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0. Introduction. Consider the parabolic Cauchy problem

W) — Aftyuir) = f(i}. L€ s, T} uw(is)==zx . (0.1)
in a general Banach space E. whete the operators A(?) generate analytic semigroups
in E. with possibly non-dense domains. The existence of the evolution operator
U(t, 5) for problem (0.1) is guaranteed provided the family {A{t)}}1et0.1y enioys some
regulazity with respect to £. It is shown in [5, §7] that all kinds of hypotheses used
in the literature can be essentially reduced to two independent sets of assumptions
which are weaker tban airy other: namely, the classical ones by Kato and Tanabe
{10). revisited in [3. 4], and those introduced in [5] and used in [6. 1].

The properties of U(t, 5} and its regularity with respect to t are very well known
now. Much less information js available on the regularity of 5 — U/(t.s); the only
classical result is that

I[LUR o], =~V s)Als)z, VI€Dagy, VOS5 21 <T, (0D

provided all domains D 4y are dense in E {see e.g-, {17, Theorems 5.2.1 and 5.3.3)%
some improvements of (0.2) can be found in [9, Theorem I, [16. §1.11}. In addition.
under the assumptions of [10]. it is known that the operator-valued function s —
(e, s)is differentiable in C(E)} for 3 < 1, and dU(¢,2}/d2 is 2 bounded extension
of the closed operator —U{#.3)A(s) (see [17. Theorem 5.3.3]). In a recent paper by
Lunardi [13], the Jatier property. with several related resulits, has been shown to be
true if the A{#)'s have a (possibly non-dense) common domain D and satisfy strong
regularity assumptions.

The goal of this paper is a systemnatic study of the properties of 5 — U(t,s)
under the assumptions of [3]; in this case, our results extend those of [13] and seem
to be optimal. We also study the same problem under the assumptions of [5}, but
the situation here is more complicated and requires additional assumptions.

-
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Here is.the plan of the paper. Section 1 is devated to the list of assumptions and
results, w.rth some related remarks: Section 2 contains a collection of preparato
lm; in Sections 3, 4 and 5 we prove cur main Theorems 1.6, 1.8 and llg
respectively; Section & contains statements and proofs of the analogous results und-e'
the hypotheses of [5). Fiaally, there is an appendix containing the proof of so .
furthet regularity results for U{2, s} which were only stated in {7}. Duc to the len mle:
of the paper, cxamples and applications will appcr;r clsewhere. “

1. Assumptions and main results. Let us list the hypothesis of [3].

{ For each 1 € [0, T}, A(t): Dary € F — E is a closed linear
operator with possibly non-depse domain: (1-1)

there exist Jg €]n/2, n{ and A > 0 such that
p(Al1}) D S(o) := {z € C: |arg z| £ #p} L {0} and (1.2}
MA = AN Mer € wifsp. YIEO.T] YA€ Sk
£ = [\ —4(6)] ! € C1([0,7], L(EY) for each X € S(dy),
and there exist a €]0,1}, L > 0 such that {1.3)
HEA - A Mer) € 5he YEEDT) Ve Sk '

{ there exist n €]0,1], N > 0 such that

d gior— .
BEA(™ — 2A0) ey S NIt —5|", VYes€0.T). (1.4}

Remark 1.1. Hypothesis {1.3) can be r
; . elaxed ; 1
pothesis 11{jii) and Remark 1.1]. rxed somenhat; compare with [, Hy-

Remark 1.2. We will often use the well kno i
wn representat i
{et A} by Dunford integrals; in fact, we have 4 ation of the semigroups

Al et A = hEA[y -
{t)"e ]EA e~ AN, Yte[0,T), VE>O0. YAEN. (15

where v € S5{1) joins +20e~*? to +o0e’, #/2 < ? < ¥y, and the symbol £ means
(/2 . ' !

Ax eagy consequence of t.ﬁ i .
with 17 §5.9]) e results of {3} is the following statement (compare aiso

Proposition 1.3. Under assumptions (1.1)—{1.4}. problem (0.1} possesses a unique

evolution operator U(t,5) : A — L(E), where A : ? joyi
the following properties: (E), where & {{t,) € [0, ¢ < ). enjorioe

{) Ut,s)=U(t,r}l(r,a), v0<s<r<t<T; U{t.t) = L.¥t € [0.T};
(i) LUt 8) = AU(L,3), YOS s <t < T
(iii) ELU(M)"“ £y + (t — AU, Mgy € (M. L,N.a.n, 0, T), ¥(t,2) €
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Remark 1.4. There is a representation formuia for U(t, 5}, namely
U(t,s) =[(1- R)" M4y, 0<s<t<T, (1.6)

where R, is the integral operator
t
[Rug)(t) = f Rit.rg(r)dr, te(s.T}. g€ L'(s.TiE), (L7
whose kernel R{t,r) is given by the Dunford integral
(t—epx 4 -
R(t,r):= +e ;[,\ —A(P))7dA, 0Lr<t LT, (1.8)

here 7 is the same curve appearing in {1.5). Formula (1.6} follows easily by i3,
Proposition 1.9] (the.operator R, was named [ there}.

Remark 1.5. By {1.6) and the results of [3}, it follows that under suitable assump-
tions on the data r, f, the function

u(t) := U(t, s)x + j. U, r)fir}dr, te {s.T}—

is the unique solution of problem (0.1).
Let us state now our first main result.

Theorem 1.6. Under assumptions (1.1)-(1.1), there exists an operator V(¢,5) €
L(E) satisfving for each (t,5) € A:

(i} 3‘;(](!.3) = 1°{i.3), and V(t,9)x = =U{t.5)A(8)z, ¥ € Dy,
@) IVt 9lleey € oM. LN a.n, 0, T)t - )"

(i) IV(t )+ Als1e =94 o gy < (M, L.V, 7, 90, THE — 8)5.
where § := a A'n.

Proof. See Section 3.

We are able to give a representation formula for V(t,s) (see (1.10) below). A
heuristic derivation of such a formula can be obtained in the following way: by (0.2)
and (1.6), we formally get

df;U(r, s)z = ~U(t, s)Al(s)x = —[(1 — R,) (A}t MHI)(2).

Now, (1 — R,)~1 = "% ,(R,)", and the powers of R, are integral operators with
kernels inductively defined by

¢
Ri(t.s) == R{t,s). Ra{t,s) :=j R (t.r}R(r.8)dr, Yn> 1 (1.9)
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hence,

0t
-iU t,5)r = — A(s glt=s3Ats) Ro(t.r)A(s)el 7= o dr
ds )

n=1]
LY o .
w == Al A Zj (Ralt.r) — Ralt.s))A{s)el" =24 2 dr
=1
kg
3 Ralt el
n=1

The last expression is meaningful for each r € £ in view of Lemma 2.6 below. Thus,
if we set

V(L s)x 1= — Als)el! ",

- ZJ [Ra(t.r) — Ra(L, 3)|A(s)et rsiMa) 1 gy

n=1l

(1.10)

- Z Ra(t, s} — 1z,
n=1
the above argument “shows” that dU(t, s)xfds = V{t,s)z, ¥(t,5) €A, V€ E. In
fact. in Section 3 we will prove more, ie.. as in {17, Theorem 5.3.3], that

%U(t,s) = V{t,s), Y{f.s1 €2 {in the £(£) norm). (1.11)

The operator 17{t,s) bas some further regularity properties, whose description
needs some notations. We denote by D y,,(¥, 00} the real imterpolation space
(Dagays Ecsioc. ¢ €]0,1]; for brevity we agree that Ds(,(1,00) means Day
We also need to recall the definition of the following function spaces:

Definition 1.7. (i) If & > 0, B,{[e.b. E) {resp. B.(]a,b], E))} is the Banach space

of continuous functions u : la,b[— E (resp. u :]a,b] — E) such that [Ju||, < oo,
where

lull := sup (b—s)*[lu(s)le {resp. sup (s~ a}*|[u{s}llg)-
s€[a .4 5€]a b]

(i) ¥ 4 2 0 and B €)0,1], Z,a(la,b[-E) {resp. Z, glla. b}, E)) is the space of
functions u € B,{[a,b[, E) {resp. B,(la.b]. E)) such that [u], 5 < oo, where

oo o= sop, {(p—a*! sup (g = Py~ Yula) ~ ()l }

s<peqg st
(resp.

sup {(s—a*?  sup (g-p)llulg) - u(P)IiE}).
s€]a.tl 4= <paess

~ The spaces Z, y are Banach spaces with their obvious norms; they are useful in

treating Hélder continuous functions which blow up at an endpoint of their interval

of definition. These spaces were introduced in 3] (with blow up at a = 0) and uscd

in various situarions [11, 12, 13, 8], but an earlier use of them can be found in [15].
Here is our result concerning the regularity of 3 — V{t. s}
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Theorem 1.8. Under assumptions (1.1)-(1.4), the operator V{¢, 5), given by {1.10),
satisfies for each (1,5) € A and & €]0,1]
(1) IVt s et Dary.00).8) < (@, M. L N a,n, 90, Tt — $)°";
{il) [Vt s) + Als)el =AY 0o (9.000.E)
<e(d, M, L.N o, 7,0, T)t — s)¥+7~1 swhere § = e A mp;
(iii) s — V(t,s) € Zy5-([0, 1], L(E)), Ve €]0.4];
(iv) s = V(t.s} € Z1_9,5_.([0, 2], £(D 4(1{9. 20}, E)}, Ve €]0, 5[;
(v} s = V(t.s)x e C{[0,%],E) if and only if r € Dy and A(t)z,
dA(8)7  [dt - Aft)z both belong to m; in this case

Vit t)r = —[LU(t s)z]eme = —A(t)1;

(W) if x € Dy and A(t)z, dA(t)V /dt - Alt)r € D 41y(8,00), with 3 €]0, 6],
then s — V{t,s5)z € C9([0, 1}, E).

Proof. See Section 4.
Concerning the regularity of t — 17(¢, 5), we have the following result:

Theorem 1.9. Under assumptions (1.1)-(1.4), the operator V(t, s}, given by (1.10),
satisfies:

(i) Vit.s)=U{t,r)V(rs),V0<s<r<t<T;
{H) £Vt s)= 4V (1,5, VO<s<t<T;
(i) t— V(t. s} € Zy1{]s, T} L(E)), Vs € [0.TF;
(V) t — V(t.5) € Z1_p1(]5, T, L{D 45y (9, ), E)), ¥ ¥ €]0, 1;
{v) t = V{t.s)z € C([s, T, E) if and only if r € D (,) and A(5)z € Da,);

(vi) t = V(t.s)x € CP([s,T], E), with 3 €]0.¢}, if and only if = € D 45y and
4‘1(3-)2? [ DA(_,](_S, OO)

Proof. See Section 5.

Remark 1.10. We recall that, by {1.2), the fractional powers [-A(s)]? of —A(s)
are well defined for each & € [0, 1] (see e.g., [17, §2.3]. Then, due to the continuous
melusion

D[_A(_,)]\v C D‘q(_’)(ﬂ. OO), v E]O, 1],

by Theorem 1.8(i)-{1i) we immediately get

Vit s)leo £ S (@M L, N.a,q,8, Tt -5, (1.12)

[—aday¥r
Vet s) + A(s)e =M ey S o0, ML Ny, 0, THE— 8)71,
(1.13)
This proves [7, Proposition 3.1(ii)] which was stated without proof there {the other
parts of that Proposition are proved in the Appendix below).
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We end this section with some remnarks concerning the Yosida approximations of
A(1), defined by
Ar{ty = RA()[k — A))]7", keN*, {1.14)

We will use such operators in the proof of our main Theorem 1.6. It is well known
and easily seen that for each k € Nt and * € [0.7] we have p(Ar(t)) 2 S{¥) and
the following properties are true for each A € S{iy), £,5 € [0,T] and k € N* :

1 - M
B — At ey < o (1.15)
d = I
”EE[/\ ~ A s < Ty {1.16)
d. . od. .
57 A ™ = = Aels) lleery < Nt — o], (1.17)

where M’ depends on M, dg and L’ depends on L, Ug. In particular, {A4(¢}} C £(E)
and fulfills (1.1)—(1.4) uniformly with respect to k € N*. Thus. we car construct
the corresponding evolution operators {Uy(£,5)}, given {as in {1.6)), by

Ue(t,s) = [(1 = Ryp) ™ (el N1y, 0<s<t<T, keNt, {1.18)

where

[Rsrg](t) :2] Ryt r)g(r)dr, te|s, T}, ke Nt (119
with

Ry klt,r):= ][e(‘-ﬂf‘d%[) —Au(NTMA, D<r <t <T. keMt.  (1.20)
“¥

We can also construct the operator (analogous to {1.10))

Vilt, ) 1= — Ap(s)elt—s14xle)
o0 t
- R et 1) — Rui(t, $)|Ag(8)elm— 9 Asls} g
)3 JRLNCOR SO PHE i
=3 Rapl(ty )M 1) 0<s<t<T. kn€NY,
n=]
where, as in {1.9),
t
Rt )= [ RcistnRuaris)dr, mk> 1 (1.22)

We remark that all operators constructed above obviously belong to £(F); we will
show in the next section that their norms are, in fact, bounded uniformly with
respect ta k € N+ {see Lemmas 2.7, 2.5 and 2.9 below).

2. Technicalities. We collect here all preparatory lemmas which are needed in
proving Theorems 1.6, 1.8 and 1.9. The statements are grouped according to their
subject.
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A) Lemmas on resolvents.

Lemma 2.1. Let  be the curve appearing in (1.3). Under assumptions (1.1, (1.2),
{1.3) we have for each A € 5(ip} and £, 8,7 € [0, 7] :

i) A(SA = A Hlery £ 1+ M;

(i) PAA — A — Als)[r — AN ey
= A = AT = [A = Al gery < LA - shs

(i) [lA(s)A — AT A()  oemy € oMLY —sT4+ 1+ A1)

(V) AR — A7 — Al)A — AEAD M ey
< o(M. L)l = s|(]Al [t = | + 1).

Proof. (i) is a trivial consequence of (1.2). (ii) follows by (1.3) and the identity
AP = AD]T = A - AT =MD - AGF - - AGHTY

td (2.1)
= A]; d—r[A — A{r)|"'dr.

{iv) follows by (i}, (1.2). {1.3) and the identity

(AN = A(r)] 7 = AA = AE)HAR) T = AA)[A - A(s)) !
x [A(s) 7 — A(r) THOAE - AE)THAG T - AT+ D - AT
(2.2
{1ii} is an easy consequence of (iv} (with r = {) and {1.2).
Lemma 2.2. Under assumptions {1.1)-(1.4), we have for each A € S(#%)} and
r,s,t € [0,T]:
@) HED—ADI™ = £ - AN em < M, LN (e 5|7+ APt —s]);

(i) A (ER - A0 - EDX - A ) e <
(M, L NY[L+ A 7F ] = s + 1+ A==t — s);

i) I (&0~ AT — £ - A A e £
oM, L, N)flt = sI? + A2t — s{(s — r) + [+ M) 7).
Proof. Arguing as in [3, Lemma 3.1}, all estimates follow easily by Lemma 2.1(i)-
(ii)-(1}, (1.2), (1.4) and the ideniity
d

S0 = A0 = AW - A SADTAWD- A 29

Remark 2.3. Due to (1.15), (1.16) and (1.17), Lemma 2.2 holds unchanged with
A(t), A(s) replaced by Aw{t), Ax(s), with bounds independent of k € Nt
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Lemma 2.4. Under assumptions {1.1)-(1.4). we have for each t € [0,T], £ > 0 and
h € N (éno being the Kronecker symbol)

(i) ][A’*efu(t)-* g;[,\ — A{t)]71dA

d
:Jl A’*-lef*i{)\ — AT A + — A1) T B — Alr)" e
. dt dt

(ii) J[A"ef*%p\ — A7 A5y

d . c d -
l h~i £A _ -1 —a(Fes ALyt
- 7)\ e —di[)\ AN+ [bro — Alt) e ]__dt ()

Proof. Both equalities follow easily by the resolvent identity and (1.5).

B) Lemmas an semigroups.

Lemma 2.5. Under assumptions {1.1), {1.2}, (1.3}, we have for each »,s.t € [0,T},
E>0and heN:

(i) BA(sY et M ooy < clh, M, 90)E7"
(i) [ Afs)refA) — A(r)r et ) ooy £ clh, L o, 9)E¢7 17" s ~rl;
(i) [[A(s) A ()7 —broAlt) Moy < olh M, Lya 90)&* TF 14+t —sl;

(iv) |[{A(s)"es40) — A{r)hefNNAMN i gemy <
clh, M, Lo, do} " r — s|{L+ £t — ]
Moreover, under assumptions (1.1)~{1.4). we have for each r,s,t € (0.T]. £ > 0 and
heN:

(v) AL A(s)2efAE) — A(r)het A — (s—r) L A() ™ B — A1) Dl
< e(h, M,L.N a0, TVEHr — s|[1 + £  max(|t —r|-jt — sl |r — sD);

(vi) [[[A(s)"etA — A(ryhet M A() ™1 — (s ) [Bho— A1) G AN T oy
< e(h, M, L. N, a, 0,90, TYE"|r — s|[1 + £~} max(|t — r|.]t — s|.|r — s])].

Proof. (i) is a standard consequence of (1.5). (ii) follows by (1.3) and (1.3). (iv}
If h > 0, (iv) follows by (1.5) and Lemma 2.1{(iv}; if h = 0, we can write (by (2.2))

[e€408) — AN AN =

- f e A(8)A ~ A()] 1 [A(s) ™! = AG)TA(RA ~ A(Y]THAL) T,

and the result follows by Lemma 2.1{1)-(iii} and (1.3).
(iii) If A > 0. (i) follows by (1.5) and Lemma 2.1(iii); if & = 0. we can write

4
S A1) — 4(8) 7 = [e841) - LA 4(2) +f e~ M8,
9
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5

and the resuit follows by (iv) and (i).
(v) We can write. using (2.2) and (2.3),

Alt) " HA(s) A — A(r)RefA] (5 — r)%fi(t]_‘[éhﬂ — A(t)*et41)
= ][T/\"ef)‘{[/\ AD]THAWD) T — A TUMA — AT = A= A7)
+ = ADTHAG) T = A>s)7F = (r — S)%A(S)*llA(S)[A - A(s)™
+ (r—s)[A— A [;;_-1(5)‘1 - %A(t}"}A(s){A - Af{s)]7?
Fir— s - -ﬂﬂ]”%rﬂf)‘l)\([/\ — A7 = A - A

—(r—s)A(f)‘1 A= A } s—r)—é(l‘ )" bno - A(t)Ret4),

Now. by Lemma 2.4(i), the last term under the integral sign may be rewritten as

J[/\he"’\{s r)A(t)” ‘;[A— A(E)] 1A

:][ Al g r)%[A — A YA F (s~ r)di;A(t)-’[é@ — A{t)refAM,

so that the result follows easily by Lemma 2.1(i}-{i1) and (1.2}, (1.3), (1.4).
(v1) is quite similar to the proof of {v). We can write. using (2.2) and (2.3),

[Asy e840 A(r)2 e84 A8 = (5~ r)[dno — Al2)"e ff‘m] 4(1!)_

= ](A"ef* {MD = 4™ = = AW - A A= A

—A)A - A THA() T = AT (s — r)-‘;i—r_-l(r)_l][J\ - AT

- (= A = A [ )™ - di"tA(x)-l][A A

= (s = AN = A = [ AW S a1 - gy

LT _-l(t}]*‘A(t)“}dz\ — (5 —r)[8np — ,4(:)%5-"‘“)]%,4(:)—1.

dt[

Now, by Lemma 2.4(ii). the last term under the integral sign may be rewritten as

+(s—r)

fx"ef*‘(s - r)%[,\ — A(D]7 - A() " tdA
=J[ AT (s r}—[A— A@) A+ (5 = r)bno ~ ut)"ef"“’] SA() 7

so that the result foilows easily by Lemma 2.1(i)-(ii) and (1.2}, (1.3), (1.4).
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C) Lemma on the integral aperator.
Lemma 2.6. Under assumptions (1.1}, {1.2), (1.3}, we have, for cach {t.s) e

(i) Z 1 Ra(t, o)l cry < L., W, Tt — 5)=1;

n=1

lgA(t)“‘Rn(t, s) + 5;_4(3}-1[4*-’“(” - 1]”“)

Se(M, Lo, 8, T)(t — 512,
Moreover, under assumptions {1.1)- (1.4}, we have, for 0 < s <r < t < T and
€ €10, 4]:

(i) Y [Raltr) = Ralt,s)lleiey <

n—1

(M. LN, o, m,dg, 6, T)r — 535 ~(t — 1)1,

(iv) Z[ {r = )7 IRa(t.r) ~ Rult, s) cemydr <

n=1"%

oM, L, N, a.n,0, T)(t - 5)5"1,

) HZA(f “[Raftsr) = Rat,5)] ~ - A(r) el IA0Y _ climriat)

na=l

LOEY

S oML, N o, 9,6, T)(r — 5)°~°,

Proof. (i) By induction we easily have
IRa(t, s}l cmy € KPT(e)"T(na) "}t — s)™~', vne NY, ¥Y(ts)ea, (24)

where K = (L/27) ), eReslz|=21dz); the result follows immediately,
(i) By Lemma 2.4(i),

AT R (2, 5) = [A(£) 71 - A(s)U[R(L, 5) +][,\-‘e(’-”*%[,\ — A{s)) " dA
¥
£ A5y = elimnaton
ds” ’
so that {1.3) yields
d
IA@T Rty 8) + 5= AGs) T el =94 — 1]y < oL, a, Il — )™

and, in particular. by Lemma 2.5(j),

A Ry(t, Ml eery < e(M. L, o, Jo)[L +(t —5)°):
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hence, by (i},

” nz-:: A(i)"‘R“{t, S) + %A(s)—i[e(i—sisﬂa) _ }“5(5)

< “A(t)“‘R;(t,s) + —({A(S)"[e“_s"ﬂ” - 13”:;(5)

+Z“[ A R, PY R (. s}drl

=32

S oM, L9, Tt —5)°,

which proves {i1).
Wi)-(iv) If0 < s < 7 <t < T, we have. by 11.8).

Ry(E.r) — Ry(t, 5) = —] B J[Aef*gg — Afr)] " dNdE
i—r ¥

d J (2.5)
(—ax f @&y a4y
+]€e (dr[/\ Ar)] = A — A(s)] )dA,
so that, recalling Lemma. 2.2(i}, it is easy to get. for ¢ €]0, §[,
t-s g4 o
(e r) — Ra(t, slceey < oM, L. N.a.n. do){j 255 Ut }
™ 6 t—s (2-6)

< o(M,L,N.a.q.e.9)(r — ) ~%(t — r)<~1;

which implies in addition
1
f {r—s) Y Ri(t,r) — R (%, sSMegydr < o(M.L.N,a,n,3)(t —s)*"1. (2.7)

Next,ifrn >2wewrtefor 0 < s <r<t<T:

Roftor) = Ra(t,9) = [ Racs(t.a)lRrlo,7) ~ Ra(a, 5)}dg
’ (2.8)

- ] Ruor(t.)R, (g s)dg =: Ty + Ty

Now by (2.6) and (2.4} (with o replaced by é. which is obviously allowed), we have
for € €]0.5:

1Tl ccEy

Y S A ) _ e)i—e
<c{M.L.N a, 1. €, ﬁn)m%wf (f _q}(n—l}ﬁ—lf(_%dq

i lF((S)" Ir(e‘{
T(né—6+4+¢)

(2.9)

<M. L. N, a.ne 190) — i Ddtesl | oy
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N S CT (n—114-1 6-1

S < - t—git" — 5 dg; 2.10

ITlecer € g fs [t —q) (q—s)"" dg (2.10)

by (2.6), (2.8), (2.9) and (2.10). we casity get (iii). In addition, choosing € = 672,
we obtain
14

f (r—sl‘lﬂRn(t,r}——Rn(t,s)ﬂag)dr (2.11]

= 1T(8) T (6/2) .
Sc(M,L,N.o.n.ﬂg) ((5) 6/2(/ /(t Lt Lty c )52 1dr

n—1 n—1 t
I(F( g(é!g) / ('__ S)&/Z—l f (t—q)(“"”_](q—s)"""’zﬂdqdr
o — o s E

4P RT(E)" it

<e(M,L,N.a.n. V) Tn) (+ — s}

In the last estimate. we have used the easy inequality
T(né — §/2) > ()27 " T(né).

By (2.7) and (2.11) we get (iv).
{v) By (2.6) and Lemma 2.4(i) (with h = 1 and t = r} we can write:

) i—s d
AN THR(E, r) - Rit.s)] = _j/ [At)" — A(r)“}f ,\ef*gg[z\ - Ar)| T A dE
t—r ¥
_/:_EJ(EU_d_[A — A(r)]"tdNdE + E_A(T)—-l[e(l—-s)r‘l(r) - ltmTIAlY
o dr . dr
_ ] d d _

+J[e(‘—5”{__4(t) oA [E:[)\—_-l{r)} ——TA Als)] ]

—E—J{e(t”))‘,-l(r)” [%[,\ A = S A )]—1] dA
thus. by (1.3) and Lemma 2.2. we obtain

A VRt r) — R{E.9)] = %A(r)“l[e“-ﬂ"m — =AM L O((r — 5)9)

as r — s ™, 0. On the other hand, by (ii). (iii) and (i) we get for each e €]0.6]

S A() MRart.r -~ R (ts]—Z/ AT R @) [Ruer(0,7) = Raci{g, slldg

R=2 n=2

- Z] )Rt @) Racalg.s)dg = O((r ~ ™)

as r— s N\, 0, and (v} is proved.
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&

D) Lemmas on approximation.

Lemma 2.7. Let the operators Ag{t) be defined by (1.14). Under assumptions
(1.1}-(1.4), we have for cach ) € Sly), keNt heN. £>0ands e l0,T]

IR = Als]™ = [ = A Yoy < el M. L. do)k=/2[1 4 |afJol2-1,

o d L

{i1) ”E;[/\ — Ae(s)]™' - J;[A - ’1(5)]_1”5(5) < oM, L,l?o)k_'c”'z{l + !/\”-alz;
(iii) liAk(s)"eff‘t(’)nam < oM Do)

(iv) ”Ak(s)hef:h{a) . A(S)ACEA(J)

’!:(E; < oMy, do k{2 ~h—al2,

Proof. (i) We have

_ _ 1 Xk -1
A= Ar()] ™ = [A = Ags)™t = m;&[s) [m - .-1(3)] A(s)h — A(s)]7L,
which implies, by {1.2). (212
A = Al ™' = [A — AN egey € c( MYA -+ k[
the result follows since
A+ k| > e(do) max{)A,k} Y€ S$(d), Ve N*. {2.13)

{ii} We have

d
gaA = Aels)) ™ - %EA — A(s)!

K dy ok -1 .
T+ k]ZE[A Tk _A(S)] — A= As)]

_ K rdg -1 g _
= v g A - - 4] g

92

k- d
o la
_ k2 A d Ak i )
_(,\4-]:}2)_,.}:5([/\4_];“14(3)] [A—A(s)] 1)

MA+2k) d

T A+ kE ds

[\~ A(s))

A As)] 7,

and by {2.13), (1.2) and (1.3) the result follows easily,
(iti) is an easy consequence of {1.5) and (1.15).
(iv) is an easv consequence of (1.5) and {i}.
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Lemma 2.8. Let the operators R.(f,s). Ra.(t,s) be defined kby (1.9), (1.20)-
(1.22). Under assumptions {1.1)-(1.4}, we have for each 0 < 5 < r < t < T and
k,ne Nt

oo

03 NBnalts)llecry < oL, v, TY(E - 8)7
n=-—1

(i) D §Raklt.r) = Ruplt,s)llcem
n=1
< oM, LN a,n,d0, T)(r — 8)¥2(t — r)=1+6/2,

(i1 D | Raklt, 53— Ralt.s)loery € (ML, N, Do, TIK™O2 (1 — 5)= 14002,
n—1

o
(V) Y R k(t,r) = Rpilt.s) = Ralt.r) + Balt, )y
n=1
< e(M,L, N, c,n, Uy, T (r — 5)8/4(t — y)~148/2,
Proof. {i) As in the proof of Lemma 2.6{i). we get, by induction.

[[Rn kit 8)|lcce) € (I{’)“f‘((i):(t —s)" T V(L 8)EA, Y keNT, (214)

no
where K’ := (L'/27) f’r ef®|z|~*|dz| depends on L,a,y; the result follows easily
by this estimate.
(i} Quite similar to the proof of Lemma 2.6 {iii) {using Remark 2.3 instead of

Lemma 2.2). _
(ii1 By Lemma 2.7(ii), we readily get for each (#,s) € A and &k ¢ Nt

IRy k(t,s) = Rilf, )|l cogy € el M, Ly, 9o, TYR™ (8 — 5171072, (2.15)
Next. assume that for each (2.5} € A and &k £ N*

(K'Y {a)

KT ((n— 17250,

R k(t, 5) ~ Balt.s)lcoey € oM, Lo, dg) tn=lj2a—1,

{2.16)
then writing
Rn+1,k(t 5)— Roti(t.s) =
¢ '
f B g (8 7)[Ba k(r, 8) = Ra(r, s)]dr +/ [Bnxlt,r) — Ratt.r)|Ru(r, s)dr,

we get by (2.14), (2.15) and (2.16):

et k(2. 5) = Ruga{t.8)||emy S (M, L, cr, 90)

e L) T{a/2) nney ED(@)" —af2s _ inb1{2)a—
x[(K) ((n+ 1/2}a) T ") r((n+1/2)a)]" P smren,
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which implies (2.16) with » replaced by n + 1. Thus {2.16) holds for each n € N*+.
{iv) We write

S MRkt 7) = Ruilt,) - Raltyr) + Ru(t,5)[ oo
20 If2
S 3 [1Rus(tr) = Rult ety + [1Rnilt,5) = Ralt,)les)]
n=1

1/2
[ [Rek(t,) = Rt Mgy + Rt ) = Bt )]
and the result follows easily by (iii) (with o replaced by ), (ii} and Lemma 2.6(iH).

Lemma 2.9. Let R,, R, be the operators defined by (1.7} and (1.19). Under
assumptions (1.1)-(1.4}. we have for each (t.s}) € A and k € N+ :

(1) MRosllin. ats0.6).BoqstE)) < (L, 0 Yo)(t — 5)°/%;
(1) 8k — Rolle(s, j20520,E), Bollst). £ < (M. L, v, 9p)k ™72
(i) I} ~ Re) ™ Nerm, 205060 < (Loodo, T).

Proof. (i) Fasy consequence of (1.19) and (2.14) {with n = 1).
(i) Easy consequence of Lemma 2.7(ii).
(i} If g € Baj2(]s, ?]. B). by Lemma 2.8(i). we get for each r g]s.1] :

(r — )21 - Roi) 'a(r)le

< {r =" {lgtr)le + j 1R slr.0)llecerfota) )

n=1

< o Loa, o)L+ (r — 5)*llgll 5, (1511, -

3. Proof of Theorem 1.6. Our main task in the proof of Theorem 1.6 is the
verification of the first part of (1}, i.e.. of (1.10) and (1.11), since the other properties
will then follow easily.

First of all. as a consequence of Lemmas 2.6(i)-{iii) and 2.5(i), we see that formula
(1.10) defines V'(#, 5) as an element of £(E) for each (¢, 5) € A; moreover, it is quite
casy to check that if x € D 4,y then V{2, 5)x reduces to —U{t, s)A(s)z. with U{t,s)
given by (1.6). Parts (ii)-(iii) of Theorem 1.6 follow also immediatelv: thus we just
have to verify (1.11).

We will use the Yosida operators {A,(¢)} defined by (1.14). It is clear, since
Ar{t} is a bounded opertor, that

%Uk(t,s) = —U(t.5)Ak(s) = Vi(t,s), V(Ls)€A. VkeNt, (3.1
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where the operators Uy(t, s} and Vi (¢, s} were defined in {1.18) and {1.21). Qur goal
now is to show that

kiim Ut s) = Ut,8)||eepy =0. ¥Yit.s)eA, (3.2)
kl_i“m NVe(t, 5) — V(t,s) ey = 0. ¥it.s) € A (3.3}

taking into account {3.1}, by (3.2) and (3.3), we obtain (1.11) and the proof of
Theorem 1.6 will be complete.
Now, recalling (1.6) and (1.18), we can write for 0 < 5 < £ < T and k € N¥,

Up(t, s) - Ult,5) =
[(1 _ Rs,k}_l [(Rs.k _ R,)U(, s) + (e(-—.nAg(.s) _ e(-—s).-l(s))}} (t);

on the other hand. (1.6) implies that U(-,s) is uniformly bounded. so that by
Lemmas 2.9(iii}-(ii) and 2.7(iv) we get (3.2).

Concerning {3.3}, by (1.10) and (1.21), we can write for each (*.¢) € A and
kenNt

Vit s) = VIt s)leem < [fAR(s)elt o ls) e q(gpelt=adatsn . oy
oot
+ Z[ HRaxlt.r) = Roklt, s} = Ru(8,7) + Ralt,s)]| cep)
n=1"3
* | Ar(s)el A £y

ot !
+ Zf [Bnlt.r) = Ralt, s} cepyll Ar(s)et =100 — g(s)etr=s1Aledff oo
n=t“*

oQ
+ IRkt s) — Ralt, )l comlfelt=140 - Ueer

n=1
o0

+ Y lIRalt, )l gepyllelt =) () — plim2alahy
a=1

thus using Lemmas 2.7(iv)-(iii}, 2.6(1ii)-(i) and 2.8(iii). a straightforward calculation
yields

WV(t.s) =Vt )loey € of ML N, e, Jo, T84t — 5)~1~8/4,
which proves (3.3). The proof of Theorem 1.6 is complere.

4. Proof of Theorem 1.8. The proof of parts (i)-{ii} is very simple: recalling
that (see. e.g.. [I4, Definition 1.4 and Proposition 1.12])

T € Dyq){Y.20) €= sup [E* 0 A(s) S 2p < 0, YR ENT
£>0

) {4.1)
= supf” ||(e'f”‘(") - Lzl < 2o,
£>0
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both results follow easily by (1.10) and Lemma 2.601-(1ii).

In order to prove (iii) and {iv), fix ¢ €06 For0<r <s <o < (r+t)f2<t<
T, according to (1.10) we split V{i,5) — V(¢,0) as follows:

Vit 53— V(1,0) = [A(g)elf=4) _ ‘—Hs;e”*"’}‘“s}]

+ X [f [R"(t, f‘) — R,,_(i‘ S}IA{S}E rw.sjrlfs)dr
a=1

E]

- f Rt - Ra(t,0)]A(0)elm =74 71y (4.2)

+ Z {Rn(r, s)elt=ralsr gy Rait. o[l mAle) _ 1]]

nr=|

=:4; + 45 + 5.

Next we have

t—s
:11 = —f _—i!g}zef"““)df + [A(a)e“_”‘“") - A(S}e“AﬂA(s)! =: :1.]1 + “1]2,
t

—a0

A = Z U[Rn(t,r) —~ Ra(t, s)]A(S]e(r_s"-”“dr
n=1"% ‘
+ Z / [R"(f- r)— Rn(t, S)][A(S)e(r_“ﬂ““ _ A.‘(G')e(r—s'Ala)]dr
n=1>v7

+ Z{Bq(t, a) = Ra(t, s)lelt=11e) _ go=srdia)

~1

+ i j, [Ralt.r) — Ra(t,0)] f,_:s Ao et M e dr

=z + Azz + Aoy + Az,

o oo t—s
A3 =3 Raltosifel D) — limaddtol 4 3™ Rn(t.s)/ Alaiet M dg
n=1 t—o

n=1

+ 2 [Raltos) = Ra(t o[l =) — 1] = 4y 4 Agp + Aga
n=l1

Now, using Lemma 2.5(i)-(ii). we easily get

o

1A ieem < (M, 06)(0 — s}t — )2

Tdelleem € e(Loedol(a — syt — r)72Fey
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next, by Lemmas 2.5(i)-(ii) and 2.6(iii},

N4 feie) < e(M, L N, o,z ﬂo,T)/ (t—s) " (r - 5)6_‘_1511'

S oM, LN, a,n,e,00,T)(a —s)°(t — 1)1,

!
flAggU,:(E) <clM, LN, o, r],e,ﬂg,T)f (t — r)“l(r - s)‘s_““‘—z(o — s)dr

S (M, LN, o0, 6,85, T)(o ~ 5)°~(t — 7)+6-1,

ﬁAz:;"ﬁ(E) Se(M, LN, a.ne by, Tio - s)‘s"‘(i - a')‘_l
S oM, L, N o, n,6,00, T)(o — s)5~¢(t — 7)1,

{ r—s
Msalleczy < o(M, L, N, a,n, e, 90,T) f (t=r)lr — o) f €724 dr

r—a

< oM, LN, 0,0, €9, T)o — s)572(t — )21,
finally, by Lemmas 2.5(ii)-(i) and 2.6(1)-(iii), we similarly obtain

NAaillzcey < e(Loa, do, Tt — sP* (g — 5) < o L. v, U, T)(£ — 225 — ).

t--3

ldszllcemy € (M, L. o, Tt — )1 f £ 1d

t~a

< oM, L, .00, T)(o — 5)(t — 7)=72,

”A;gg HE(E] S C(M, L, N, o, 17, €, 190. T}(G’ - S)S_E(t b G')E_l
Le(M LN a.neds, T)o— )07t — 7).

Summingup,wegetforUgrgsgog (T+e)/2<t<T:
Vit,s) = V(t,ollg < (M, L, N.a,n.¢ 9o, T{o — 5)07% (¢ — 7)2emo-1,

recalling Theorem 1.6(ii) and Definition 1.7. we obtain (ili}. As for (iv), we start
with the case J = 1; i.e., we evaluate the quantity [|[V(t,s) — V{t, A ey
Using the decomposition (4.2) and Lemmas 2.3(iv)-(jii) and 2.6(ii1)-(i). we easily
havefora]lﬂgfgsggg{r+t)/2<t§T

—3

-4 A Hiery < el M, L.a.dy) M1+ &7 - s))de

t—a

<M, Loa.ve)(o - s)(t —7)77,
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12 vy < (M, Loailo) (= 5)7Ho = )L + (¢ ~ 5)72(1 - o)
< (M. La,vp)(o — 51t ~ 7)1,

lA2 A) ™ e gy
<M, LN a e, r.‘?O,T)/ (t—r)y~Yr - s)‘sﬁﬁ[l +(r—8)" "t - s)]dr

S M, L, N,a.n.e,d, T)(o - 55,

HAaz AC) Mgy

t
< oM, L.N,a,n,e 1fo-T)/ (=r) T r =50 o = )1+ (r — )7 (¢ — o))dr

(M. L.Na,n,e 0. T)o — )52,

il dozA(e)~? lerg
f—a

Se(M, LN o n.e,dy, THt — 0)" (o — s-)é-ff D+t —o)de

ao

Se(M,L,N.o.np,¢€ ,, TYo —s)52

A2 4" )y

! r—s
<e(M. LN, a,m,e uo,T)f (t=r)"(r - mf—ff EMN+ 7t~ o))de dr

r—g

Sc{M L.V, e, m, e Uy, T)(o — 5)52¢,

3 A Yem < e( Ly, 0o, THt ~ 8)* Mo —s)[1 + (1 — s)7(t - o)]
<L, a9, T)e — 5)°.

a2 A~ e g1 < el Ly oo, THE = 5)7~ /tH[l +E7Ht - o)lde

o

Le(l, o, vy, THe —5)°.

Mas40) " e e < oM, L N1, 6,00, TNt - 5=} - 5)~<(¢ — o)

SoM. L. N.a,n.e 0. T)(e - 5)6~¢,
Hence we get forall 0 < r < s <o < {1 + £)/2 <t < T and for each ¢ €]0. 8]

IV(t,5) = V{t,0)llc. Dby < (ML N.a.pee, o, T)(a — s)P=2¢(¢ — 7)2e*.
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recalling (i) {with ¥ = 1) and Definition 1.7. we get {iv) with v = 1. The general
case of (iv) follows by a standard interpolation argument between cases (iii} and
(iv) (with ¢ = 1).

Let us prove (v). Suppose that £ € D 4 and that both A(f)r. A0~ /di- Ald)z
belong to m We shall prove that

gi;qllv'{t,s)w.ﬂt)rtts =0; {+.3)

by (iii) {with ¥ = 0}, this will imply that V(t,-)z € C([0,7]. E) and V(t,t)r =
—A(#)z. Now we have by (1.10)
Vit s)z + Alt)r = [Vit.s) + Als)et ! 75M100,

. [‘_1(5)6(:—5].4{5) o __1”)8[!-:;).—1.((]]1_ o [e{t—_-u.rhrl o 1};_1(”1‘_.
so that by (it) {with ¥ = 1} and Lemma 2.3(vi), we easily get as 5 7 1.

Vit,s)z + Az =

d NCEY
[ —el==4 (e — (¢ — s)A(t)e““-*-‘-“”d—tA(t)-l Atz + Ot = 98

thus (4.3) follows by recalling that (see [14. Proposition 1.2], [3. Lemma 1.2(+)])

Y€ Dagy = lm e —1lyile =0 = HmleA(net "yl =0.  (1.3)

Suppose conversely that ¥V(¢, )z € C{[0.2[. F'} and define y := 17(t.¢)r. Ve have to
prove that = € D gy, A{t)r = —y, and that both y, dA(t)7 /di - belang to D 41y
In fact. first the identity

Vit 8)z = %U(t,s)x = Ed;[('(r. rU(r. s)z]
(4.6)

= U(i.r)disl'(r, slr=U(t.r)Vir,s)z, VO0<s<r<t< T

shows that V(¢, s}z € D4 for each (t.5) € A, so that

y= E}riv(t,s)r S DA(I.)-

Next. we need a preparatory result; i.e., we show that = € I)4,,,. Indeed, we have
for each r €]s, #{

Ult.r)e — U(t, s)z = j V(L o) do,

L]

and since, by assumption. ¢ — V(#, o)z is continuous at o = . we get

t
Elli% U{t, Pz =U(t,s)x + [ Vit o)z do.
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which implies x € B ¢hy and

:
z=U(t s)x +/ Vit,oixdo, V¥se [0,4.
s

In particular, this gives

d
3 [—-U(f,s):r,} =~-V(t,t)z = y. (4.7)
ds a=i
Our next step is to show rhat z € Dagy and A{t)r = —y. It is enough to verify
that
ATV, )z = —2  as s At (4.8)

since this property, coupled with the fact that Vit,s)t — yas s 7 ¢ vields the
desired result. To start with, by (1.10) we have

ANVt sjz+z =1 - A(t) T As)elt= (o0,

_ -1 _ {r—s)A(s)
,,Zﬂj; AN THRA (L, r) R (t, 5)]4(s)e Alsr 2 gy (49)

= 3 AT R (1, s)felt= A _ He=0 + L+ L.

n=t¢

Now we split further [, as

To= 1= el =0 4 g1y A e =240 A(s)eltsrAlsn g

hence. by Lemma 2.5(v) {with r = t), we have as s At
d
I =1 =l o )= AT A0 0y  of(r — )8,

and since z € D ey, by (L.3) we conclude that

I =0o(l}) as s 7t {4.10)

Next. we split I» in the following way:

I=— f: [i AN TR (tr) — Ry(2,5)] — %_4(r)—l[e(!—sm(r? - e(t‘vr)A(r)]]

n=]

x A(s)elr—s1als)p g

4
d )
_f E‘.i(,.ri[e(!—s)-%(r) _ e(fwr)A(r)][_{(S)e(r—s)Ats)) _ A[r-)e(r—s]fl(r)]xdr

td t4r—2s
- / 2o AT / [A(r)%ef M — 4(1)2e8A0 1 ge g,

t—s

‘rd d )
— [ [E‘i(r)—l . E__l(t)—-l} [A(t)e(f+r—_3)A{t) i ‘4(t)e{t—51.~l(i)}1 dr

. %A(E)—l[e(t—s)A[I){e(t—s)A(t) - 1] +(t- S)A(t)e(t—s)A(!)]I:
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then using Temmas 2.6(v) and 2.5(i)-{ii) as well as (1.4} and {4.3}, it is easy to see
that
fa=0(1) as s 7t (4.11)

Finally, we rewrite I3 as

I =— Z A(t)—-an(t,S){e(t—s).af:} _ e(t—s)A(fl]I

=1

= ST AWTIR (L, s)[ A0
n=]1
so that by Lemma 2.6(ii} and 2.5(i1) and by {4.5). we obtain
Iy =0(l) as s 7t (4.12)

Using (4.10), (4.12) and {1.12), by (4.9) we deduce {4.8). which shows that z & Dy
and A(t)x = —y.
Now since ¥ € D44y, (4.5) yields
- e“””m]fl(t)x =o0(1) as s 7t

hence recalling (4.4) and the fact that, by assumption. V(¢,5)r — yas 5 " f, we
find

d
(t- s)A(t)e(“’)AmEA(t)_l CA(t)r =o{l) as s /1,
so that, again by (1.5), we get dA(2)~!/dt - Atz € D . Taking into account
(4.7), part {v} is completely proved.
Finally, let us prove {vi}). We start from (4.2): with the same calculations made

in the proof of (iv), we easily check that if z & Dayn. 0 s <o <t <T and
€ €]0, §[ we have

Vits)z—V{to)r = Anz+dpr+ Ot - 5)7%) as o — 5, 0. (4.13)

Now by Lemma 2.3{vi), we obtain

Apr=— /H {[_4(0)%5-4(“) - A{t)ge‘f’“”]_l(t)“}A(ﬂ:df

- ] t—s[-i(z}ef-*‘”]A(t)rdf

—

1—s
= _/ (t~o)A(t)ze‘5A(‘)%A(t)_l At de

+ [t L e=DAD) 4412 4 010 — 5)%) as o~ s \, 0.
Agpx = [{A(a)e(*“ﬂ"‘al - A(s}e““)A(’)]A(t)‘l}_-i(t).r

=—(o - s]A(t)e““’)A(”%A(t)_l CAT + (e — 5)*) as o —s N\, 0



b ABSTRACT LINEAR PARABOLIC EQUATIONS 1173

hence, by (4.13) we deduce that
Vit )z — V(t,0)z
= [(t — a)A(t)el =T AW _py s)A(t)e""Mm] %A(r)‘] Atz (4.14)
+ [ A (=MD 4 (2 4 O((o — 5)6),
Now suppose that both A(t)z. dA(f)™ /dt - A(t)x belong to D 4y(3, 00); then by

(4-14) and (4.5), we readily get

1—

Vit )z — V{t,00x = _f ’[A(t)ef’“” + 5A(:)2e-ff“”]%_4(t)—l CA(B)z df

i—a
+ [e(!-a).si(t) _ e(r—a)A(t)]A“)I + O((O‘ - S)‘S)
=0({c — 5} as ¢ — s\, 0,
and (vi) is proved. The proof of Theorem 1.8 is complete.
5. Proof of Theorem 1.9. Part (i) was already proved in Section 4 {see (4.6)).
Part (ii) follows by (i) and Proposition 1.3(ii): indeed, for 0 < s < ¢ < T we have
d__ d -
aEE (t.s) = EEUU' rVir ) = AU, r)V(r.s) = AV (¢, 5).
Let us prove (iii). If 0 < 5 < (s +1)/2 <o <7<t <T, by {i), Theorem 1.6(ii)
and Proposition 1.3(iii}, we can write
i s+t 3541
jfﬂ AU, == )dr - v (2 ) ”cu:)
< oM, L. N.o,n, 80, T)(r — o)(t - )72,

IV(r,s) = Vie.sMere <

and taking into account Theorem 1.6(ii) and Definition 1.7, the result follows.
The proof of (iv) is quite similar, by using Theorem 1.8(1) instead of Theorem
1.6(ii).
Concerning (v), assume first that V(.. s)z C{[s.T], E). Then in particular by
Theorem 1.6(iii}). we have as t N s,

(t— s)A(s)elt—s)Msip — —(t = s)V(t, s}z + O(t — 5)*) = O{(t - $)),

so that. by (4.3), z € Daga{e.20) € Dy, Set now y ;= V (s, s)z: we shall prove
that = € D,y and A(s)z = ~y. In fact, we have by (1.10)

Ay W (ts)z+ 2 =[1 - 4N 4 [(s)~1 - ATV, 8)z
o0 t
— A / [Ra{t,7) — Ra(t, s)]A(s)el =040 4 gy
n=l ¥ ;
= AN Ra(ts)[elTM

n=1
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so that. using (1.3), Theorem 1.6(ii), Lemma 2.6{v)-(iii), (1.4) and Lemma 2.3(1i),
we easily get for each ¢ €]0, §[

A(s)TW (L, )z + o = [1 - eltmo)Alon,
— ]! df.,;(,-)-l[e(f—s)r\(r) - e('—F)A(Y‘)}A(s)e(r—sI.Jns}:c dr
. dr
_ %A(s)-l[l _ 8(1—5),1(5)}[8“-3,,;(5) AT+ Ot - 515
=[1- e("‘")’““)]x + %A(s)_i (t — 5)Als)elt ) Alss 4
- %A(s]"l[e“—s“{s) —1z+O{{t —5)°"°) as t,s.
Asz e m, recalling (4.3) we obtain

A7Vt s)r — -1 as ¢ N5

thus, since V(#.s)z — y as t ™\, s, we conclude that z € Dy, and A(s)r = —y.
But y € D 4,y : this follows by [3, Theorem 2.6, since by (i) V{-. siz is the classical
and strong solution of the problem

w'(t) = A(u(t), t€]s.T), u(s) = y.

Suppose conversely that z € Dagsy and A(s)z € Da(sy, then by Theorem 1.6(1), we
have

Vit s)e = ~U(t,s)A(s)x. Vie[s,T), (3.1)

and U(-. s)A(s)z is continuous in [s, TT: this proves (¥).

Finally. let us prove (vi). If V(- s)z € C'J([S,T},E), with 3 €]0,al, then. by
{¥) and Theorem 1.6(i), we deduce that r € D.yisy, A(s}z € Dy, and (5.1) holds:
hence. by (1.6}, V(., s)x satisfies the integral equation

Vit s}z = RV s)z)(?) = ="M 01500, te s T] (5.2)
Now it is easy to see that
g €C([s,T],E) = R,g € C([5,T), E), (5.3)

which implies that el =) 4(s)z £ C'j([s,T]. EY; i.e., that A(s)r € D y(3.20).
Converseiv, if = ¢ D5y and A(s)z € Dao(3,00), then, by (v), V(. sz €
C([s,T]. E} and (5.1) helds; next, as el"=914(=} y(5)z ¢ C#([s,T). E), by (5.2) and
(5.3) we immediatety get V(- s)z € C‘j({s,TLE). This concludes the proof of (vi)
and of Theorem 1.9,

6. The variational case. We consider here problem (0.1) under a different
set of assumptions on the operators A(#); these assurnptions were introduced in
[5] and are independent of the hvpotheses of Section 1. as shown in (3. 871. The



ADBSTRACT LINEAR PARABOLIC EQUATIONS 1175

attribute “variationai” is due to the fact that a large class of concrete parabolic
systems in variational form, in fact. fulfills such assumptions. We consider a family
of operators A(f) satisfying, instead of (1.1)-(1.1}. the following conditions

{ for cach t € [0.T], At} D4y CE - Eis (6.1)

a closed linear operator with dense domain;

there exist g €]r/2, [ and M > 0 such that
plA(1)) 2 5{Pp), and for each t € [0,T] and X € 5(p) {6.2)
A = AW Necgy + A = A0 gz € 585 ’
there exist ¥ >0, ke NY and a,.... .o, 3,,...,F with
0 <3 < a; <2 such that for each A = 5(vg) and t,5 € [0, T
A = AT A — ALs) e g+ (6.3)
A} [A = Ay ] AT =[] e
SNYE (=) 51
Here E* denotes the antidual space of E; i.e.. the Banach space of bounded antilinear
functionals on E. We remark that it is not restrictive to assume in (6.3)

& i=min{o; — Fi:i=1... .k} €]0,1[. {6.4)

By [1, Theorem 2.3] we get:

Proposition 6.1. Under assumptions (6.1). (6.2} and (6.3), parts (i), (ii) and (iii)
of Proposition 1.3 hold true.

The evolution operator U(%, s} associated to {A(f)} can be represented in the
following way [1, formula {2.6)]:

t
[7{# g) = ol!=5)Ms) -l-j Zir.sdr, 0<s<t<T, (6.5)

where

Z(r.s) = {{1 = Qu) ARl 7 - A(s)el mMN(r)

o t
£ [1@alria) = Quir-silAs)er="4 g
n=1 "3

(6.6)
+ i Qulr. eI 1] 0<s<r<T;
n=1
here Q; is the Volterra integral operator
[Qsg)in) = /t QU.r)g(r)dr. teis.T), ge L'(s, T E). (6.7)

with kernel

Qt.r) = AP OAN T - 47, 0<r<t<T, (6.8)
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and Q.(¢,r) is inductively defined by
!
Q(tr):=Q(tr),  Qultr):= f Un-1(t,9)Q(gr}dr. Ya>1. (69

Remark 6.2. (i) Tn order to get the results of Proposition 6.1. it is sufficient to
assume (6.1)-(6.3) just for the family {-1(t)}, and the density of the domains Dy
is not necessary; but for proving the existence of the derivative dU{t,s)/ds, we
need that (6.1}-{6.3) are true symmetrically both for {A(%)} and {A(¢)*} (and, of
course, we need density of domains in order to define A(£)*). On the other hand,
assumptions (1.1)-{1.4), which also guarantee all results concerning di/(t, s)/ds, are
in themselves symmetric with respect to {A(?)} and {A{n)*}.

(ii) In (S, 6, 1] assumption (6.2) for {A(¢}} was required just for 0 <s<E<T,
thus, in particular, Lemmas 1.9, 1.10 and 1.11 of [5, §1-2] can now be correspond-
ingly improved, with no restrictions on the points r, s, 7, t € [0.7]. However, we
do not have significant examples where (6.2) holds for 0 < s <t < 7T and not for
all s,¢ € [0,T}.

Clearly, by (6.1)-(6.3) it follows that we can also construct the evolution operator
in E* relative to {A(t)"}. More precisely, for each fixed tq €]0,T] and for each
0 < s €7 <t we denote by W(ty; 7. s) the evolution operator associated to the
family {A(tg — 7)*, 7 € [0.14]}. There is a strict connection between W (ty; ¢,5) and
the adjoint U(t, s)* of U{t,s) : namely, arguing as in {2, Proposition 2.9] we obtain

Ult,s)* = Wit;r,0 0<s<t<T. (6.10)

)IT:tm_g,
Thus U(t, s)* enjoys all properties deduced in {1] for the evolution operator relative

to any family {A(#)} fulfilling (6.1), (6.2) and (6.3). In particular. by [1, Theoram
2.3(vY],

H%U(t, )" = —A(s)'Ults)"  in £(E%), Y(t,s5) €A (6.11)

and
d
|1£U(t, 5) Mleceey S e{MLN, 5 Uy, TH(t — 5)7 1, V{t,5) € Al {6.12)

Now if we denote by J the canonical injection E — E** by (6.11) we easily deduce
that [A(s)*U(t, s)"]"Jz is in the range of J for each x € E, and moreover we get

d
3 d—;U(t,s) =~JHAGS) UL s) T in L(B), V(t,5)& A. {6.13)
Remark 6.3. (i) If E is reflexive. then we can identify E and E **, obtaining
d as
EU(t,s) = —{A(s17U(¢t, 5)"] in L(E), V(s)e A,
Of course, this is the case when E is Hilbert space: compare with [2}.

Let us extend now the results of the preceding sections to the present situation.
We start with the analogue of Theorem 1.6.

&
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Theorem 6.4. Under assumptions {6.1)-(6.3}, the operator
Vi{t,s) = —J 7 HA(s) UL, 5)*]* T

satisfies. for each (t,5) € A, properties {1}-(ii)-(iit} of Theorem 1.6 {with 6 defined
in (6.4)).

Proof. (i)-(ii) By (6.13), (6.11) and (6.12), we clearly get
1T A(s) U ) ) Ty = H%U(f,s)lk(z) S (M, N800, T)(t—5)"", (6.14)
V(t.s) € A in particular, using (6.13), it is easy to obtain
%U(L s)x = —U(t. s)A(s}z, Yz € Dy, ¥t €)s.T], (6.15)
and the results follow.
(it} Let us write the representation formmula {6.5) applied to the evolution oper-
ator WE T 0) {with 0 < v < ¢, £ €}0, T)) :
W(t:7,0) = ™AD" ¢ j " 2.0V
[
here Z(r.0) is defined as in {6.6), replacing everywhere A(-) by A{t — -Y*. Then
%W(t; 7,0) = A(f)*e™* O 4 Z(7 0).
and hence by {6.10) we derive
%m. )"+ A(s) el o [y gyrelimnarn” _ A(s) el =AU 4 Zit s 0);

thus by {5, Lemma 1.10(i}] and [1. Lemma 2.2(1)], we get

d d )
d.. (1—s)A(s) 12 . = (I—s)A(s) .
1L (85) + A(s)e leiey = B Ut 5)" + Afs)e Hecess (6.16)

< oM, N, 6,8, TH(t — s)°-F,
which proves (iii). The proof is complete.

Ve want now to prove the analogue of Theorem 1.8: i.e.,

Theorem 6.5. Under assumptions (6.1)-(6.3), the operator V{t.s) = dU(t, s)/ds
satisfies properties {i}-(iv) of Theorem 1.8; in addition the analogue of {v). {vi) hoid
in the following form

" (v} s = V(t,s)z € C{{0.4), E) if and only if x € D iy, and in this case

[%U(t, s)x] ooy = Az

{(v) s — V{t,s)x € CP([0.4], E) (B €]0, §]) if and ondy if ¥ € D 4y and A(t)x €
DA(t)(.@, 00).
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Proof. {i} First. assume = € Day{V.>ci. J €]0,1]; then by (613, we have
LU= SO~ NN () Alsge A,
ds ’ ds
and hence by (6.14} and (4.1)
||j—sU(t. Sizllp < of$. MLN6, 0. THE - S)gmlu.’l.‘”[;"“!‘ 5oy (6.17)

which proves (1).
(i) Similarly, from the identity

) . d - —s)A(s
[dicf(z,s)+.4(s)e“*s)f‘m]z = [ES—L'(t,s) + As)elt= Al i) _ lem)alsn,
5 !
+ [U(f..‘)‘)+EH_S)A(S)]a‘{(S}E"t_EIAE‘S).L',
we derive

||§_L'fz, s} + A(s)e "IN 1 py < oD MUNL8, 20, TY(E = )" 2l p 000
s (6.18)

which proves (ii).

(i) Fix 0 s <p<qg<{t+3)/2<t<Tandset r:=f—p. o =1t—gq, so that
0<{t-s)/2<0 <+ <(t—5)<t<T. Then we have, by [5. Theorem 6.5] and
[1. Theorem 2.3(1)],

d d d d
= - = = * - =[I{t £
quU(f-Q] de(tP)”c(E) quU(t?Q) dq[( P E )
d__ d_.
= fld—TW(f. T,U} — Egnf (t;U, 0)”5(5?)

t— s} _ i
do
< oM, N, 8.9, T)7T — o)t — 5)17¢

= oM, N.8.90, T)g — p)’(t — 5)"" %,

(6.19)

d t— 8 t—s
5w, Wt o, Mo W (s =04 ceny

and (iii) follows.
(V) For 0 < s <p<g<(t+5}/2 <t <T, we write

V(t.g) - V{t,p))z =
[V(t.9) = V{£p)L = =240z 4 V(1 g)[e(=eM0) _ i),

3
+ (V{1 g)el =D V(1 plelt =g = S

=1
now. using (iii). (4.1) and [5. Lemma 1.10(i)] (with Remark 6.2(ii)). we get

WLlle < (M, N,8,90. T) g ~ p)i(t — s)? =1
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whereas by (ii}, (4.1} and [5, Lemma 1101}
(Rile < (M, N,8,90.T)(q - p)°(t — 5)°~1,

ﬁna.i.ly using (6.13) {1. Theorem 2.3(iv)], [5, Lemma 1.20(i1)-{t)] and Propesition
6.1(iii}, we deduce

Iz < sup (o U1, 9)4tg)e =4 _ (2, ) A(p)ett-1AP ) . |
E== !

< Ut q) = Ut Yl gyl Al g) e 4D [
U P ey Al =4 — g(plelt=A0 )
SCQALN 0, THg — p)i(t — s)?—*1.

Summing up, recailing 16.17) we obtain that s Vit, s}z belon
s - . gs to the space
Zlﬂp,g([_(], t, L{D (Y. =), E}, and {iv) is proved.
(V) Fixz e D41y then by {6.15)
Vit s)z + Alt)z = V(t,5)A(t) ' [1 — =% g(1)7

+ Ve, s)[e(!—sr.-l(t) — e(!—s)A(S)]I - U2, s}[fl{s)e(“s)“"{‘*} _ _4_(t)e(t—s)Ar_:)]x

5
—U(t,8)[e!" Y — 1) A1)z — U1, 5) ~ 1] A(t)x = L
=1
on the other hand. bv (jv), {i}, [5, Lemma 1.10(i}}, Proposition 6.1(iii), we easily

obtain
Mille + Ielie < (M, N, 6,90, TH|[1 — et~ 48] 404)1f|

W2tz + 1)z < (M, N, 6,35, T)(t — 5)°,
Halle = §iU(2,5) — 1JA() ][,

sa that by (4.5) and [1. Theorem 2.3(ii)], we find (since Dy = E)

Vit sz + A{t)z =o(1) as s 7, (6.20)

As, by (iv), s — Vit str € C([0,1], E), we get the first pare of (v).

To prove the second one. let # € E be such that s — V(¢ s)x is a continuous
function, and set y := Vit t)x. We will show that AWt s)x — —1 as 5 At
since A(t) is closed. this will imply that ¢ D¢y and shat A(f)z = —y. Indeed‘
by (6.13} we have. setting 7 := ¢ — s, ,

IOVt sizt 2le = swp Jls) Uit s)" (48] 64 6,255
g*=1

€ ol (= Al = ) W7 O)[A©0)) )6, 2) - |

< sup [({1—Irrr:.-.())]o',z)g.,g!
lollgn=1

o |((n'u: 70) = At — 1) W r,O)g_J.(e)*]-‘)¢,;)E.‘,,;,

= ”[l - U(tv SJI”E + C{ﬂ’[. N, '5? ﬂUvT)(t - 3)5~
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so that by {1, Theorem 2.3(viii)-(ii}] (since Dacry = E)
AR Vit s)r +zlie = ofl) as s /¢,
which proves the second part of (v). Note that, in particular, the above calenlation
shows that
A~V (¢, 8} + L, sileiey S (M, N, 6,00, Tt — 515, (6.21)

{vi) The first part is easy: if & € D 4¢y) and A{t)z € Dyn(8, 00} (with g €]0.4]),
then as in the proof of (6.20). we get by (4.1},

IV, stz + AlD)x|| g < el M.N, 8,90, Tt — 5)° + [0 _ 5 At)z| g
< (M, N, 6,00, T)(t ~ 5)°.
Conversely let x € E be such that V{t,-)z € C?([0,f], E); then we know by (v) that
z € Dy and A(t)z = —V{Z, ¢)z. We have to show that A(t)z € D 4 (8, 00). Now
we can write by Theorem 6.4(iii}, [5, Lemma 1.10(1)], (6.5} and [1. Lemma 2.2{i)],
O{(t—3)) = V{t,8)z + At)x =
{V(t,s) + A(s)e(i—s)A(s)]HI _ e(i—s}Al’il]I + [e(!—vs},—tft} _ e(t—sl—l(s];ﬂ,c]
_ [U(t, 3) _ e[t-«-s}A(s)H‘_l(S)E(z—s)/;{s} _ A(t)e(t—s)fl(t)]_t
- [Ult,s) - e(tﬁs]A(S)]eU—S)-‘i(!)A(t)I _ [A(s)e(t-s)rl(ﬂ _ A(t)e(t—sm(t)]z
- (W=D _A)A(1)z = O((t — )F) — [e“~9MD _ A(f)z as s ¢
le.,
=DM Az = O((t — 5)") as s ¢,
which by {4.1) yields the second part of {vi). The proof of Theorem 6.5 is complete.

Finally, we prove the analogue of Theorem 1.9.

Theorem 6.6. Under assumptions (6.1)-(6.3), the operator V (¢, s) := dU(t, s)/ds
satisfies properties (i)-{vi) of Theorem 1.9 (with 3 €]0, 6] in {(vi)).
Proof. (i)-(i1)-(iii}-(iv) They follow as in the proof of Theorem 1.9 (see Section 3),

using Theorems 6.4, 6.5 instead of Theorems 1.6, 1.8.
(v) The “only if” part is just like that of Theorem 1.9(v). (Recall that D 4,y = F

now.) Conversely, assume V' (-.s)z € C{[s.T], E); then by (6.3) and (6.21}

HAS) TV )z + 2l e € |[A()7! — AO TV s)zl g + ALV (1, 8)z + 2| g
< C(ﬁ/!. N)(f - S)bllv(',s).rllc{[s";'].ﬁ) -+ ”[1 - U{t, s)]r”;; = ()(1} as t \ s,

so that by the closedness of A(s) we deduce that 2 € D 4,y and A(s)r = -V (s, s)z.

This proves (v).
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(Vi) If £ € Da,y and A(s)r € Dy, (3.20) (3 €]0,£]), then by Theorem 6.4(i)
and [1, Theorem 4.1(iii))

V(- 8)x = —U(-.5)A(s)x € C?([s, T), E):

on the other hand, if V(- s)z & C7({s,T].E) then by (v) z € D agsy, so that
V(- s)a = —U{-,5)A(s)r and hence. by [1, Theorem 4.1(iii)], we get Als)z €
D y5)(3,90). This proves (vi) and concludes the proof of Theorem 6.6.

Appendix. We prove here the following result, stated {without proof } as Propo-
sition 3.1(i)-(iii) in [7]. We remark that part of that statement was proved in Section
1 (see {1.12), {1.13)).

Propostion A.1. Under assumptions {1.1)-(1.4) let U(t, 5), V(t, s} be defined bv
(1.6), {1.10). respectively. Then we have for each (t,s) € Aand 9,5 € [0,1),

0 H=A01U# )= A Mgy € ML, N.ax, 7, o, B, 9)[1 + [t — sP7);
(ii) the unbounded operator [—A()] 7L (t. 5)[~A(s)]® has an extension to L(E)
which is bounded by

(M. LN, o, 7,90 3,01 + |t - 5|77,
provided we assume in addition that the domains D vy are dense in E for each
te0.7].

Proof. (i) We need several steps. First. we remark that U{t, s} has another repre-
sentation formula introduced in [3, (0.3)], namely

t
U(t,s) = elt—s1Alt) _f e(t—r)A(r)[{l +Ps)_]P{-,S)](T)dT‘, 0<s<t< T, (A.l)

5

where J
P(t,s) ::][ e(f—-ﬂ*a[)\ ~AM]'dA, 0<s<t<T, (A.2)
Y
H
(P,gi(t) == / Plt.o)g(o)do, gel'(s.T:E), 0 <s<it<T, (A.3)

Second. it is proved in {3, {1.3) and Lemma 32 that f0<s<r<t<T,
(1P s)lecpy < oL, 0,9}t — 871 < (L, o, Bp)(t - 557,

I1B(t. 5} ~ P(rs)l|lecey < (M. LN o do.e){t — #)*=¢(r — 51, Ve €10, 4[;

te., according to Definition 1.7,
Pl.s) € Ziss-el]s. T).LIEY)), Ve €]0,8[; (A.4)
thus, in particular,

WPC s By sa11c0Ey < (Lo cv, ). (A.5)
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Or the other hand, we will show in a moment that for each0<s<r<t<T,
1Pt 5)A(s)  loegy € (AL N, a, n, 0, {A.6)

NPit. s; — Plr, sHA(s) M emy < oM. L, N.a.n, d, )t — ) r — 50 (A7)
Ve gl0. ¢ ie,

P(.s)A(s)™" € Zos_o(]s, T} L(E)), Ve €l0,d]: (A.8)
thus. in particular,
(PC3)A() ™ pyqrsury.comy < (M, LN, oty n, o). (.9)
Indeed. we can write, recalling (1.8},
Pt s)A(s)™! =

d d
=)y [ Dy _ -t -t -t 5 -t
][-‘e [mf D= A = - Al ]A(s) A+ Rit.s)4(s)2,
and (A.6) follows by Lemma 2.2(ili}, (1.8) and (2.3}; concerning (A.7). we write

[Pit.s) — P(r.s)|A(s) "t = J[Te“-“* [%[,\ S 1) c;ir{,\ - Arr)]-l] A(sy~rdA

s ,\gi it
+/=:_3 f.y’\e A = AT AG) T e

and by Lemma 2.2(iji), (2.2) and Lemma 2.1(iii}, we get (A.7).
Now interpolating between (A.t) and {A.8} and between (A3 and A.9). we
easily find :
Pl )= A0 ™ € Zunoopms—olls. TI.L(E)), Ve €]0. 4], (A.10)

”P(',5)[—A(S)]*’B|fB(,_6,(l_J,US,T],z:(E)) Se(M,L,N,a,n,0,. 3. {A.11)

Next. consider the operator-valued function
9(t) == (1+ P)"HP(, s)[- A ™0)(0), tels,T). (4.12)
which. by definition. solves the integral equation
9+ Pg=P(,5)[-A()]77 inTs, T}

now. due to the mollifying properties of the integral operator P., it isa straightfor-
ward task to verify that g has the same regularity as (-, s)[{—A(5:]9: thus

ge Z(l_g}(l_g].gﬁc(]S.T],C‘\E)), Ye E}O,(S[, (AIS)

gl B _syr_ayls.Trcomm < el ML N, .53, 99, 3). (A1



"

Finally, using (4.1} and (A.1?}. we have

[—A@PUt s)-A(s) 7 =
{—A(t)]"euﬁs)"“'{*A(s)}_d _/ [—A(t)}'jE{tﬁr}A“]g(T)dT;
but it is easily seen {arguing as in [2, Lemma 2.7{1i)-(4)]} that

Jiatereoag2],

” ({*A(t)]"e(‘_""‘“) - [—-4{3)]%“_5)11(”) [_‘4(8)}_;3“1:( £

N

‘.C(E)
< el M, L.y, J0)(t — 5)P77 4+ 1],

“ /:[—.—1(1‘)]"5('_')‘4“}5(1‘}dr

<
L{E)
1
(M, L, N, a.n. 190)] (t—r) 2 r — )-8 g,
S e(M LN a8y, 3, 0) (8 — 5)7 O HEL-0),

and (1) follows.

(i1} First of all we remark that since the domains Dy are all dense in E,
hypotheses (1.1)-(1.4} hold in E* for the operators A(t)* as well; hence, by [3] and
the results of §§1-5, we see that for fixed ¢ £]0, T] there exists the evolution operator
W(t:7,s) relative to the family {B(r)}, with B(r) = A(t—1)*, 7 € [0,¢], in the

Banach space £*: in particular

dr

Now. as in (6.10), we have

Ult,s) =Wt —5,0), V{t,s) € A; (A.16)

indeed, by (A.13) and Proposition 1.3(i1), if r £€]s,t[, we have, for each z € E and

$e L
4 W{t:¢ 0)e. U7 3 =
W (t:1 = 7,000 U(r.5)2) 5.k =
—{A(r)y Wit t — v, 0o, U(r. s)z)e- g+ (Witrt - . 0)o, A(rYU(r, 8)z)gu, g =0,
which implies. as r N, s and r 1,

(W(t:t—s.000.2)p p = {0 U(t.5)T)pe g, YVO<s<t<T,
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L Wtir )= BrWitiros), Yrels)y ¥s e [0l (A.15)
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and (A.16) is proved.
Let us now just apply (i) to the evolution operator W{s; 7,0), with r = ¢ —s: th
conclusion is that

”[—A[s}’}"U(t,s}‘{uA(t)‘]"g!ia-E_) < ol M. L, Ny oy, 0. 3. 9)[(£ — )27 4 1],
and (ii) follows easily. This concludes the proof of Propostion 6.1.
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