo)](&)]

(2.22) = ()\0 — A(8))' U, 3)* Qe — QU (2, 8);

on the other hand, if the result is true for the integer & — 1, then we have

(Ao — 4(3)") ~*[(Ta)*(Q0)](s) — (T)*(Qo)](s))=
= (ho — A(8)")!7OU(t, 5)" (Qun — QIU (L, 8}

— [ o= AU, 100 = A @)
< K(7)00 = AY) (T (@0)r) - (@)U,

K)o — Ay 2@ HQo) (1)U (r, &)z dr,
(2.23)

and remarking that (T',}*~'(Qo) and (I')}*~'(Qo) belong to B(t — rg, ¢; c3) by the induction
hypothesis we get the result for the integer k. This proves Lemma 2.9. o
Proof of Theorem 2.7. Fix t,ty € I with t > . We have to show that

(2.24) Poo(8) = Q(s, Poo(t)) Vs € [to, 1].

We apply Lemma 2.9 with Q¢ = Poo(2), Qi = Po(t) (i-c., the solution of equation
(2.2) with final time T' = n); this is allowed by Lemmas 2.4 and 2.1. As a consequence we
get

(%0 — A(5)")' (5, Pa(t)) — Q(s, Poo(£))] 0 strongly in [t — ro, Hasn — co.
On the other hand we have
Q(8, Pu(t)) = Po(8) — Poo(s) strongly in [t — ro,t]asn — oo,

and (2.24) follows for each s € [t — rg, (. The same result for all s € [ty, t[ follows now by
standard uniqueness arguments. O

2.4. Minimality property of Po,. Let P € C,(I, 2t (H)) be any solution of equation
(2.1}, and consider the evolution operator <I>(t r) corresponding to P{ ), i.e., the operator-
valued function defined for r, £ € I, r < {, by the following equation:

d(t,r) = U(t,r)

(2.25) s s
[ Ut 8) Yo — A())G(S)N ()™ Gls)* (Mo — Als)*)P(s)b(s,7) ds

- / {0 - A(S)*)""‘U(h 8)* [0 — A ((T0)*~ Qo) (r) — @)FH(Qo) ()]
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We know (see, e.g., [G], [LT1]) that for each s, ¢ € I with s < ¢ the following identities
hold:

P(s) = &(t, o) P(t)d(t, s) + f "B, )°

X[CW)* Cv) + P(u)(hg — A[))GIN (@) Gu) (N — Alw)*) P(0))8(v, 5) dv,
(2.26)

(2.27) P(s) = Ult,s)* P(t)b(t, s) + / t Ulv,8)*C(v)*Cv)®(v, 5) dv.

‘We have the following proposition.
PROPOSITION 2.10. Assume Hypotheses 1.1-1.3, and 1.5. Then
(1) equation (2.1) has a solution if and only if Hypothesis 2.2 holds,
(ii} if this is the case, the function Pus(-) defined in Lemma 2.1 is the minimal solution
of equation (2.1); i.e., for any solution P(-) of equation (2.1) we have

Pty < P(t) Vtel

Progf. (1) Theorem 2.7 shows the if part of the proposition. Conversely, if 15() is a
solution of (2.1) and yy € H, ¢ € [ are given, we consider the control

at) = NG (ho — AW VPO, t21

A simple calculation shows that the corresponding state is §(t) = ®(£, t1)yo. Using equation
(2.26) we easily obtain

i
(P(tnyo wolm = (POHE), §(t)x +[¢ (ICWH) I + (N (w)iv), d(v})o] dv.

Hence for each £ > ¢ we have

1 "l ~
ft C@I@)E + (Y (w)itw), 2w))vldv < (Pyo,vo)s:
consequently

(2.28) Jt,00 () < (PE)y0,90)m < 1P cianllvo -

By the local coereivity of NV(-) (Hypothesis 1.5) we then get & € L{,.(t1, o0; U), so condition
{2.44,) holds.
(ii) Using (2.3) we obtain

(Prt0ve, vorw S Jeyr(u) Vi el,¥T >4, Yy € H,Yu € LE (t1, 00, ),
and consequently we have

(Pr(t )y, o) < Jo0(u) YH €L,V >t, Yy € H,Vue LE (b, 00U
letting T° — co we obtain
(2.29)  (Poo(t)30,%0)8 < Je00(tt) Vi, €I, Vyo € H,Vu € L (8, 00,U)
so that, in particular, by (2.28)
230)  {(Poo(t)uo,%0)r < Jur00(@) < (Plti)yo, w0} Vi €1, Vyo € H,

and the result follows. O
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2.5. Synthesis of the infinite-horizon LQR problem. We use the properties of the
aperator Pe(-) to solve the problem of the synthesis. We have the following theorem.
THEOREM 2.11. Assume Hypotheses 1.1-1.3, 1.5, and 2.2. Let %o € Tandyg € H be
given. Then
(i) there exists a unique optimal control u* € L} (to, 00; U) for problem (1.7,
(i) if (u*,y*) is the optimal pair and Poo(0) is defined by Lemma 2.1, then

wi(t) = —N()"'Gt)" (Mo — A()") P (t)y" () ¥t 2 to:
(iti} the optimal cost is

Jig 00 (") = (Poo(to) o0, Yo) i

(iv) the optimal state is given by

y*{t) = Pl to)yos

where ®o(t, s) is the evolution operator defined by equation (2.25) with Poo(-) in place
of P(t).
Proof. Givenig € Iandy € H, set

w*(t) = —N(E) " G{) (Po — AV ) Poo(D)®oc(t, to)yo, T2t

by the same arguments in the proof of Proposition 2.10 we easily see that u” € L} (t0, 00, U)
is an admissible control with respect to to, whereas y*(t) := oot to)yo is the state coire-
sponding to u*. By (2.29) and (2.30), with P replaced by Poo, 1 bY u*, and ; by £, we
obtain

(Poo(to)ti0, o) r = min Jto,00{t) = Jig,00 (")

i.e., »* is an optimal control.
Finally it is clear that Hypothesis 1.5 on N{-) implies the strict convexity of Jtg,000 50 the
optimal control is unique. O

3. Further properties of solutions of the Riccati equation.

3.1. Bounded solutions. In many cases it is important to know whether some bounded
solution of Riccati equation (2.1) exists. In order to obtain boundedness we have to assume
some uniformity in Hypothesis 2.2. Thus, following [DI3], we introduce a stronger version
of that assumption.

Hypothesis 3.1. There exists a constant ¢ > 0 such that for each ¢ € I and yp € H there
exists a control u € L} (£, 003 U) such that

Jio(u) < Ellyoli%-

We have the following proposition.

PROPOSITION 3.2. Assume Hypotheses 1.1—1.3, and 1.5. Then there exists a bounded
solution of Riccati equation (2.1} if and only if Hypothesis 3.1 holds.

Proof. 1f Hypothesis 3.1 holds, then in particular Hypothesis 2.2 holds too, so that by the
results of §2 the function Poo(-), defined in Lemma 2.1, is a solution of equation (2.1). In
addition we have foreacht € I, T > t,andy € H

(Pr(t)y,y)p < min Jor(uw) < eyl
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thus letting T' — 0o we get
Py y)m <elylly Vi€l YyeH,
and recalling that P, (¢) > 0 we obtain

sup | Poo () ier) < &
terl

Conversely, if there exists 2 bounded solution }5(-} of (2.1), then we can repeat the
argument of Proposition 2.10(1), and (2.28) shows that Hypothesis 3.1 holds with

& = sup | Poo ()| £ a1)-
tel

Remark 3.3, Hypothesis 3.1 is fulfilled in several cases.
() In the periodic case of {L.1], [F], [DI2] (see §3.4), if condition {2.4,) is satisfied for
some ¢ € IR, then Hypothesis 3.1 holds.

(ii) If system (1.4) is stabilizable, i.e., there exists X € L (I, L{H,U)) such that the
evolution operator assoctated with the family {[A4 — (Ao — A)G K](t}} is stable, and in addition
the operators C(-}, N (-) are bounded, then Hypothesis 3.1 holds (compare with the comments
after Hypothesis (H3) in [DI3]).

(iti) In Example 4.2 below, Hypothesis 3.1 holds naturally.

3.2. Stability of the perturbed evolution operator. Theorem 2.11 shows, under suitable
assumptions, the existence of a unigue optimal pair (u*, y*) for problem (1.7) with 3o = 0;
we also know that

v =B, 0, Ut =—[NTIG* (A — A )Py’

(From now on we will drop the indication of the variable ¢ if unnecessary.) Here P, (t) is the
minimal solution of Riccati equation (2.1) and (%, 3) is the evolution operator associated
to the closed-loop operator family

{A— G- ANTIG* (Mg — A*) Poo}
by the integral equation (2.23); in pther words, $o, (£, 5) is the solution, fort, s € I, ¢ = s,0f
B oo(t, 8) = Uty s)
- ft U, 'r-)()\o — A(r)G(r)N ()" 'Gr)* (do — Alr)*) Poo(r)@oo(r, 5) dr.

8

(3.1)

In this subsection, following the ideas of [DI1], [DI2] and [BDDM, Chap. 1V.2, §3.2],
we will prove a stability result for y* (t) == ®oo(t,0) as t — co. In order to do this we have
to assume that Hypotheses 1.2, 1.3, and 1.5 hold uniformly over the time interval /. More
precisely we formulate the following hypothesis.

Hypothesis 3.4. (i) The evolution operators U (¢, 8) and U (%, 5)* are strongly continuous
in Ay, where A := {(t,5) € I* : t > s} and there exist My > 0 and w € R such that

U)oy + U, oY loimy £ Moexplwol(t —3)) VYt s) € Ar
(i) foreach 3, u € [—1,1] and (¢, 8) € Ar, the operators
(o — AENPUR,8) 00— A(S) ™, (o — AU, 8)* (ho — AlE)") ™
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have continuous extensions to H, the maps
(t,5) = (o= AUt )Mo= A()) ™, (8,8) = Qo= A(s) ) U f8)" (Ao~ AW)") ™
are strongly continuous, and there exists Mg, > 0 such that

(o = AW)PU (2, 5) (o — AL8)) ™| + 1000 — A(s))VPU (8 9)" (o — A |y
| < Mg l(t — 8)#77 + 1 explwo(t — 8)) V() € A

Lo Hypothesis 3.5. There exists o € ]0, 1] such that, for each ¢ € I, G(t) maps U into the
| i domain of (Mg — A(£))®, and (Ao ~ A())*G(") is strongly measurable and bounded over 1.
Hypothesis 3.6. We have

O() € L®(LL(H, V),  N()eL®(L:TH ),

P (This means that there exists v > 0 such that N(¢) > v, Vi€ [ B

I Under the assumption listed above we can revisit the proof of Lemma 2.6, and we get the
i L following lemma.

LEMMA 3.7. Assume Hypotheses 1.1,3.4—3.6, and 3.1. Then for each p € 10, 1] we have

. supr) |(,\0 — A(S)*)”POQ(S)IL-(H) < Q.
sE

] Proof. Fixt € I,0< 8 < 1/2,z € D[(do — A())P], and set yy := Ut + 1,£)(ho —
}‘ : A(#))Pz. By Hypothesis 3.1 there exists a control @ € L2 (t + 1,00, U} such that

. Terr,co(@) < Elly: s,
I i : and by Hypothesis 3.4(ii) we also have
(3.2) J¢+1,oo(ﬁ) <ec H;t:“%—_r

Consider the control 4 & L2 (¢, oo; U) defined by

foc

. 0 ift<s<t+],
@s)=9q _ . .
a(s) ift+1<s<co

Using Theorem 2.11(jii) and (3.2) we have
L (Pao ()20 — A1)z, (o — AW)YP2) 5 < Tr00()

: t+1
| - /t IC(5)U (s, 8) (o = A 2lly ds + Jo1,00(T)

1 \
< (“C“iw(r;c(v,m) /t U (s, t) (Ao — A e d5 + C) [EIF;

< (10B et v,y M o exp(w0) + ) Ny < ellalfy
Recalling that Poo(t) = 0, the above estimate shows that

i‘el? [(Ao — A(t)")P Poo(8) (20 — A(t))'sh:(}r) =L < +00.
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We now repeat the argument of the proof of Lemma 2.6; invoking Theorem 2.5 and
noting that our assumptions are uniform in ¢ now, we find two constants 7 €10, 1] and ¢’ > 0,
depending on L and 3 but independent of ¢ € I, for which the analogue of {2.14) holds, i.e.,

(8= 8)' 710 — A(8)) " Pao(8)lean S ¢ Vo€ IN[t -7t
Arguing as in the proof of Lemma 2.6, one arrives easily at the estimate

Slelg |(A0 - A(S)*)'U’Pm(s)lc(ﬂ) < C(Ta C,) ﬁ: L, .u’):

which concludes the proof. o

Using the result of Lemma 3.7 it is easy to show that the evolution operator $, (¢, s) has -

an exponential growth., Namely, we have the following lemma.
LEMMA 3.8. Under Hypotheses 1.1, 3.4-3.6, and 3.1, there exist M) > 0 and wy > wy
such that

[®oo(t, 8)|c(y < Miexp(wi(t—s)) V() € Ap

Progf. The result follows easily by equation (3.1), using our assumptions and the result
of Lemma 3.7, a

It is important, in some applications, to give conditions under which the evolution operator
@, is exponentially stable, i.e., there exist M > 0 and «v > 0 such that

a @00 (t, 0)|l.ceary < M exp(—t).

A simple situation where this occurs is when the operator C(s) is invertible for each s € 1,
and C~! belongs to L (I; £(V, H)) (see [BDDMY]); indeed, if this is the case, we fix ¢ € H
and argue as in the proof of Proposition 2.10, replacing £; with ¢y, @ with @, P with Py, §
with y* := ®(.,0)%, and & with u*, Then we obtain, for each { € I,

t
ft (ICY* I} + ENT2G* (20 — A%) Pocy* 4] ds < (Poo(O)a, 2)ar < 2]l

So we have
(3.3) C()®oo(:, 0z = Cy* € L*(tp, 003 V),
(3.4) N=12G*(Ag — A*) Pogy®™ € L2(tg, 003 H),

and by (3.3) we deduce that ®.,(-,0)z € L*(I; H); thus by the classical results of Datko
[D], we obtain the exponential stability of ®.

A sufficient condition yielding the same property, even if C is not invertible, is given by
the following detectability condition [F1], [DI1], [DI3].

Hypothesis 3.9. The family { (A, C)} is detectable; this means that there exists a mapping
K : I — L(V,H), strongly measurable and bounded, such that the evolution operator
Ua-xcl{t,s) associated with{A — K'C} is stable; i.e., there exist two constants My > 0,
wz > 0 such that

(3.5) [Ua-kc(t s)legy < Maexp(—wy(t —s)) ¥ (ts) € Ar,

LEMMA 3.10. Assume Hypotheses 3.4, 3.6, and 3.9, Then there exists a constant ¢ > 0
such that for each (t,8) € Aj the operator Ua_go(t, 8)(ho — A(8))'=% has a continuous
extension to H and

WUa—rc(t, s)(ho = A(s))' ™% ey S ot — 8)* exp(—wy(t — 8)) V(i,s) € Ap
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Proof. By Hypotheses 3.6 and 3.9 it follows that K'C' € L*°(I; £{HY)) and the construc-
tion of U4_xc(t, s) is standard. Next, for each s € I set

V{t, six = U,A—KO(t: 8){(Ao — A(s))l""‘x, t>s, 1€ D((M— A(s))l““);

then it is immediately seen that
¢
Vit s)z =Ult,8)( Ao — A()) %z + ] U, r K {r)C(r)V (r,s)z dr, (t,8) € Ag.

Using Hypothesis 3.4 we easily get
|Vt s)z|lg <clt— sV x|l V(ts) € Arwitht—s < 13

hence, taking (3.3) into account we easily get the result. O
As a simple consequence of the above lemma we have the following theorem.
THEOREM 3.11. Assume Hypotheses 1.1, 3.1, 3.4-3.6, and 3.9. Then ®(-,0) is expo-
nentially stable. i
Proof. We have

(3.6) Ua.xclt,s)=U{t,s) + /t U(t,r)K(r)C(rjUA_Kc(r, s)dr, (t,s)€l.

S

Comparing with (3.1) we easily obtain for each (t,s) el
P (t, 8) = UA_Kc(t, 8)

- ft Up-ro(t,)[KC — ()\6 — A)GN7IG* (Mg — A" )Pl (r)®oo(r, 8) dr.

Now using (3.5), Lemma 3.10, Hypothesis 3.6, and the boundedness of K, by Young’s inequal-
ity we deduce that o (-,0) € L*(I; H), and finally the exponential stability is a consequence
of the results of Datko [D]. a . .

3.3. Uniqueness of the solution of the Riccati equation. By Proposition 2.10 it is clear
that if a bounded solution P of equation (2.1) exists, then Py, also is bounded. Under suitable
assumptions on the LQR system we are able to show uniqueness of bounded solutions.

We have the following result, which generalizes [F1, Thm. 4].

THEOREM 3.12. Assume Hypotheses 1.1-1.3, 1.5, and 3.1; in addition, assume that the
optimal trajectory y*(-) is stable. Then the only bounded solution of equation (2.1) is Peo.

Proof. By Proposition 3.2 we know that P is a bounded solution of (2.1). Now let P
be another bounded solution of (2.1); by Proposition 2.10 we know that

Pt < P(t) vtel,

so it is sufficient to prove the converse inequality.
Fix y¢ € H and ¢, € I; by [AFT, Thm. 3.14] we deduce that

(3.7 I(f’(h)yo,yo)ﬁ < Ty o(w) + (PO, y())a Vu € LAt 6 U), VE > 1,

where y(-) satisfies the state equation (1.4).
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We apply (3.7), using the optimal control u* = —~N~ 1G* (Mg — A*) Pooy™; we recall that
the optimal trajectory is given by y* (1) = ®oo(t, £1)yo. We obtain

(P{t1)yo, yo) Sft (ICy* 15 + (Nu*, ")) dv + (B(@)y* (£), 4" (1)) a

< Jooo(u®) + POV (), y* (1)
= (Pt w0, o) i + (P (8, ¥"())&.

By assumption we have y*{#} — 0 as t — oc, whereas P is bounded; hence, as ¢ — co we
obtain

(Pt Yo, Yo)rr < (Poo(t1)w0, %0)H
This shows that P < Py, O

3.4. Periodic case and autonomous case. We consider now two special cases of equa-
tion (2.1): the periodic case and the time-invariant case. We assume the following hypothesis.

Hypothesis 3.13. There exists ¢ > 0 such that A{t + 9) = A(t), G{t + 9) = G(¢),
C(t + ) = C{t), and N(t + 9) = N(t) for all £ € R. If this is the case we say that the
system is ¥-periodic. '

Remark 3.14. If the system is ¥-periodic, then

(i) evidently all assumptions concerning the uniform behaviour of the operators follow
from the local assumptions listed in §1;

(i) if P( ) is a bounded solution of (2.1), then P,p{t} = P(t +8),t ¢ R isalsoa
bounded solution;

(iii) some stabilizability results for equation (1.4) can be found in [L2].

As in [DI3, Prop. 3.4] we have the following proposition.

PROPOSITION 3.15. Assume Hypotheses 1.1-13, 1.5, 2.2, and 3.13. Then the minimal
solution Poo of (2.1) is 9-periodic. If Hypothesis 3.9 holds too, then Foo is the unique
nonnegative 9-periodic solution of (2.1) and the corresponding optimal trajectory for problem
(1.7) is exponentially stable.

Proof. The periodicity of Pu follows from the same argument as in [DIS Prop. 3.4]; the
stability of the optimal trajectory is a direct consequence of Theorem 3.11. |

Finally assume that A, G, C, and N are independent of ¢. Then our assumnptions cor-
respond to those assumed by Flandoli [F1], and the corresponding result is the following
proposition.

PROPOSITION 3.16. Suppose that A is the infinitesimal genemtor of an analyuc semigroup

tA andletG € L(U,D((h—A)®)), C € LW, V), N,N-! € £+(U). Inaddition assume
that condition (2.4¢) holds (i.e., there exists an admissible control). Then Po(t) = Poo is
independent of t, and it is the minimal solution of the algebraic Riccati equation

AQ+ QA+ C"C — Qo — A1 — A)PGINT [N — 4G (ho - A1) 72Q = 0.
(3.8)

Furthermore, if (A,C) is detectable, then Py is the unique nonnegative solution of (3.8).
[
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4. Examples.
4.1. A finite-dimensional example. Consider the family of 2 x 2 matrices {A(t)} =

{(1 + t)A| }ezo, where
1 1
A = .
( -1 1 )

(4.1) V() = ARy(t) + B, 20, y(0)=(z,22) €T,

where u € L2, (™, R?) is the control and B(¢) = b(t)I ([ is the identity matrix), with b(-)
a nonzero continuous function with polynomial growth as ¢ -— co. We want to minimize the
quadratic cost functional given by

In [R? consider the state equation

Tool) = [ IICEWOIE: + (VO )] o
with y, u subject to equation (4.1); here C(t) = (24/Z(1 + 7 — 1)I, N(¢) = b(t)*].
In this situation the eigenvalues of the matrix A(#) are (1 +1, £(1 +t)i) and
Ult,s) = exp([( — #)/2 + (¢ — )| A1),

Foragiventy > 0an admissible feedback control relative to tp is easily found by choosing
a(t) = K(£)§(2), with

-2 -1
Kt =bt)"'(¢+1 N
()= b0t + )( : _2)
so all our assumptions hold locaily over the time interval [0, +00|.
The Riccati equation (2.1) becomes, in this simple situation,
@2) P'(t)+ (1+B)[ATP(E) + P(O)A] +4R(1 + 1) — 1]T - P@? =0, t=0.

The nonnegative symmetric solution Pr(-) of equation (4.2} over the interval [0, T'], with final
datum P(T") = 0, is given by

Pr(t) = 4(1 + )] = vp(t)7'1,
where

_ expl3(T? — 1) + 6(T — t)]
vr(t) = A+T)

— fT expp(sz — tz) + 6(3 - t)] ds.

It is easily seen that vy () > O for each ¢ € [0, T and that limp oo vT (t) = +o0; hence for
eacht >0 )

Pr(t) 1 P () :=4(1 + )] asT T oo

The optimal control u* is given by u*(f) = —4b(t)~"{1 + t)Iy*(t), and the optimal
trajectory i* is the solution of the closed-loop system

v () = (1+t)Ay, t=0, y(0)=(z,22),
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where

-3 1
Ay = .

We remark that the optimal trajectory is stable. Furthermore it can be seen that Py (t) =
4(1 +t)I (t > 0) is the only positive solution of the Riccati equation (4.2).

An infinite-dimensional example can be easily obtained by the above example, by just
adding to it, as a direct sum, a control problem with unbounded time-invariant operators. In a
similar way one can easily arrange things in such a way that the resolvent operator of A(t) is
not compact for any ¢ > 0, using, for instance, multiplicative operators in infinite-dimensional
spaces (compare with Remark 2.8(ii}).

4.2. Parabolic equations in noncylindrical domains. Let (2 be a bounded open set
of R™ with smooth boundary I'y. Following [DZ], [A2] we consider the family of mappings
{F:(-) : R™ — R", t > 0} associated with a family of regular vector fields {V(¢,-) : R* —
R™, ¢t > 0} by the dynamic system

%Tt(cc) =V Tiz), Tolz)==, ¢=0,z€R™

Consider the sets §2; := T},() with boundary I'; := T3(T), and the evolution domain Q =
Usso{t} x §2, with boundary = Ugso{t} x Ty

We want to apply the results of the preceding sections to the following problem: minimize
among all € L% (Z) the functional

lce

@3) s = 7 [ wieobdcas [ ueop e
where y is the solution of the parabolic boundary problem
we(t,€) = Ay(t,€),  £20,£e,
@4) YO =u(t8) orpt(=u(t), t20.6el,
¥(0,8) =w(f), €.

(vt is the outward normal to I'y.)
Denote by DT the Jacobian mairix of 7; and by J; its determinant; then the change of
variable

Z(t,:l’)) = y(t-a T,g(:L‘)), tz 0’ T e QO: ’U(t,.’ﬂ) = u(t,Tt(w))a t2 0: z € Ty,

transforms problem (4.3}, (4.4) into the following one: minimize amongallv & Lﬁ)c (8% ]IR."')
the functicnal

n) = [ ” [ st 2 doas
+/(; /89n lu(t, §)|2Jt($)B(t,$)dHn..l(a:)dt,

where z is the solution of the parabolic boundary problem
z(t,z) = A(t, z, D)y, t=0,r e,
(4.6} 2(t,z) = v(t, x) orm =

Ovaq)
z(0,z) = yo(z), z € Qo,

(4.5)

ult, 2)B(t, x), t20,xell,
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with

2) = VTF V2, me(@)ee
Alt,z, DYw = — Jy(z)~" div ({(DTi{z) " }(DTy(x)~")* - Dw(x))
+((DTe(z)™") - Dw(z), V(t, z))mn,
Blt, z) 4= Ji(=)|(DTe(x}~")*  no(z)l;
Vag) = (DTy(z) " ) DTy(e) ™' ) - molz).
Problem (4.5) — (4.6) can be studied with the methods of this paper. 1t is shown in [DZ] (in the

case of Dirichlet boundary control) and in {A2] (in the case of Neumann boundary control)
that an admissible control exists; more precisely, in both cases Hypothesis 3.1 holds true.

4.3, Strongly damped wave equation. Let Q C "™ be a bounded open set with smooth
boundary 852. Consider the Dirichlet or Neumann boundary control problem for the damped
wave equation in |0, co[ x (&

ver(t, ) = Ay(t, =) + p(t) Aan(t, ), t>0, €,
y(0,z) = wlz), w0z} =we(z), =zl

4.7) 5
By(t,z) =uft,z), £>0,z¢€0 [B =IorB = 3;} ;

here p is a scalar function belonging to C*+'/2([0, co[); the data yo, wo belong to H 1(Q2) and

L*{f), respectively; and A is the Laplace operator. The cost functional

4.8) f {IC1 8yt MBagqy + 1C2 et Mgy + G EDY(E Mz
+ MNi{Dult, ) ult )2 69)+(N2(f)ut( Yy ua(ts ) 2cam } At

has to be minimized among all u € W,2(0, oo; L2(89)), with y subject to (4.7); the opera-
tors Cy, Cy, Cs and Ny, N, belong to L2 (0, c0; L(L*(£2))) and L2 (0, 00; TH (LH{8R))),
respectively,

In order to apply the results of this paper we rewrite problem (4.7) - (4. 8) in abstract form.
Define

_ 2(Q): By =
“9) { D, = {y € H*(Q): By = 0on6Q},
sAy,
Azzz inQ
4, P L2(0Q) — L = :
(4.10) G:I}0Q) - I*Q), Gu ”’{ Br=u indQ

Then, following [B2], it is easy to see thatif u € W22(0, 003 L*(85Y)) then the function

= (2)-o0)
Yt (7
solves

0 1 ' 0
Z + 3 t> 0, T € Q,

), xe: BZ=0, t>0,z¢€d.
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Now set H := H'(Q) x L}Q), U = L*8D), V := H, and

Dyw = {(i) € Hiy+p(thw € DA},

Alt) (5)= ( z p(tI)A ) (z)

then it is shown in [L3] that (i) the operators A(¢) generate analytic semigroups in H, and (ii)
they satisfy the assumptions of [AT1], [AT2] and [AT?3,86]; tiis in turn yields that the evolution
operator U 4 (%, s) associated with { A(t)} exists and fulfills the hypotheses of this paper. (We
remark that by choosing H = L2(Q) x L*({2), as done in [B1], [B2} in the autonomous case,
we still would have (i), but (ii) would no longer be true.)

Consequently we can write the mild form of (4.11), and after integrating by parts we get

Z(")zU"“’O}(%)‘( t)) /UA“( o) = rlopeie))
f”"““ S)G( ())ds’ t20

{where the last term has to be interpreted as in (1.4) — (1.5)); by density we see that this formula
holds for all u € Wi37(0, o0; L2(9Q2)). Hence, setting L := {$), M := () for the sake of

loc

simplicity, we obtain, for Y := ( '} € Li(0, 00, H),

Y(t) = Ualt, 0)( )+Lu f Ualt, ) Mu(s) ds

-I-/ Ualt, s)[p(s) — A(s)]Mu'(s) ds.
0

Now, as in [B1], [B2], we regard the control  as an auxiliary component of the state and
define v’ as a new control; namely, we set v = v/, X 1= (Y,u), H 1= H x U, U:=U, and
V := H and look for the state equation satisfied by X. As shown in [B1,52], X (t) is the mild
solution of

{ X'(t) = BEX () + Qth(t),  ¢>0,

X(0) = Xy,
where
v _
Dg(t)#{(u)GH:Y—LUEDA@)}
4.12)
A(t) M-~ AL
B(t)=( () M= Al )

o) (L R R (Z((g)))-

It is easy to see that the operators B(t) possess in H the same properties enjoyed by the
operators A(%) in H7 in particular p(B(t)) = p(A(¢)) and

A~ B()]™

_ ( [Awé(t)]_] [)\—A(t)]“M—;‘l(t)[)\—A(t)]_'L ) YA€ p(B(2)).
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In addition the evolution operator Us(t, s) associated with {B(t)} exists; it fulfills the hy-
potheses of this paper and has the following explicit representation:

13
Us(t, s) = ( Ualt:2) / Ualt, o}M do + [? — Ualt,8))L
0 1

The operator Q{t) may be also written (improperly but wsually) as Q(t) = {1 — B(£)JG(2),
where G(£) = [1 — B(£)] "' Q(¢) is given, after some manipulations, by

G(t) = (L+ M{rp(t)[ll - A(t)]“lM).

Hence the state X (t) solves the equation
i
413  X(t)=Ug(t,0)Xo+ f Unl(t, $)[1 — B(8)]G(s)u(s) ds, t>0.
0

We remark that, conversely, if X (t) is given by this formula, then, setting X(t) = (¥ (1), ul?)),
the second component of X' gives v’ = v, and from the first component it is easy to go back
to (4.11) and hence to the solution y of the original problem.

Concerning the cost functional J(u), we can rewrite it as J(v), where

(4.14) T(w) = fo " ICHX @ + (VD) o0} d

with C{t) and N (t) given by

Y,

C(t} (};) = G(t) Y; ) = (t)Y1 + Cg(t)Y:a_ + Cg(t)DYg + [N[ (t)]l/zu,
®

N(t)v = Np(t)v.

Thus the original control problem (4.7)-(4.8) is equivalent to minimizing J{v) among all
v € IZ,(0, 00; U"), with X subject to equation (4.13).

In order to apply the theory of this paper we still need to verify Hypothesis 1.3 for G(t)
(and this follows by the results of [B 1], [B2]}yand the finite cost condition (Hypothesis 2.2).
Concerning the latter, in the case of Dirichlet boundary control it is satisfied by choosing
u = 0, as the following proposition shows. :

PROPOSITION 4.1. Let J(u) be given by (4.8), where y satisfies (4.7) with B = I, and
assume that py > p(t) = po > 0 for each t > 0. Then we have J(0) < o0, :

Proof. Multiply the partial differential equation (PDE) in (4.7) by y: and integrate over
£2; then

1d 2gp = L& 2 gy — / - 2
2dt[n{yf(t,x)| dz = 2dt_/§;|Dy(t,m)1 dz — p(t) Q}D%(i,ﬁ)] dx.
Integrating over )0, T'[ we get

f l9s(T, )P + / \Dy(T, 5 do
O (9

7
:/Iwolzdm+/ |Dyg|2dm-2f ,o(t)f | Dys(t, )| da dt;
Q Q 0 Q
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this implies that
sup [f |y (T, z)|? da:-i—/ |DY(T, z)|? dm} +f p(t)/ | Dys(t, z)? da dt
Q o 0 Q

(.15 T2
<ec [f IWQ|2d$+/ |D‘y9|2 d.‘?cjl .
o Y]

As p(t) 2 po, by the Poincaré inequality we also get

(4.16) /00/ lye(t, )P dadt < ¢ [/ fwol? di -+-f | Dyo? d:c]- .
o Ja . 0 Q

On the other hand, multiplying the PDE in (4.7) by y and integrating over }0, T x 2, we
obtain after some integrations by parts

fn (T, 23T, 7) da /Q .

T T
~ [ [ meorasa- [ [ pyardsa
0 J 0 JO

T . ~
- / o(t) ] Dy(t,) - Dylt, =) do db,
Q Q

which implies

T
//|Dy(t,m)|2dmdt
0 Jo

1
S/woyoda:+5f |y(T,w)]2dx+%/ s (T, ) de
Lt [} o

1 T T
+—p1/ /|Dyt[2dmdt+np1f /|Dy|2d:cdt;
n 0 Ja 0 Jo

hence if n is sufficiently small, again using the Poincaré inequality we get

fomfgly(t”“"nzdmd” /Om [ vt o) do

T
<e [/ wgyodm-f-/ Iy(’,l",:c)lzdzc-f-/ Iyt(T,w)lzdm+/ /lDytlzdxdt] ,
Q Q 0 0 Jo
and by (4.15) we finally obtain

/ /'1y[2dmdt+f ledemdtSc[f lwg|2da:+/ |yo|2dm+f JDygjzdm].
0 Jo 0 Ja It Q 0

@.17)

The result now follows by (4.8), {4.17), and (4.16). m|
Remark4.2, The above proposition and the results of [D] imply that the evolution operator
U 4(t, s) associated with {.A(¢)} is exponentially stable; i.e., it satisfies

U4t )l ey < ce™Pt=9) vOo<s<t

for some 3 > 0.
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In the case of Neumann boundary control, the finite cost condition is fulfilled too; indeed,
we have the following proposition,

PROPOSITION 4.3, Let J(u) be given by (4.8), where y satisfies (4.7) with B = 0/0v, and
assume that p; > p(t) = po > 0 for each t > 0. Then there exisis u € L2(0, 003 LZ(BQ))
such that J(u) < oc.

Proof. Multiply the PDE in (4.7) by 4 and integrate over 2; then

Zdtf Iyt(t m)l dz ‘“’"/ (tam)yt(t:m) dos -I-p(t} ~/c;‘9. ut(trw)'yt(tam) dog

2 [ Dyt ds - ot) [ Oute e

Choose the feedback control u = —~¥|an; we then have

td
2 - 2 - 2
2kf|yt(tmkdm+2 t/lDytml d$+25t/ y(t, x)|* dog

o0 [t o) dos = 0) [ 1Pusta)F do
so that integrating over |0, T'[ we get

[wimarass [ ipyrais [ @R
Q Q an

=/ |w012dm+/ |Dyo|2d:c+f |v0|* dos
Q Q a8
T T
—2 f o(2) [ s (£, @) dorg dt = 2 / o(t) f Dyt 2)P du dt.
L] on 0 i3

This implies that
sup [f Iyt(T T |2dm+f | Dy(T, %)) dm-}-/ (T, %) damj\
@.18) +f ()/ Dyt sc)|2do:dt+f t)f e t, )2 o
0

<c[f |wo|2dw+f |Dyg|2d:c+/ |yo12dcfm].

On the other hand, multiplying the PDE in (4.7) by y and integrating over ]O T %, we
obtain after some integrations by parts

T
f ye(T, o)y(T> ) de — f woyo da -+ ] f ly(t, =) dors dt
Q Q o Joa

T T
=f flya(-t,m)lzdwdt—/ /|Dy{t,m)|2da:dt
Q0 0 0 . «Q

T T
- /0 olt) /8 it )yt ) doe dt - fo o(t) [Q Dus(t,5) - Dylt,z) dedt;
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hence by (4.18) one easily finds that

—1-/ f|Dy(t,m){2dmdt+l/ f ly(t, x}|? do dt
2o Ja 2o Jon

(4.19) s/!y(T,m)|2dm+cU |w012dm+/ |Dy02dm+f |yl da
14 1] Q 9]

el
-+ / |vo|? doy +/ f 1y (t, 2) |2 d:cdt] .
o0 ¢ J0
Now we have the following lemma.

LEMMA 4.4, There exists ¢ > 0 such that

Ifllz2eey S e [IDfll gy + I fllzzany] ¥ F € H'(R).

Proof. The proof is by contradiction; otherwise there should exist a sequence {f} in
HY($2) such that

Ifellr2e) > & [1Dfell oy + I fellzony] Vi € N*

In particuiar, the right member is not zero (since in that case f = 0). Then if we set

fr(z)
[z2(e + I fellz2cony”

gk(m) ”ka

we have

lokllzay > Ky | Dgxllraey + lgrllzany =1 Yk e N*.

Hence for a suitable subsequence we get Dgi — z weakly in L2(Q) and g, — w weakly in
L2(69)).

Now let ¢ € L*(f) and take the solution & € H2(Q2) N H}(Q) of A® =  in . Then
as £ — oo we have

fgwdm=fgkmbdx
Q Q
ﬂf k5= /ng D@dm—rf w—-—-dcr:,,——/z-DfI)dm,
3 an Q

which implies that {gz } is weakly convergent in L2((2), but this is impossible since {gy} is
not bounded in Z2(Q2).
Let us return to (4.19); by Lemma 4.4 and (4.18) we obtain

& o0
f f |Dy(t, 2)[2 d dt + f / ly(t, 2 doy dt
4] f o} file)
+ / / | Dya(t, o) das dt + f / it )2 do dt
0 0 0 a0
Sc[f lwglzdw—i-/ [Dyofzdm+/ [yolzdm-i-f Iyozdam},
Q Q a a0

and consequently the choice u = y|an implies J(u) < co. 0

Remark 4.4. We have in fact verified that Hypothesis 3.1 holds too.

Remark 4.5. A more general approach to problem (4.7) - (4.8) in the autonomous case,
which allows one to take controls u € L*(0, oo; L2(82)), can be found in [LLP], [T].



26 PAOLO ACQUISTAPACE AND BRUNELLO TERRENI

4.4. Structurally damped plate equation. Let { C R™ be a bounded open set with
smooth boundary 2. Consider the following Dirichlet or Neumann boundary control problem

for the structurally damped plate equation in J0, oo x £2:

ytt(ta (L') = —Azy(t,m) + p(t)Ayt(tax): t> 01 T & ‘Q1
y(O,x) = y()(m)& yt(oam) = ’LUQ(CE), x €L,

(4.20) a
By(t,z) =0, Byl(t,z)=ult,z), t> 0,1 €08 [B =JarB = 5] .

Here p is & scalar function belonging to C*{[0, ool}; the data o, wo belong to H*(Q) and
L2(€2), respectively. The cost functional

J(u) = | {ly(t, Wiagey + lwets Mgy + 1DV, Nz
@.21) + 11Dyt Wz e
+ [t HEaany + luelts Niagomt dt

has to be minimized among all u € W,L‘f (0, 003 L*(85Y}), with g subject to (4.20). Following

the same method of the preceding example, we define 4, G as in (4.9), (4.10), set H =
D4 x I}, U = L*(6%Y), and finally rewrite the problem in abstract form. It turns out that

if u € W22(0,00; L2(842)), the function

£ (0)-o(2)

Z() = ARZE + ),  t>0,
Z(0) = Zo,

solves

_ 0 1 _f YT (1 - A)~'Gu(0)

.A(t) “— ( __AZ p(t)A ) 4 ZO = ( o + (1 _ A)—IGU’(O) ) 3

el ° |
)= —2Gu(t) + p(t)Gu' () + (1 — A NG (8) — p(BYGu/(t) + Gu(t)) .

As A(t) fulfills the assumptions of [AT1}, [AT2], and [AT3, '§6], there exists its evolution
operator U4(t, 8); hence setting ¥ := ( i) and integrating by parts we get

B (1— A)"'Gu(t)
Y(t)=2Z(t) - ((1 - A}*lGu'(t))

= Ua(t,0) (yo +(1- jo)-*aum)) B ((1 - A);'Gu(t))

¢ (1~ A)~'Gv'(3)
+£ UA(t,S) ((1 . A)"]GU(S) — ZGU(S))dB,
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i.e., defining
L= ((1-—181)"6;)) A e (2G_(10_A}_1G): Yy = (y0+(1 —nj))-lau(m)?

Y(t) = Ualt,0)(Yy — Lu(0)) — Lult) + /Ot Ualt, 8){Lu'(8) + Mu(s)) ds.

This formula holds for u € W2(0, co; L2(82)) as well,

loc o _
Now, as in the preceding example, weset H:= H x U, U:= U, andv(t}:= o/(f), X(¢):=
(Y(¢},u(t)). The state X satisfies

X'(t) = BHX(0) + Qu(t), >0,
X(0) = Xo,

where 3(t) is defined as in (4.12) and

=) xo=(u0)

Arguing as in the preceding example we arrive again to the state equation (4.13) for X (£),
where now

G(t) = ((1 — A) ™' M - A1 - A(f))”"‘L)

1

Note that G(t) is uniformly bounded in ]0,oc as an element of £(U, D 4(;)). The cost
functional (4.21) transforms into

4.22) T = | TUXBIG = T}

and our abstract theory applies to the control problem (4.13), (4.22), provided that we verify the
finite cost condition (Hypothesis 2.2). Now it turns out that in the case of Dirichlet boundary

conditions (B = I) one can choose the control u = 0, whereas in the case of Neumann

boundary conditions (B = (—%) one can choose the feedback control u = y 4 ;. The proof

that the cost is finite can be done by adapting the arguments of Propositions 4.1 and 4.3.
Remark 4.6. A more general approach to problem (4.20) — (4.21) in the autonomous case,
which allows one to take controls « € L?(0, oo; L?(812)), can be found in [LLP], [T].

Appendix: Proof of Theorem 2.5. We are going to use the contraction principle on a
suitable Banach space. For fixed Tp, T € R with Ty < T we set, as in the proof of Lemma
2.9,

X(To,T):={ P:[T5,T] - Z(H) such that
(1) (o — A*())7oP() € Col[To, T), LIH));
(A1) (i) |[ho — AV =*P ()| gy < et + (T =)A=Vt e [T, T[;
(idi) [[Ao — A()*)' " PHU (L, 5)[ho — A(8)]P| ey
<e(T—8)" M+ (T—t)Pte 1t ~s) PV <s<t<T}

with v := min{1 — o — 3, 8}. We endow X(TO,T) by its natural norm, i.e.,
|
I Pllxzy, ) == max{4, B}, |
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where
A= sup [1+(T—t)"* P — AR~ P®)lce,
ﬁE[TﬂsT[ 1 ﬁ ﬁ
L+ (T — )=t - .
Bi= sp UEEZOTHEZ P 0 Ay - Pe)U s)o - AP leen
To<s<t<T (T'—s) i
We also set /

B(p):={P € X(To,T) : |Pllx(n,1) < £}

Theorem 2.5 will be a consequence of the following lemma.
LEMMA A.l. For each py > O there exist Ty < T and p > 0 such that for any Pr
satisfying

o = ATV Prido — ATN|cay < po

the Riccati equation
T

P(t) = U(T, )" PrU(T, 8) + f Ulr )
¢

x [C(rY*C(r) = P(r)(do — A()G(r)N(r)~' G(r)* (ho = A(r)")P(r)]U(r, t) dr,

t € [To, T,
(A2)

has a unique solution P(-) in B{p).
Proof. First set

(A3) Qr = (ho — A(T)*)PPrie — A(T)Y.

Now fix pg > 0 and let Pr be such that |Qr|z¢zy < po. Consider the map I defined on B(p)
in the following way:

T(P)(t)
= U(T ) PrU(T, ) + f U, )"

x [C(r)*C () — [(ho — Alr)*) =2 P(r)]* K(r){{ Ao — A(r)y) 1 —eP(r)||U (r,t) dr,

(A4)
where ¢t € (Tp, T'[ and
(A5) K(r) = (o — A)*GrIN(r) ™ {[(2 = A(r)*G(r)]".

We remark that K (-) € L*(|Ty, T'[, L(H)) by Hypothesis 1.3,
We will show that for suitable Ty and p (independent of the choice of PrythemapI'isa
contraction in B(p).

We start with the following estimate, which is true fort < r < T and follows by (A. 1(iii))
and (1.6):

100 = A()) <PV (r,8)(h0 — A" e

< ()\o—A(r}*)“"‘P(r)U( “2”) (Ao-— (L‘%‘j))ﬁ
X (Ao— (T+t)) p (%f—t,t) ()‘D_A(t))lua\

< ep(T =ty {1+ (T = )2 0 (r = 1),

(A.6) LUH)

L(H)
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By (1.6), (A.5), and (A.4) we deduce (with Q7 and K (r) given by (A.3) and (A.5))
(0 — A" " TP B ey
< [(xa — AN T2U(T, t)* (Ao = AT PQr(do — AT)) PU(T, 1) )

T
+ /()\o—~A(t)*)‘““"U(r,t)*O(r)*C’(r)U(r,t)dr
t

~(H)

T
iy (o = A@)) U (r, 1" P(r)(Xo — A(r))' ]

x K(r)[(h — A(r)* Y 2 P(#)U (r, t) dr
< cpot + (T —t)PFe" + o(T — t)*

L(H)

sed [ N )
< clpo + s T — gyminlrtey+Btla-1hi 4 (p — )oY v e [0, T].
On the other hand, for T; < s < £ < T we have by (A.4), (1.6), and (A.1{(ii))— (A.1({ii))
(%o — AR ~*T(PY@)T (R 8) (Ao — A9)P|ca)
< (o — A@)*) U (T, )" (ho ~ AT)) P
x Qr{do = A(T))PU(T, s)(ho — A(s))Plepm)

B ‘ /T(Ao ~ A@)")' U (5, )" Clr)* C(r)U (r, 8} (Do ~ A(s))" dr
t

. | L(H)
+ \ | 00 401U, P00 - A1)
x K(r)[(ho — A(r)*)l""’P(r)]U(r, 8){Ao — A{s))'g dr
< epoll + (T = )T 4 (T — )2 (t — 8)=F

L(H)

+cp’ /T(T — )1+ (T = r)3+o=12(r — 1)* YT = 5)"(r — 5) P dr
< clpol1 + (7 = 8)P+] 4 (T = )%(s ~ 5)*
+ 2T = )7+ (T = )75 (T —6)7(t — 5)™7)
< ofT — 8)[1 + (T = )+2=1)(5 — 8) 8 [ po + 1 + pX(T = ¢)lr+eom+42e=1)),
The above estimates show that '
1Pl xcz,ry < elpo+ 1+ p*(T — gymintrrantitie-tyy,

Asy=min{f,l —~a—P}and B > 1/2 —a, wehave inany case y -+ S+ 2a -1 > 0.
Hence we can find a large p and a T} sufficiently close to T" such that

(A7) T(P) e B(p) VF & Blp).

Now we have to prove that the map I is a contraction in B{p). Indeed, if P,Q € B(p)

we can estimate the X (Tp, T')}-norm of ['{P) — I'(Q) exactly as before {and the calculation is
even simpler); the result is

(A8) [IT(P) —T(Q)lx(m,m) S ep P — Qlix(mm)(T — To)mnlrtertiriacil,

Hence we can find a large p and a Ty sufficiently close to T such that both (A.7) and (A.8)
hold, and the result follows by the contraction principle. (]
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