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G. - THTRODUCTION

Let {A(t), t<[0,T]} be a family of gederators of analytic semigroups
in a complex Hilbert space H, and suppose that both {A(t}} and
{a0)"Y Fulfil the assumptions of {Acquistapace. and Terremi, 1987) in
a somewhat strengthened form, i.e. assume that:
for each te[0,T], A(t}:DA(t)EH—aH‘is a closed linear 3
operator; in addition there exist #elw/2,n[ and M>Q such
that p{A(t))QgTﬁf, where S(®):={z<E: |arg z|<#}, and Yy (0.1)

IA-ate)] Mg = ¥[1+121] 7 vASTE), vialo,T3;

there exist N>0 and o,pe]0,1] with e+p>l, such that
(A0 [-A(0)] 7 {A) TPl ] g = Blems| 2177 b )

YaeS{a), vi,=e[0,T3;

(0,3}

the operators {A(t)*,te[D,TI} satiefy (0.1) and (0.2)
with the same constants .M, N,o,p.

REMARK, G.1 By (0.1}, the domains Dact) are necessarily dense in H,

go that A(t) is well defined (and densely defined tool.o

Denote by Z(H) the set of self-adjoint bounded linear cperators



en H: E(H) is a Banach space with the 2(H) norﬁ. Congider for each
tel0,T] the operator

AP = A(t)'P + PA(t), PeX(d), I - R

whose precise definition will be given in Section 1. It is known [(see
Sections 6.1, 6.2 in (Da Prato, 1973)) that for each te[0,T1, A(t)
 generates an analytic semigroup in I(H), and in addition A(t}

-'preserves pOSithiuy, i.e. if PeD and P=0, then A{t}PRD

Alt),

:' Our goal is te ‘show thal under the above assumptlons the famllyi
_fi{A(t) te[O T} fulfils the assumptions of (ACQUlstap&ce and Terrenl
7 1987), - or,. mare prec1sely, satisfies (0.1) and (0.2), with p replaced

by “any smaller number, in the Banach space BACIE

As én application of this result, we are asble to-show existence.

of cla551ca1 solutlons for an abstraet nonﬂautonomous Riccati,

equatlon arlslng ln the study of the Llnear Quadratlc Regulator .
Preblem for pa;abﬂllc systems with boundary contrcl Nue. to lack of '
space, thlS appllcat*on will appear in a forthcomlng paper

(Acquistapace and Terreni, in preparatlon}

REMARK 0. 2 We may replace (O 2) by the slightly veaker condition
‘—1
[A{’r.)[:?th)] ey oate)” 3.@:10‘“” Z It-SI [1+ a1
VAES(@J,_Vt,SE[D,T],

where « 1+ Py €lo, 1] and o TP >1 for i=1, Jki what 15 crucial here is
that Py >O and this requirement makes such assumptlon stronger than
that of (Acquistapace and Terreni, 1987}, where on the contrary the

pi 5 are allowed to ke possibly 0.

1. THE OPERATOR A{t) FOR FIXED t.

A precise definition of the cperator (0.4), for flxed tEIO T, can be
given in the following way {compare with (Da Prato, 19?3)) le
Par(H) and. consider the sesquilinear form defined on DA“}XDA“) by

@P;t;x,yl:=(A{t}§c,Py)H+(Px,A(tly]H, x,yeh, .. (1.1

We set

A(t} :={P éE(P} 3.c(t;P)>O such that
: {1.2)
]@P(t;x,y)] = elt:PYx|l [yl = jEDA“)}
TIf PeDA(t)’ then @P(t;=;-) has & unique extensionrgp[t;',-) to
HxH:such that..
. @P{t;x,yj =.¢%[t;gyy] Vi, ygDA(t) s ]
(1.3)

[o,(t%,v3] = olt:2) x| fiyl, - vx.vett 5

hence’ by Riesz' Representation Theorem there exists an operator

Q, (t)=2(H) such that
:Qp(t;g;y) = fQP(t]x,yjH “¥x,ysH, (1.4)

Now we define

AlE)Pi=G (v) vYPeD, . ., (1.3)
i.e

(attipx,y), = ESP(t;x,yJ vx, yeH. (1.86)

We remark that if PQDA(t) and XéDA(t) then In particular

FPx, att)y), | = (8, (i, y)- (AL, Pyl =

= [etup )ﬁXiI +IEA“JXH ]E

this means PxgD #* and
AlL)

*
A(E)Px = A(t) Px + PA(L)x ‘v'xeDMt], \z'PeDAm, {1.7]

i.e. (0.4) holds when evaluated at any XEDA(U In particular, by

{1.4), (1.3}, {1.1} apd (1.7) it follows easily that

(Qp{t]x,yjn = (x,QP{t)y)H vx,yeD, ..

and therefore A(t)PEQp(t]eZ(H] for ecach PEDA(tV
The operator A{t) generates the semigroup {e

defined by

EMY) sonce(r(H)),



Where en{x} = [2/11:)1/2

sin(nx}‘ £ ={f_,en)H. Now if D, were dense in
Z(H), then we shoﬁld have, choosing P:=‘1H: . .

P p, (AR P EAYT - pagryys . (1.2)
m'|| (eEA-l
g20

i.e. for each s»0 there should exist 6€>D such that

= {,

indeed; we have"- o Z’(H)) 1HIEE(H)

PROPOSIJ.ION 1.1 Denote by 1 “the 1den‘tity operator on Z(H). We-have: -

EA(L)
- : e ot U O P IR U STy . 284 -
.(i] D.r\(t)"' {Peii(H): 3 éi-l;l[—g——ﬁf&] "(A{'L)qu}’)g v, yel}; =up {" {e .~1ﬂ]f‘"H: “fﬁﬂml} <g Vgé]ﬂ,sa[;.
(ii} T {PEE[H) 3 11m!i( EA(H 1)?] = 0} hence by taking £ e, nelN’ , we would get
. A{t)_ o m T _ ‘ _
ti : Lo "(ezﬁkwlﬂ}e |]H"-T i-exp(-2n%) < ¢ vneW', vZeln,s [,
[111} {PeDMU A(t]PeDMH} _ _ ° €
.Ei‘\ﬁ'-) . - which 1s impossible. o
e =1y 3 R e .
= {PeDh; -+ 3 1i ] —A[t}P" G}-.
{Pe A(t) @lg g Z(H) RIFMARK 1.3 Despite of Example 1.2, we chviousiy have
“Proof. {1} By (1.8} and (0.1)-(0.3) 1% follows that’ Tim | (eEA(t)—IZ(H))Px”H= 0 ¥PeS(H), VxeH, Vtel0,T1. o (1.9
. i . ENp. ) .
EALL) Lo
e "S‘Z(Em}} = c{e,M) vE€*0, visl0,Tl;

: 2. . MAIN RESULT
hence the argument of Chapter 9, Remark 1.5 of (Kato, 1966} shows :

" thet if P QéZEH} and Ey_[O.‘__E];(D.B} and the results of (Acquistapace and Terreni, 1986),

(Acquistspace, 1988), (Acquistapace, Flandoli and Terreni, 1990, in

EALL) i
lim(gT—l?X y] =(ax, )H ¥x, yel, press}, (Acquiitapace and Terreni, 1990) we can construct the -
uo . N evolution operator U{t,s) associated to {A(t)}, and the follow:.ng
T = ly that Pel, .: ithen by 4 .
then PEDA( ) and A{t)P=Q. Suppose conversely . At t i propertles hold frue:
(1.7} it is casy to get far‘ each x=D, . ond yel:
. ; : PROPOSITIDN 2. 1 For O< <t<T we have:
EA(J‘ ~ )
lim[i‘e—ilﬂx,ﬂ = lim[(EEMt) -1 PIE (1 )T + (1) UCE,8) = UCL,TIULr,8) Wrels, ], UCE ) = 1
Eng B &¥ao : . - B
b _ 3 (11) U(t ‘s)eZ{H,D and 3 dU(t,s)/at = A(RIO{L,s);
. E—i(eﬁam -1)Px + P[§ 1(e€A(t}_ia}}x’yJ = (ABIPxy), { hees) ) .
‘ " (111) U(t,s) e.‘f,(H D, ] and 3 dU(t,s) /ds = -A(s) UCt,8);
hence. by {1.6) we get the result since DMt} iz dense in H. (iv) 3 dult,e)sds = —[A(s)*U(t,s)ﬁ}*
110311 P 1ti 1.2(1)-(i11) of {Sinestrari, 19853). m
{1i}-(311) See Propesition (1)-(i11) o (v) [IU(tsg)”E(m* ]|U(t,s}'§ . (t—s]"dU{t,s]/dt”z(m+

£an

KAMP] . is not dense in Z(H) in general (uniess, of . o
E LE 1.2 D 5 I g + {t—s]"dU(t,s']/ds“ﬁmjs c{@,M,N,u,p,.T).

A

course, the A(t)’'s are bounded. Indeed, set E{:=LZ(D,!I}, éncl . :
A(t]EA-:dz/dxa with D :=Wo%0 mnWw™ 2(8,n); then we have . . . : Proof., (il-{ii) See Theorem 2.3 of {Acquistapace, 1988}.
: ) =W ) A o
* - ) _ ) {iii) See (6.11) of (Acquistapace and Terreni, 1990).
eE r = eﬁa - E exp(-nzi}f e YESD, VfeH E {iv]) See Theorem 6.4 of (Acguistapace and Terreni, 1990}.
B , cH, : ;

n=1




(v} See Thaorem 2.3 of [Acqulstapace, 1988) and Theorem 6 A ef

[Acqu1stapace and Terreni, 19931 o

Consider now the operator E(+,*):E(H)E(H) defined by .

CE(t, 8)P:=U(T-8,T-t) PU(T-5, T-1); - Oss=t=T,. PeZ(E}i.5 .o v (2.1)

_ A'Straightforwar&fEompuiation'shéﬁs‘that E(t,s) i strongly
continuous in Z(B), and In additlon if C=s<t=T

E(t,s) = E(t,DE(r,s) __V'rg[_s,‘i::]_,::,E(t,“i;}'._= i,

%'EE[t,é}P ="RITL)E(L, s)P VPéZ(H], . '_ o @y
L _ B RS T EE I O
HEE[t’S}P = -E{t,s)A(T-s)P VPEDA(T

hence E(t,s) is the (necessarily, unique) evolutlon operator oL
associated to {A(T-%),t€[0,T]}. We will show in cur main rheﬁram

2.3 below that the family {A{T-t)}} satisfies (0.1} and (0.2) (with p
replaced by any smaller mumber) in the space Z{H). Az & conseguence
of Theorem 2.3, the results of [Acquistapace and Terreni 198?) ;
(ﬁcqulstapace and Terrenl,-1986} and. (Acqulstapace, 1988) 1mmed1atelY
imply severa! regularity properties fgr_the.eyolutlpn operator
E(t,8). | T
REMARK 2.2 Of course, many smoothness propertles for E(t s] and .
rit, s] may also be directly derived by (2.1), using the regularlfy '
results for U(t,s) and U{t, s) proved in (Acqulstapare, 19887, e
EAcquistapace, Flendoli and Terreni, 1930, in press), {Acquisiapace
and Terreni, 1990). However we belleve that Theorem 2. 3 has some
interest in- 1tself, since 1t provides a new class of generatcrs of
analytic semigroups having a good dependence on t (i.e. satisfying
{0.1) and (8.2)); this clzss is not the "usual® ebsiract version of
some elliptic operator with time-dependent coefficlents and
hemogenecus boundary conditions, actlng on sone concrete functlon
space, ‘although its construciion in ‘fact starts from an operator of

that kind, ©

THEOREM 2.3 Under assumptluns (0.1)- (O 3} the operators A(tJ
defined by (1.2), (1.6}, enjoy the following prcpertles T

3
i
A
¥
=
:
&
kA
:
#
a

i

(13 A(t):DAEt]ES(H)—az(HJ is a closed linear operator; in
addition there exist ﬁoe}n/z,ﬁ[ and M0>O, depending on #,M,
such that :

HA-a00] M gy = B [1HIAIT WS, veelo, Tl

(11) for each '=€ll,1[ there exists Né)O, depending on ¢, M,N,«,p,
€, such that

-1 = -
Jae A-a o] I T8 0y S

= 0 jt-s|*[1+|x[]PHF a5 T, ve,sel0, 11
Proof. See Secticn 3.

3. PROOF OF THEOREM 2.3

Assume (0.1)-(0.3} and let A(L) be the operator defined in Z{H) by
{1.2), (1.6). First of all we need a representaticn of the resclvent
operator {A—A(t)3~1

PROPOSITION 3.1 Part (1) of Theorem 2.3 holds true and, in additicn,

we have

[a-att] e = f [p-ae) P [auale] e
L ¥ (2.1
YPEZ(H), vasSlw ),

+, being defined in Theorem 2.1{i); here y is any curve lylng in

® - ’ :
p[A(t))np(A(t) J and joining +me M o +weiﬁ for somwe neins2,ol, and
the symbol f? means [Zﬂi)'1fw

Proof. Clearly, if £30 we have eEm“PEDmt‘ for each Pex(H), and -
F
A(t)eEA(t A(t) &;,ut) gmw)r e&ut) neguu vE>0,
so that
Eh(e) -1 .
jattle Ploigun; = oW, M) € vEx0;

part (i) of Theorem 2.3 then follows by standerd arguments.
Fir now Pef(H) and heS(ﬁb). Then by the Laplace transform



Fformula we get
R - 'F- e ﬁ(t\ -
{}\-—A(t')]_lP = J e E".e oA L) PeEA ‘GE.
o o
On the other h.and we have ;.

At f €’“'[:; A(t)] v E“” f E“[u—A(t)] du.

_where ',r ,7 obey the requlrements listed abeve hence by 'F‘ublni s

Theorem and the resolvenz i.dentlty we. get

:[h.'—..r\‘_['tj]'__rf’ =J ]f ]f é;ﬁgég”éef'[géA(tf}"ilé'[n_:_—A(ic)] “apdy =
: o DI R £ ) :
- f Jf (oapn) ™ oA (81 "] P A (E)] apdn.
Y _
. WE can select the curves A in such a way that {é) for .é"ach.
- ?LET_T and ,uE( ‘the point A-p 11eS on the right—hand Side. of ¥,, and
snnilarly {b) for each’ AEé_t't‘}_)- and veg the polit Asp lles ‘on the
right—hand side of ¥, This can be achieved by choosing; for -

lnstance

¥, =-{z—rexp{i'& 3, r2~r [cosﬂ [ } {z——»z—r +is, Is]-ﬁur [tgﬁ ]}

?2:={zmrexp(.l%)’ rZrU]cosazl'i} e {z:—r0+is, |s[*—=rcifgﬁzl},

(or.ientec.l frnm. ‘;méxp(—it? } to +ocexp(i~3 ), J=1,2), vhere 19 <15 <1} <
and T €10, M [tgz‘}[ [, so that by {0. 1) both y and y, are contamed :
in p(A(tJ}np(A[t) *) for each telo,T].
Now if KE7T we may "close the curve ¥, on ‘the ri_ght“,- and
evaluate the lntegral over a' by means of residues’ the_orez_ﬂ,

obtaining (3.1). The proof is complete =]

REMARE 3.2 Of course we might also "close the curve 7, on the right"
(instead of 71), obtaining similarly
- B o —1
[-a)]7'p = ]t [a-v-ACt) ] 7P [r-alt)] Fau :
¥ . - (3.2)
YPe&{H}, VRES(#}O},

b

vhere ¥ satisiles the reguirements listed in Proposition 3.1. o

Fix now PEZ(H‘), s,tE[G,Tj and héﬁ;f; consider the operator
Zi=[A-A0)] T A Al R (3.3)
Obviously ZEDA(U; we have to show that

i|f\.(t_)2i|£( = g{ﬁ,ﬁ,ﬂ,a,p,e)[t—sg”{u]A[]'P“"” veelo,1f, (3.4}

and this will prove part (i1} of Theorem 2.3.
e remark that if (3.4) holds with A=1, then for each Res(-ﬁo) :
with [A[<1 we have '

factizly =

= || [1-art)] [A-Mt]]“in(t)[1—Mt)]-‘-1{A(t)"—i\(s}"l]?|[mms
= c(ﬁ.l‘i.N,G:P,c)Itvs{- = c(8,M,N,&,p,8){t-s] [1.,.1”]-!3(1 )

i.e. {3.4) holds for each ;\Ggéo_) with [A]<1 as well. Hence it is
sufficient to preve {3.4) for each Ae@i(—ﬁT with |aj=1.

To this purpese using {3 2) we spllt [Alt)” —-A[SJ_J'}P in the
following manner:

At -als) P =
= f {[—v—‘A(t}‘] ’%[»—A(t)]“1—[—v—A(s)’]"1P[V~A(s)]‘1}dv -
¥
= f?{[[w—_-ﬁ(tf]‘l—[—v—A(s)’]"l]P[v—A(t]j"+
+ [-P—A(sld]ﬂP[[va(t)]_lﬂ[v—A(s)]"1]}dv

. Clesrly, the curve y here ﬂmﬁst b:e"oontained in p[A[t))n'p{AttJ“)
and in p(A(s})np(A{s}*), and In addition -y:={zeC: -z&y} must have
the same property; for lnstance we may take 'y::&}S(ﬂD}, oriented from
+u:exp(~1'«?rol to +wexp(iv56).

Now let us fix Ae_Sm with |Aa]=l. Using (3.5}, (3.3) and
taking into account {3.1) and (3.2) we split Z as follows:



z= i« f% [ﬁ-s(t);’]_%[{—v—.ﬂ(jt).'}hlj.{—?—A(s)o}_1‘]_.?. ‘L

o [-Al0)] 7 [aep-ACE)] Tdudr +

]f ]f [A-u-A(e) ] {—v—A(s)] P

[[v~A(t]]—1-[v—A(s)]-1][;J.—A(t]] dudy =2 z’,

where . we _ma'y choosge ¥, —BS('& } and 7, —63(19 1, with 5, <rb <ﬁ <1§ fDr o

'inéfahce we "may chciose &1.—(2%%})/3, 2, :—-{f} +21?]/3 g0 that A and
3, depend oniy on &,M. )

Next, we rewrite Z uszng the reﬁoivent 1dent1ty
z;_f_ ]E [;;-A(t)“}-“i[[-V—A(t)"]“_i_-—[w—ms) }‘*]?
'a'i ¥, . -

.--(a;#uy)'l[é;-fx{t}}"ldpdv -
(3.7}
:|: f [Fl—A(t] ]—1[[—v-«A[t) ]_1~[—v A(s) ]
Ta

© (ew _V] P‘—”_Mt]] d#dv = :‘ Zut ?12;-.

of course both 211 and 212 are absolutely convergent ir}tegrals.
In 211 wa may evaluate the integral over v, by “closing"'xz' on
the right” and wsing residues’. theorsm: we find (since the point A-v

iies on the right-hand side of rarz]

7 = ]E [A-p-alt) &] = [[—V;A..(t ) a_'l i [-p-A{s) leLj _1] B [v—A.('t)]_ldv.

11
LS
{3.8)

Slmilarly, in ’Z we ovaluate the integral over 7, by "closing
7, on the left", fmd.n’\g (51nce A-i lies on the right-—hand side of
3’1]:
= g, ' (3.9)
212 o

Consider now 22. By the change of varlable v=—z, we have

ey

L T

2§ § Do) T ae T
2 9y (3.10)
. [_{-z~A(t_)]"1—[—z75(s)]'1] [p-att)] " dzdy,

where —3'1:%{2&&‘.: -Z&E‘,‘_fi}, oriented from +mexp(i(1r—ﬁ1)) to
+mexp(—iht-—1‘}1)J. But the function

. _ .
zs[z-Alz) ] 1PI:]:~2—‘*\(‘c.):| lﬁ["zwk(s)]_lj

is absolutely integrable and holomorphic in the region
{zeC: |arg z] « {m-s .9 1},

50 that in (3.18) we can replace -7, by 7.5 thus, writing again v in
place of z, )

z= ]f f Apma )™ a0 TP -
LA . {3.11)
. [{-v—A(t)] T [-v-Als)] '1] [r-AC)] Mdvdp,

Next, using the reszolvent identity we rewrite £, as the sum of

three absolutely conwergent jntegrals:
‘]t f {;\.n;znA{;C)”}—l[[v—A(s}ﬁ]_I-EV—A{’C}*}—I]P
¥ T
2 %
. I:E‘U‘A(t}}71—[—9—:@(5]]_1] [;L-A(t]]_idvdg -
- e s e
NS
, (3.12}
. {[—V—A(t)]_1-[-—17—!&.(5)}_1] [p-att)] Fawan +
+]f ][ (w3 A1) P
¥2 7
-1 - -
. [[uva[tJ] ~l-v-a(s)] 1] fr-ait)] Ydvdu =ZFZ +E

and as before we can evaluate in 221 the integral cover g, and in Z
the integral gver T obtaining



][ {V~A(t}] P[[nv-f,(t)]'1~[—v—A(s}]“1][;\—p A)] v,
T @a8),

By (3.6.)—[3.;3) and (3.12)-(3.14) we finally have -

R E TR L(3.15)
= E At By : i : :

. where z is: défj_ned in (3.12) and '2"' '2" Care glven by [.’3 8) TE3UEA) T

Let us. compute niow,. aceording to {1 1) the quantlty <}> (t X, y)
for ®, yeD © and LE[O T1:

®, (t x, y] = (A(t)x zy) {Zx A(t)y] =
= (w.a08)"2y) (ACe) e, v)
N | ' x . £ ! *
so that by (3.15) we have to estimate A(t) Z, A(£)Z, =nd A(Y) 2

in the Z£{H) neornm.

Te this purpose wWe neﬂd two 1emmas

LEMMA 3.3 If A<S(H ) with |A1=»1 and wey v, then. .
A} = [[afvip]]sin(s ~8.)..

Proof. Quite easy., O

LEMMA 3.4 If ?\ES[ﬂoi with [a]=L, ey Uy, and vey,, then for each
£€]0,1[ we have .

"A[t Y [A—y—,ut)"]‘i [[v—A(t 17 [v—MS"] _1] %

=

2w

—oli— - -pE/2
% c(-f},M,N,eL,p)lt-S[‘x[l"'i;\-l] {1-€) {1"'-]3"] pc/2[1+§v|] pE/2

Proof, We write

“Am [A-p-alt) ]—1[["‘“” i _{" ~Als) ‘]_1] 2w

nA(t) [A-p-a(6) 1A {v—A(t)"]‘i[[A(t) AT ]

z =0 B N a3

(3.18).

3
B

i
A
=

R

Wk

{a-gs2)4er2

A fomatey ]

2

and using hypothesis (0.2] for {A(t}"} we get

= BN, @, 0) | t-5 ) 1o | PO a0 ]7PER

ALY Trep=alfy ]'15[1; 8(t)"] - fr-ats)’ }“1][

=

£

by Lemma 3.3 we get the resuii. o

Let us now estimate Alt)

a&Zu. By (3.12] we have o

a2 = sz_lffﬁ.;‘_jt ) Awmh ()] “li[v—a gf?filg'l,—,[izéﬁ(sifj‘ Al
; :

. [{—v-«A(t,)‘] efrrats)} T J [u-Ate) ) dvepy =
=c that by Lemma 3. 8- and [0 1] Wer get for.each: €=JG 1[

JActz |2m$ cto.M N, p}jif’"y“ﬂ}t 'u|

[1+{MZ§ s

]f Jf [1+;p;]‘*’€’2[a+| 13"Psf’zidp||dy; (3171

= c(ﬁ M E cx o “P”z(m;t s{ [1+|?\l]"p(1-s)

Concerning Mt};%y by (3.8) we have

A(t)*znﬂ.]f’ar ALY [amw-a(t

1

1 e ) [o-ace) ]

At [ace)] '1]A(s)*[mwats)‘]‘ip[u-mt)]'ﬂiv,
L

and by Lemma 3.4 we easlly get

”Mt) 211“.%(&)

for each e<l0,1f

= c{®,M,N,2,p)-

S L N E e T E It f [1+]v]]P* ™ av] = (3.18)
¥

= c[v&,M,N,a,p.a}HPi[zfm

The estimate for 1’\(t)a‘t322

analogously

1
|t-s| *[1+]a|] P,

is quite similar: by (3.14) we have




Jace)’z

22“.':‘3(%115 C{@'M'N’“’p)ﬂpnz

[+4
. L

f QTP ] ] s £3:49)
s

1 . -

C c(ﬁ,H,N,m,p,s}“Pﬂz(H)Et_g]“[1+jA§]ﬁP(1—s):

Tetimates (3.17)-{3.12) show that (3.4} holds true: this

concludes the proof of Theorem 2.3. O
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