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Let Q be a bounded open set of B®, n=1, with sufficiently
‘smooth 80. Constder a pair (A(t,x.{!).ﬂ(t,x,m) of H-ples of
differential operators, acting on functiens u:Q—)CK, Nzl, defined
respectively in {0, TIxQ and in [0,T]x3Q. We assume that (#4.8) is
an elllptic system of order 2m, m>1, in the sense of {7, §5], and

Boundary control, Evolution operators, Riccatl equations.

that all related properties hold uniformly with respect to
Ete{O,T]; moreover we reguire that all coefficients of (A,B) are
c**® in t for some wxeld,il.
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' contrels
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yt[t,x)—ﬂ(t,x,D)y = £{t,x), (t,x)e[0,TlxQ,
v, x) = yofx). xeh, (1.1}

B{t,x. D)y = ulk,»}, {t,x)el0, TIx3Q;

as we are interested to boundary control, we will take f=0.

2. The abstract initial-boundary value problem

Set H:=UF(Q]]N, and define the linear unbounded cperaior

A(t):DA(t)SHQH by:

D ={ue[w? 21 B(t, -,Dlu=0 on 20}

sttt
Althu=d(t, -, Du.

(2.1)

I% is known that {A(t)}te[mTI

defined generators of analytic semigroups in H; in particular it

is a family of closed, densely

is not restrictive to assume:

there exists weln/2,nl such that the resolvent set of
A{t) contains the sector Sw:={0}u{zec: larg zl<w}, and (2.2)
I-aCt) ] Y, = - M vaes |, veelo,TI.
£ T+]Al w .
Next, arguing as in {10, § 5.3], it is easy to obtain:

r

1+00

there exists «¢l0,1[ such that ta[A-ALL)} T eC ([U,T],E(HJ)

for each heSm , and
K (2.3}

1+a®

4 ugf[A_A(t)]_lﬂﬂtuls VASS, . wielo, T,

[eater ™ Sace) |y = & 16-s1% Vs, telo,TI.

Conditions {2.2) and (2.3) are the assumptions of [8]. The
abstract Cauchy problem

v (£}-A(E)y(t) = £(t), telo,T]
(2.4)

y(0) =y,

corresponds to the concrete problem (1.1) with u=C.

To give an abstract version of the non-homogeneous boundary
conditions of (1.1} we Introduce the elliptic "Green map" G(t},
defined by:

A(t,-,D)v =0 In Q,

vi=h{tlg » (2.5}
B(t, ,Blv = 0 on 8.

I

The existence of v=G(t)g, for smooth g, is guaranteed by the
results ef [7]. However we need a stronger properiy: namely,

setting U:=[L2(BQ)}N, we assume:

there exists 9€]0,1[ such that G(t}eE(U,D ﬂJ for
R [-a({t})} (2.6)
each te[0,T] and to[-A(t)] G(t)EC({D,TI.I(U,H])-

This requirement is natural in variaticnal problems, but in our
situation it is not easy to get if; we will see later some
examples where (2.6) is satisfied.

Using the operator G(t), we may rewrite problem {1.1) as:

v (B)-A(t) [y (t)-G{tIu{t}] = 0, tel0,T]
(2.7

y(0) = Y, -

3. The evelution coperator

The resuits of [8] and [2] show that we can construct: the

evolution operator {U(t'S}}Oﬂs<t5T assoclated to {A(t}}telmrl;

thus if yOeH and £e12{0,T;:H) the sciution of problem (2.4) is

t
vty = U[t.O]y0+J Ult,s)f{s)ds, tel,TI.
o]

Consequently, at least formally, if uEL?(O,T;U) the solution of
problem {2.7) is

t
yit) = u(t,o}y0+j Ult, s)A(s)G(s)ulsids, tel0,T1; (3.1}
[+]

Jbut (3.1) is not meaningful because the range of G{s) is never

contained in D In order Lo give sense to {3.1) lei us recall

Als)’

some properties of {U(t,s)} , proved in [51:

O=5<L=T

PROPOSITION 3.1 Under assumptions (2.1), (2.2), {2.3) let



{U{t,s)} be the evolution operafor associated o {A{t)}. Then:

: 7, . g - _eyBT
(i) N-ACE)17U(t, s¥{-Als)]TH, o = M75[1+[t s) 7]

vO=s<i=T, Vy,Bel0,1];

(ii) for each O=s<i=T and xeB there exists 3—5 U{t,s)=:v(t,s), and

o1

= - vD=<s<t=T, vee[0,1],

IW(t,s)ilE(D - Bi{t-s) O<s [
[-Ats)]

ﬁV(t,s]+A(s)e(t_S)A(S]IIE = B(t-g)T7®!
47} s
[A{=21 . o .
Vo=s<t=T, V¥5e[0,11;
(i11) f-a(t)1PUlt, s)i-Ats)1Y has an extension to 2(H) bounded by
MYB[1+ft—s)B_7] vY0=s<t=T, vy,g<f0,11. : : a
Using Proposition 3.1(ii) and the obvious fact that

4

U(t,six = -U(L,s)als)x V¥xeD , we nmay rewrite (3.1) as:
ds A{s}

t
yit) =U(t,0)y0—J S u(t,8)6(s)uls)ds, tel0,T1, (3.2)
0
and this expression is obviously meaningful in view of (2.6).

4. The control problem

Equation {3.2} will be considered as the state equation of
the following L.-Q.-R. probiem: : :

minimize

T
J(u):=J MUy () [y(E)) +(N{tIu(ed lult)) Jde +
© (4.1)
Py MIy(TH

over all controls ueLz(O,T;U}, where y is the solution of

problem (2.7}, i.e. y is given by (3.2).
Here we assume {besides (2.1), (2.2), (2.3], (2.5} and (2.6)):

MeLl™ (0, T; 57 (H)), (£.2)

Necs(io,ﬂ.z*(m) and N{(t)zw>0 vtelo,T], (4.3)

28

-
P7€2+ (H) and [-A(T} 1 P_can be continuocusly extended

to £(H) for some Peli—w l]."\[Cl l] o
z 'z R
We remark that by (4.4) the term (PTy(T)Iy(T)]H is well
defined and in additiocn, thinking of it as a function of u (via
(3.23), it turns out that such a function is continuous on
£%(0,T;U) 11, Lemma 3.5}.
We solve the control problem exactly as in {11, by a

dynamic programming technique.

5. The Riccati equation

The Riccati equation associated to the control problem (4.1)

is, formally,

P(t) = U(T,t)’PTU(?,t) +
(5.1)

T
+ J Uls, t) [M(s)~P(s)A(sIG(s)N(s) G(s) "als) P(s)U(s, tlds,
t

but it is not meaningful since the range of Gls) is not contained

in DA(sJ' However, recalling (2.6), we rewrite (5.1) as

-
P{t}) = U(T, t) PTU(T,t) +
{5.2)

+ jTuts,t)"{ms)~§[—A(s)‘f“"msn‘x(s)[-A(s‘)’]l‘&P(sJ}U(‘sat}ds
t
where
K(s): =[-A(s)P160s0 () -ALs2 176 (537" (5.3)
by (2.6) and (4.3) we have KeC([0,T1,5" (1)).

The same argument of {1] leads to:

PROPOSITION 5.1 FEquation {5.2) has a unique selution P in [0,T].

Moreover:
{1} P(t}=0 vtel0,TI;

(ii) P satisries the integral equation



T -
P(t) = U(T, t)°P 2(T, ¢) +I Ule, £) " M{e)8(c, t)do, te[0,TI, (5.4)
t

where {&(t,s}} is an evelution operator which is the
O=g=p =T

unique solution of this further integral equation:

&(t,s)x = U(t,s)x +

t
+j Cloate) 17700, o) TR A 1 PP 8t s)xdr,  (5.5)

=

tel0,T], xeH;

{111) for each nel0,1] (resp.ne{(},ﬂj). t—)[—A(t)‘]TEP(t)EC([U.TL
2(m) (resp. ([0, T1, £()).

6. Synthesis
Following again [1} we get:
THEOREM 6.1 Lef yDeH be given. Then:

{i} there exists a unique gptimal control uﬁeLz(D,T;U) for

problem (&.1);

{ii) the aptimal cost J(u,} is given by
3u,) = (PLOIy, Iy}, »

where P is the solution of the Riccati equation (5.2);

(11i) the optimal state y,eL°{0,T;H) is glven by
v, (t) = e(t,0)y, , tel0,T],

where ® is the solution of (5.5);

{iv} the optimal control u, is given by lhe feedback formuila
-1 * -
u (t) = - N(E)TG{L) Ale) P(t)y (8], tell,TL

where we have written G(t)‘A(t]* instead of
@,
a1 a1
(v) the optimal pair (u,,y,} is characterized by the optimality

system

SR

e

il

t
y (1) = ult,0)y - L & utt, 5165 uls)ds,
w, (t) = - N0 TG A Tp(t), tefo, TI.

T
p(t) = UCT, ) By, (1) + [ Uls. ) (s)y, (s)as,
t

=]
7. Examples
EXAMPLE 7.1 Take N=1, 2QeC’, A >0 and
n : _
att,x,Du= L D (A (£,x)0u) + Au,  (Lx)eloTha (7.1
s, §=1
n .
Blt,x,Du== ) B (t,x)Dsu + elt,x)u , (t,x)el0, TIxaQ, (7.2]
=
s=1
where
As;'ﬁs'“ are C° in x and C™*% in t; (7.3}
for each xe3Q and tel[Q,T] the polynomial
n
I o4, tx) (Ejﬂvj(x)) {g_+wv_00) 7.4

£, J=1
has 1 root r+(t,x;£§) with positive imaginary part for
each £cR” tangent to @Q at x;

n -
}jBs(t,x)(gs+~:+(t.x;g)vs(x)]¢0 vEeR" tangent to 8Q at x- (7.5)
s=1

{(in particular, B may be a real, non—-tangential vector}.

It is easy to see that the abstract assumptions (2.2} and
(2.3} hold for the operator A{t)} given by (2.1), provided 7\0 is
sufficiently large. Let us verify that G(t), given by (2.5),
fulfills (2.6). First of all we have Green’s formula:

- . ] au — Bv
j' [t %, D3u v - u o (t,x,D)v]dx = I L
av v *
o s A & (7.86)

Yu, vewz'z(m,

where



S —
d t. s
o (t,x,Dlv:= %_IDS{Asj{t.x)D}V)+ Ay, {t,x)el0, Tl

By

"

and 8_ ,a— are the conormal derivatives relative to £, £ .
BVA BVA*

Let us denote by 'l.'l (x), -... ‘tn'l(x] an orthonormal system of

vectors tangent to 82 at x; then
g% =¥ —(vA-v](B-v}"1(B-'cj)+(vA-er}L“j +
j=1 at
+ (v, v} (B-v) B, -, Dlu - alv, v} (g-v) 7,

so that by (7.6) it is easy to get (compare with {9, Ch.2,
Th.2.11} '

j [4(t,x,D)u ¥ - & (t,x,DIv]dx =

Q (7.7}
= j [B(t,x,Dhu (v, v} (80)"'F - a BTLx, DIvlde Vu,vel " (a),
an
where
. av 7! -1 3 14,8v
Elt, o Dvi= 5 + F (v -v)(g-w) (B-z)-(v, -x ]1—1 +
A i=1 art

(7.8)

-1
+ { v a—[(vA-VJ (B gt )-tv )] - a(uA-v)(s-v)"}v:
_1:16'1.'“

in particular we have’
s={ve[WP 2N (L, -, Dlv=0 on 8}

A(tl . (7.9)
Alt) vi=d (t,-,Dlv.

D

Now let gaW2(aq) and set wi=G(t)g, i.e., by (2.5),

4(t,-,Du

0 in €,

B(t,-, D)z =g on Q.

By classical results [7,9]

full = ¢ figl vgew V2 2(a0). (7.10)
2,2 1,2,2

WU [ I 219}

-(u|G(t}*A(t)‘v)H= J u (VA-v)(B-v)'iV do Yuei

On the other hand, let w:=[A{t} 17w, i.e.

4" (t,-,D)y =u in R,
(7.11)
Blt,-,D)y = 0 on 84;

as {:5‘,7;-‘:'] satisfies the assumptions of [7], again by classieal

results we have

R {7.12)
L i 93] | 9]

If we multiply the equation #£{t,x,D)u=0 by ¢, and integrate by

parts in ¢, by (7.7) we get:

. ==l g (vA-v)(ﬁ'V)_ia do =
L6 a0

14

S ——
= |<g, (V*‘U}[B‘V} w>H—3/2.2 5/2,2

(8Q5,¥ (€193
= ¢ Rgl £l .
G S I iRk T+
and by (7.12] we cbtain
ol , s clgh o veeW “*2(aq). (7.13)
[ I iv)] H R (2 %))

Finally, interpolating between (7.10) and (7.13} we deduce in a
standard way

12,2

uuuu3/2 , = c gl VgeW (aqQ} (7.14)

(e} e )

This estimate shows that &(t) has a bounded extension from L% (e
into Wafz’z(ﬂ], and consequentily we get assumption (2.6) for each

#<]0, 3741,
REMARK 7.2 By (7.7) it follows that

YE42180), YveD s,
Alt)

aa



GIEY AltY v = (vA-vJ{B.V)'l Vigg YYD, " - (7.15)

if, in particular, B=v, (the case of A1(t) in [1]), we get

- -
G(t) A(t) v = Yian VveDMU* .
REMARK 7.3 If =0 and «=1 in (7.2), then we have, as in [11,
- -
that {2.6) hoids for each #€l0,1/4f and that G(t) A(t) v = «‘iv/avA

*
Yel, o

REMARK 7.4 In Example 7.1 the assumptions of [1] are also
fulfilled, even assuming only c* regularity in t (but in this

case, of course, (2.3} is no longer true)l,
EXAMPLE 7.5 Take n=1, 0-10,1[, % >0 and
A0, %, D)= A(L,x)-u" + B(t,x)-uv* + C{t,x)-u + }\.Ou , (7.186)
Bj(t,D):= .Bj(t)-u’ (j) + otj(t]-u(j) . J=0,1, (7.17)
whersa A(t,x}, B(t.x), C(t,x}, g(t), o (t) are NxN matrices whose
: . o
coefficients are continuous in x and C in t. We assume
det Aflt,x) = 0 v{t,x)el0, TIx[0,1]. (7.18)

Consider the boundary value problem (for fixed t)

40t -, DIu = fer®(0,1;eM)
(7.19)

B (t.D)u = zJec“, 3=0,1;

setting vi=u’, by {7.18) we may rewrite (7.19) as a first order
system of 2N equations:

uyt_ Q i u o]
["] - [Q(t-X) R(t-x}] [V) * ["'(t-")] ; xeloats (7.20)

ocj(t)-u(j] + BJ(t]-v(j) = Zj v J=0, 1, 4

where Q:i=-AT'B, R: =-A_1(C+}\DI], Fi=—A"'f. An casy check shows that
(7.20) is uniquely solvable if and enly if

« (£)-U(0) B (£)-V(0) , :
det | ° ° =0, (7.21}

o:l(t]-U(i) '81“"] -V{1}

10

where the ZNx2N matrix

)

, x=[0, 1}

Vix)

is any Wronskian relative to the homogeneous system asscciated to

{7.20). Thus the columns of U(x) give 2N linearly independent

solutlons in C([0,1],c"} of the homogenecus system #(%, -,D)u=0,

and the columns of V{x) give the derivatives of such solutions.
Under assumptiocns (7.18) and (7.21) {which is obviously

intrinsic, i.e. does not depend on the particular Wrenskian) it is

now easy to verify that the abstract assumptions (2.2}, (2.3) and

(2.6) are fuifilled. ‘

EXAMPLE 7.6 Cur abstract theory also applies to certain dynamic
systems acting on non-cylindrical domains, which are sfudied in
[61.
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