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ZYGMUND CLASSES WITH BOUNDARY CONDITIONS AS INTERPOLATION SPACES

Paolo Acquistapace

0. INTRODUCTION

This paper is concerned with the characterization of the real in-—
terpolation spaces (DA,E)u'w | Lions-Peetre, 1964] and (DA'E)Q_ [pa Pra
torGrisvard, 1979], where A is an elliptic differential operator of
order 2m, with general boundary conditions, and E is the Banach space
of continuous functions on a bounded open set QCIRn; following [Gris-
vard, 1969}, we denote such spaces respectively by DA(e,m) and DA(G) ,
where 0= l-qa.

In an sarlier paper [Acquistapace-Terreni, 1987] we studied the case
2md & W ; the purpose here is to study the "critical" cases 2mf = g&IN.

All nctations here are the same as in [ Acquistapace-Terreni, 1987 .
1. ASSUMPTIONS
n 2m
Let & be a bounded open set of IR , n > 1, with C°  boundary, m > 1.

We introduce the differential cperators

(1.1 Blx,D} s= ) aa(x)Da . xeqn

{(i.2) Bj(x,D) 1= B X . J=1,...,m,

under the following assumptions:

_ 2m—mj
(1.3 agc(i,e) , lal<2m ; b, &c (3n,¢) , |Blem, , 3=1,...,m
o - jB -3
(1.4} (ellipticity) There ewxist n€[0,2n[ , v»0 such that
m 2 in 2 -
vilg] P “’)il T2 ™0™ wen, ver', wer
|

a[=2m



{1.5) (root condition) if x£3Q, [ER , tER and |£]+|t}>0, (£|vix))=0,
then the pelynomial
il‘lth

[ X a (x)(E+Cv(x))a—('1)me
10:|=2m °

+ .
has exactly m roots [ (x,£,t) with positive imaginary part.
J

n
(1.6) (complementing condition) If xE3Q, EER , t€R and |[El+]t|>0,

(E]v(x))=0, then the m polynomials

) b_B(x)(E‘FCVfK))ﬁ
|8l=a,

are linearly independent modulo the polynomial

m
e T (e-T (x,E,00.
§=1 J N

{1.7) 0 <m, «m, < 2n-1 if 1 <3 <1 <m.
SRR 2 =

REMARK 1.1. Condition {1.7) replaces here the normality condition

assumed in [ Acquistapace-Terreni, 1987 ].

Indeed, it is easily seen that the transversality conditiom {{1.9) of

that paper}, i.e.

§ b, tmveo® £0, x€8n, 3=1,....m
iB

|8l=a,
J

is implied by the complementing condition {1.8):; thus the only 4if-

ference here with respect to [Acquistapace-Terreni, 19871 is that

we just reguire the orders of the boundary operators to be less than

2m, without forcing them to be different from one another.

We remark that this weakened form of the normality condition is sufficient

to prove all results of [ Acguistapace~Terrenl, 1987] : actually, the

proof of the main result there [Thecrem 2.3] depends only on the

3

basic elliptic existence theory and spectral estimates [ Theorems
1,1-1.2 of that paper] which in turn still hold under these assum—

ptions, as shown in [ Geymorat—Grisvard, 1967, Thecrem 4.11 .

Under hypotheses (1.1),...,(1.7) the abstract operator A, defined in

the space E := C(ﬁ) by

2m, —

D:={ue N wF@)ya(,muEc®, B (+,Diu=0 on 30
el 1, = ; .

(1.8) for 3=1,...,m} ,

Ay = A(",D)u
is the infinitesimal generator of am analytic semigroup in E [ Stewart,
1%80] ; in particular, possibly replacing &(¢,B) by &(°,D}-wl {w>0) we

may assume that

(1.9) pa)2{xec:re 3>0} , Ir{,ml < B if Re A>0.
L) — [a]

Hence the spaces DA(S,E) and DA(B) can ke charactevized [Grisvard,

1969] by:
8
(.10} D_(8,=)= {x€8 1= I I w
} (8% {x= [x]D (8, sup s VAR{s,A)x a < }.
A s>1
9
1,11 = < o) : 14 -
(i.11) DA(B) {x DA(B, y: lim s “AR(S,A}xﬂE o} .

st

2. PRELIMINARIES AND THE MAIN RESULT,

We list here some preliminary results whi¢h are necessary in order
to state our main thecrem. First of all we define the Zygmund classes:

, no, X +
if QTR is an open set, we define forgém :

2.0 A T@a=frectT @ (2]
AT



A

- ) sap {jDﬂf(x}ﬂ;af (y}-2D" 8 ( (v} /2) | I Xty Ed}<em]
: ] S .
o1 I
(2.2) W= tea¥ @ 1im sup_ (2] = 0}

9 A
r40 xoen MA@ B(xo,r))

..1 u—
where the space Cq {82} consists of functions whose derivatives of
crder I“Ii‘E{‘l are uniformly continmuous and bounded in 8.

a
It is'well known that A’(IRn) can be described in an alternative way

[Triebel, 1978, Theorem 2.7.2/2] :
2.3) A% = {recm®) ¢ sup (0] (AE“;E; (x} | e -{e}, xe " J<=],
where

(2.4) Iy 1= qfl (-1)q+i'j(q;f1)'f(x+jh)a

Moreover we have the proper inclusicns

M) & 1a0% @) o 4%(@ w '@ if 0 < a<q and gEW

1
provided 30 is of class C .

It will be useful the following extension property:

PROPOSITION 2.1. Tf @ is bounded with 30 € Cq, then there exists an

extension operator E:Aq(a) = [\q(IRn) such that:

{i) Bf = I,
2

n
(1i) Ef has compact support in IH ,

{iiz} IEL < c{a,o,g el 2
AT (m?y IRItH

This result holds under much more general assumption [Jonsscm—Wallin,

] =3
1979, Theorem 5.1] , but when SQECq it 1s possible to give an sasier

procet, which we omit for brevity.

We now turn to some interpolation properties.

PROPOSTITION 2.2. If §I is bounded with aﬂECq, then

— qte - .g -
2% = @, T an veg] 0, 1]
1/2,e
Froof. The case 3QEC is proved in [ Triebel, 1978, Theorem 4.5.2/11}

- n
Let fEAq(m. By Proposition 2.1, we extend £ to a function E‘EAq(IR ).
As, by [Tziebel, 1978, Theorem 2.7.2/1] ,

q+e

JR R e T =

n
(R s

-
we have,by definition, F=U(0,+), where U:]0,1] =+ Cq Etmn) satisfies

sup tl/z{ﬂuttjﬂ e + Hur (el _ 1 <.x.
€10, 1] T Y T

Hence ult):=U{t}|_ satisfies the same inequality with = replaced
Q

by E, and u{0)=f. Thus f= (qu-e (E) ,CZ‘:'E.“E(E))U2 o ‘Conversely, let

I - e ; .
ji=N¢sl (&) (2 12,0 ° Then £=u(0), with wu(t) satisfying
L

@8 s Puwl ke _tsx
t2]0,1] cTE T

. wEY =
Let now [oci=q—1 and fix x,v, TYES}. If Q is convex, we write

1% ) 0™ () - 20 £ ¢ (acbyd /2) |

|~

a2 o (zmutt, 1)) (x|

v-x
2
2 o : 2 o
a0 Dhute, x| = | [ S Du s, )] (xdde]
imx p XX s
2 2
1 - - -
+ I j’(VDau(t, . + g X y}—VDau(t; y -5 u)l x—Y-)dsl
2 2 2 2 2
o
- 1/2 -1/2
<c Kf[x-wyi1 =Lt Kf|x—yf1+st / '

and choesing t = (J-ﬂj——) 2

- we obtain fEAq(E) - If @ is not convex we
diam @



have to construct two C curves coéiained in E, Joining E%z'to x and
v, and whose lengths do not exceed M|x—y|, where M depends only on {;
this can be done since 30 is of class C1 at least, as shown in {Acqui
stapace-Terreni, 1984, Lemma 1.1£] . Then we can repeat the preceding

argument, by integrating aleong such curves, and the result follows as

above. =2

: k+1 +
‘PRCPOSITION 2.3. Let 2 be a bounded open set with REC , KEW .
Then
i 1/2
e cw ia2 0 pal vied™ (30; .
c (am c A ¢ e

This estimate is also well known. B

2m
Let us go back now to the situation described in Section 1. &s MEC ,

the distance function
(2.6} dtx) := inf{|x-v]: yE39} . =€

belongs to czm((amr), vhen (30) := x€Q:d(x)xr} and r© is a suitable
positive nmumber; in addition V4 = -v on 8f), where v(x) is the unit
outward normal vector at %E3R  (see | Gilbarg-Trudinger, 1877, aAppen—
dix]): hence vec® ton,®") .

We want now to define suitable subspaces of Aq(53 determined by some
kind of boundary conditions. We start with considering, for fixed j,

hel
the boundary operator Bj(x,D) defined in (1.2). For each y&EN with

lyl =m,6 we set
3

N(y) :=number of non-zero components cof v =

= cardinality of {BE]$}:|B| = mj—l, ﬁ+elzy for some i=l,.,.,m}.

Hence we have, denoting by B, the principal part of Ej B
3

2.7 Ej(x,mu: 7 ij(x)nY'u(x}=
[v|=my

7

n

= 3 T [negren] ' b, 05D utx)
Eﬁf=mj‘1 i=1 3rBret L

Set now for lBE:mj—l and i=1,...,n

.8 i, . o
(2.8 o’ (x):={ci Bl ; ci B s=lmipre )]

1<i<n 3,prat

13 P o= Pl - P v ivin

Then we can rewrite B, (x,Dju as:
1

B

(2.9) 2 fx,D)u I 0pPp wiy =
3 i ir-

i
[ e

7 P jefamy =
Blem -1
| f—mj

BDBu(x)
v (x)

i}

) (e B v
Bi=m_-1
E i-mj

B

+

tRe Te " (%) |‘7D8u(x))+i(1m ch'stx) |VDBu(X) 1

We mow introduce the integral curves associated to the (real)] vector

fields VY4, Re TCJ'B, Im Tc]'B, namely

4
- uwilo,x) = Va{uls,x)}, >0

[s1o
(2.10)
pl0,x) = x€aq ,
d .3, j . i
L33 B 0 mre ve? P03 P 0,00 o0,
T
(2.11)
B, =xean
& i 1,8, 3.
d—nj (o,%x) = Im T B(nj B(c,x)}, o>0
o)
{2.12)
W Bo,0 = xenn.
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7
. n )
‘o = I T Imtave™)] ! bj fre l(x)DBD ulx)
1 af o a iBl=m,~1 i=1
= - = ~gX) - ®] .
. [av(x) (X-o ‘) el H 3
. Set now for IB]:m_—i and i=1,....n
and fina}."ly : J
1 1 -~ 1 Ao o 1 38, _ 3B . 3 s i,-1
DA(Z ,m)f {Z€A"(Q) : £=0 on 39}, DA(? =2 (ﬁ)ﬂDA(Z =) (2.8) & "T(x): {c__L {x)}liiin Pel (x):=[ N{B+e™)}] bj,ﬁ_'_eibd.
Lo, - ch'B(x}:=c]'B(x) - (c]'sfx)lv(x))v(x)-

{£EAY {0} 1 £20 on 302,

: Then we can rewrite E (%,B)u  as:

sup sup J (x) [<=} i
LG Bv(X) n
GE] O, 0 ] tXEIR B 6

o (2.9) By {x,Dhu = X ? 0o 200 =

lgf=m -1 3
i

i 2 — .
=y = {fE : f= - X~ - X
DA(.‘Z) {FEA7 () :£=0 on 3R, 1lim {3\)(}{) AX~ov (X)) av (X)( H| s .
ot0 = I tx) |90 uix)) =
]BE=mj—1
= b (X f_{X)+b_(X)E (X)+b (X E(X)  wxEIR}, . anP
1 ® 2 ¥ o = 3 {(cj's(x)]v(x}) 2
av{x}
iﬁlm,—i
3 3. 3 3 = 3
D r2i={E£EAT(D : £=0 and B_{X,D) =0 on 30}.D P=2 (Q)nDA(:l— ;o). 5.8 6
A4 2 A + (ge ol Pl 1907 () ) 41 (1m0 T 3 [v0Pu i) }.
Dﬂf{u(U,x}}—Dﬁf(x) We now introduce the integral curves asscciated to the (real) vector
REMARK 2.65. In (2.13) we may rsplace the ratio b i.8 I8
a fields Vd, Re Te™'", Im Tc”', namely
the simpler one g B
D flx-ovix))-D F{x} i a
o ' . g Meex) = Vdlnia,x)), >0
indeed for fEAq(E) the difference between such terms is o (i) as g+0 - . (2.10}
(see Remark 5.3 below). l wi0,x) = x=30 ,
3., THE FIRST INCLUSION (i 3 (c,x) =Re Tc ’B(Aj’ﬂ(a,x)) o»0,
dg
Tet A be defined by (1.8) and suppose that (1.9) holds. We want to (2.11)
prove the following (0 ®) =xZ3Q ,
THEOREM 3.1. Tf 0€]0,1[ and q := 2m0€ I, then 1.8 5.8
“la,m = m wed B3 fo.x)), 520
A:(EJ S D (8,7 (2.12)
(O x) =x€39.
Proo!f. hccording to (1.10) it is encugh to show that



ta

A
o eve o T v

=],

and final‘:ly
D (7 )= {£24 (@) :£=0 on 30) L e &
= ' '- A (Q):£=0 on ’ DA(4}—1(}' DA(4 )

. o
D {7 r"’__}?_‘{fe.ﬁz(ﬂ) ;=0 on 2R,

. .

o : oup L= af LS. <o
faelo,0 1 xean © 9 (e 0
. 2 — 1. 3f .. 3
D () ={feA” (R):F=0 38, 1im = [—— {X- -
n :2) (5 on lim . [av(X) AX-av{x}) o ) .9}

o40

=b
1(x)fx(x3+b2(x)fy(x)+b0(xyf(m ¥REAR},

3 3z 3 .3 = 3
B {= ;=)= {£&A Q) :£=0 and D} £= 21,0, (= N (> e
Wa {£er™ () an. B2(X D) £=0 on 3G} DA(4) AT (@) DA(4 )

pPe{uio.x))-pPrix)
aJ

REMARK 2.6. In (2.13) we way replace the ratio

the simpler one

DBf{x—ov (x}) —DBf {x)

g

7

indead for fEAq(m the difference between such terms is o (1) as g0

(see Remark 5.3 below).

3. THE FIRST INCLUSION

Let A be defined by (1.8} and suppose that (1.9) holds. We want to

prove the following

THEOREMv 3.1, 1f 9€]0,1] and q := 2m8€ IN, then
q
AT(R) S D (8,
B() A(G ]

Prooff. According to (1.10} it is encugh to show that

i

(3.1)  swp sttamts,arel _ <cisl wenS@.
21 ct@ A @

As in [Acquistapace—'l‘erreni, 1987 ], this will be done by constructing,

for each fixed fEAg(E} , & function w : [1,=[ + C(E) such that
-8
(3.2 bwigy-£l £¢C, s bel 0 went
clg A
-8
(3.3) lar({s,n)wiz)! = ce s Nl _ ws>l.,
e Agtm

Cbhviously (3.2) and (3.3) imply (3.1).
- e . T . .
Let fEAg[ﬂ) and consider an extension Feﬂgtl‘r’t ] , which exists by
@ T
Proposition 2.1. Fix a real-valued function ¢ECO {IR } such that

0<9<l, ¢=0 outside B(O,1}, f ¢izldz=1 and ¢ is even in each variable,
="

and set

6, (2) = tn¢(§) , 2R, %8101},

Define finally (compare with (2.4)):

n
v(t,x):=j [(—1)q(.’_\:+1 F) (=) +F (x)} q:t(z)dz , ¥R, te€]lo,1];
n
iR

then clearly

art nel gl
vitod = Fe) o= [ ] 1T )7 (x+hz) ¢ _(2)z.

=’ n=0

a-1gl

8 n
Hence if ]B]iq—l we have by (2.3} (since DFZA (IR )):

3.5 vt -0fr i | #

e300 o (2az] <
IRn z t

-18]
¢ [F] I $ (z)az <
AN ® t

| A

e 121 o%IBL
T

| A

Next, if |u!=q—1 and hf| ie even ahd larger than 1, we get:



12

0™ Vv (e, | = EDYI 1%y ‘zl 15y x9_(z1dz] <
< qEI EN ] trTe, Eday nivl
- h ’ n R t h l
h=1
g+l
= 3 (qzl h lj [ 0°F (x+hz) +D F {x-hz) -
h=t

- 20%F ()] DY¢t(z]dz] <z [7]

LT faty]
2@

<ec {f£]

thus if |B|»g and |g|-g is even we obtain

(3.6) |DBv(t,xH <c [£] tq_iel-

4

On the other hand if |8|>gq and |8|-g is odd, by interpolation (3.6)

yvields
1/2
(3.7 #oPeie, i 5c“VEB|+1v(t,=)il / o
() Gl
e 18 a-lel
q Aq(ﬁ}

By (3.6) and {3.7) we conclude that

(3.8) "VIBlv(t,-}!l <e 1[£] tﬂrlﬁl_

c®h Y S

Finally if |B|=q we do not have the boundedness of

but the weaker estimate (due to theée fact that FEC

(3.3 ivE vit, )0, <o [f] t

- -
c(mhY e 7

Hence if we set

-1/2m -

w(s) (x)=w(s,x] := v(s JX)} s XEQ

IR

t

le]-1

Ewh

-yl

w{t,

I

€] 0,4q[ .

| A

.)Hllz

195 (¢, )1

E2S

12

we easily obtain:
PROPOSITION 3.2. We have w&C ([ i,=[ xQ) and:

{i} Ilvkw(s)—kaﬁ <e[f]

)

iy Wil <o [f] s

e q,€ 2m(B e)(a}

(111) Il <o (] s/

o) 14w

In particular, part (i) implies {3.2}.

— gk} /2m

if  keg,

VeE] U.C_{/Zm[ r

k>g. S

Let us prove (3.3). Set u(s):=s R(s,A)wi{s) , s>1, so that

(3.10) AR(s,B)w(s)=u(s)-w(s) , s>1.

Looking at the eiliptic problem sclved by uls}-w(s), and applying the

. I
spectral estimate in C (R) {see in particular

1987, (3.13)] we have:

(3.1 lugs)-wis)! ic{s_I"A(°,D}w€S)ﬂ . F
C{) c{Q})
n 2m~m4
J N
) et} /2m FB, (-, D)w(s)]
3=1 k=0 E ¢ fam
Clearly by Proposition 3.2
-1 -
{3.12) J1 <cs z ﬂDﬁwCS)ﬁ _ Xaos 1{1+5
iBi<zm C()
-a/ 2
< cs Um [£1 _ _
Py

In order to estimate J2, we split it as follows:

a3 B g-1-m. 2m-m
G130 g, s 100

=1 k=0 k=q-mj k=g+l-m_
3

{2m-q} /2m

T B Ha, ¢ owe

¢ (a0}

Mt

[ Aequistapace-Texreni,

]
PR



—{ma k) /)
-s(mj }/m: +12+1

where some of the sums may be empty (e.g., 12 has ne addenda when

mj>q) - Again Proposition 3.2 yields

m g-l-m,
(3.143 1 =c T 17 be (e, m) wisy-n)l .
3=t k=0 € (3
- (matk : -
. s {my+ )/2mi'3q[f] s q/2m )
oAt
m 2m-m k+m o .
(3.28) 1 <e | DERED N £y o~ myH) /2m
j=1 k=q+1—mj h=0 C(E)-
2elf] (145 (FRmy)/2my - (g /2m <<l£] T m,
% T oa%m
concerning 12 : we will show that
{3.16) liBj(-.D)w(s)II . <cdlz}  _+£) _ b ower1,wisi,...,m:
T™Mae” T 444G Ag(m

this will imply, by {3.13), (3.14) and (3.15), that

I,ce (£l +[f] 3 g U
) Ag{ﬂ)

and, recalling ({3.12}, (3.10) and (3.11), the proof of (3.3) will be
complete.

Let us prove (3.16) (ncte that this term appears only when m_ < gj.
3 =

if mj<q, by Propositions 2.3 and 3.2 we get:

(3.17) UB_ (~,D)w(s) <
. e (am)
1
e {llajf',am{s)l[ /fm--kl Is, (-,m (w(s)—f}ﬂ1/2 ! } =
T gy I T rany
1/4m ~1 /4
e 4sVTME e L e ,
g9 [ iy q o

25 A%

P&
and it remains- to consider the case m =g, 1.e. to estimate thas quan-
] -

tity
B LD s ) =3, (2, D)w (s, %) +B (x, D) (s, %) , x@82 , s > 1,

- @
where we have denoted by B, the principal part of B, and by B, its
1 ] 3

lower order part. Obviously

(3.13) JEJ (x,D)w(s,x)i < clwis)h < ¢ [£]

-1 —
¢ 9

H
2%
on the other hand, recalling (2.13) we can write:

B,
(3.19) {Bj(x,D)w(s,x)i < |Bj(x,D)w(s,x) - [.:\03 wis, )] (x}| +

B B,
+ Iiﬂcj(w(s,-)—sz ]+ I(A;f) G| =

= T + T 4+ T
1 2 3’

where o] 0,00:[ - Now, taking into account (2.9} and {2.13} it can be

checked that

1
IR (LT o I LYY R G £} __
cm e k 2%
-1, gt -1 -1
T,<cq 193 sy -2l _ e s /zm[fi _
e ¢ 22m
whereas, by assumption, T3 does not exceed [F] _ - Hence, chcosing
2l
-1/2m B
g o= cro-s ; we deduce
(3.20)  |B_(x,Diwis,x)| < e {[£] }oows > 1, W€D, wi=l,...,m.
3 - 9,7 -
AB{R)

By {3.17), (3.18) and (3.20) we finally obtain {3.16). The proof is

complete. B
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4. THE SECOND ‘INCLUSION,

Let A be defined again by (1.8) and assume (1.9). We want to

prove:
THEOREM 4.1. If 8£]0,1 and g := 2mBE W, then
g =
D (@,=) & AT(Q),
A(E) ) B( }

Proof. Let fEDA,(,G,wJ . By the Reiteration Theorem [Triebel, 1978, Theo-
rem 1.10.2] and by [ Aequistapace-Terreni, 987, Theorem 2.3] we have

{with equivalence of norms)

gte g-e aq+e = g-€ T,
B (o) =(D T @ ; D T = = 'C
A(B I=( A[2m ) A(2m ).‘!l ) (CB {2} N tm)_l- .
2’ 2
where e€]0,1{. Then, by definition [ Licns—Pedre, 1964] , there exists
a function u : ]0,11 » Cgﬂ:(ﬁ) such that:
1/2 1/2
sup t/llu{t)]] e _ +  sup t/ Tat ¢yl B _iK[f]D (6, )
t€]0,1] @ wEro) oy T OB
B, (~,D)ult)=0 on 38 WE€]0,1] if m, =g
5 =
u(l) = £,
. . g+e q-& = . P
Thus, in partieular, £€ (C N ,c (9))1 y i.e., by Proposition

2.1, fEAq(g); in addition Bj (+,D)f=0 on 3Q if mj<q, since uit) + f
—e —
in ¢¥ 5@ as  té0.
We havae to show that [ £] _is finite. The following lemma is
A2 @)

crucial for this purpose:

LEMMA 4.2. Fix |y|=g-1. We have:

(1 (o reo-n"smr-dTuc 00 ity | <

1/2 i-g
< £ t
- CC,{ L ]DA(e;m)

|x-¥] T owEglo, 1], w,yER,

17

(ii) If vELip(H,IRn} and B:fﬂ,o’o] + 0 solves

8'(a) = v(B(a)) , G€£0rUD]
B(O) = xe€q
then
D u e, B (o)) D uit,x ¥ -1/2 e
| (vlute,x) v ] < e [f] t %
g - g D (B,=)
A
ves]l 0,1} , VcE]O,c;O}.
Procf, (i) We have: ..
t
[V -V -pa e, m e uce, vy | = | f [DYuS(s,x)—DYus{s,y)]dsl <
o]
e 1-g 1/2 l-e
s fteen o as e[k L] qo,my € Il
0 e n) PO
(ii) We have:
o' uit,8e) )b alt,x) ¥
[ = (B ult, =) [vix1) | =
1 7 a
=12 [ = e, Beprian - (v0Tuit,0 v | =
g dp
0
1 ag
= | = [T et 8o fv (Bip3)~ (90 ate,x [vix))1do | <
0
g 1+¢ ¢ a
L AR SR £ S LAY eST S £ R ¥ BRI Ty
0 TRy e @) Lip{®) C()
< X [f]D (8, t_l/2 UE. "
q r R
Let us show that [ £] is fipite. Indeed, let m,=q and fix xE3R;
Ag(m ]

by Lemma 4.2, recalling that Bj(x,D)u(t,x)=0, we get:

, B, B -
d (A};jf) G| < e TTemute, ) G [+]Ta_Tuter o) ()-8, e, Dule ) [+



ie
+ 1B, oeomilutea-£0al |+ B GuDi £ [=s 5 48 e85 48,

Now by Lemma 4.2(1i)

1/2 ) Iy

1-¢
(o, x)-x|" T+
fr|=q-1

- i l-g
§.<c o 1{f] {nta,xy-=]" +{a

=g DA(B,‘”)

iy i-g t1/2 -E'
+InTlom =]t Y 2 e [f]DA(G,'”} ‘

and. by Lemma.4.2(ii)
-i/2 ¢
i t o ;
52 < cq [ ]DA(B;"”)
on the other hand
t
[ haris)l ds < ¢t [£1]

= -1 = = D_(8,»)
3 o P 1(9) q '

0
A

and finally

n
A
a
+h

i
N )
A

g 2e
Hence choosing t = (—) we get

[£] <o Bz ,
- = D_{8,=)
Al e A

and the procf is complete. B

5. IMPROVEMENTS AND REMARFKS.

By Theorems 3.1 and 4.1 the first eguality of Theorem 2.4 is
established. In order to check the second one, just a few remarks are
needed. Concerning the first inclusion, repeating the argument of
Section 3 we see that the right-hand sides of the inegualities of Pro-
position 3.2 have to be multiplied by ¢{1} (as s4=), due to the fact

that f belongs to R:(ﬁ) now. Consequently we get

19
. g
{5.1) lim & Bw{g)-£l =0,

st cm

which replaces (3.1). In order to get the analogous of (3.2}, i.e.

(5.2} 1im seﬂAR(s,A)w(s)" _ =0,
see c)

it is readily seen that the main point is to show that if m. <4q

-8
lim s Fe (+,D}w(s)] = 0.
st E T Gamy
This is easily proved, similarly to (3.17), when mj<q. In the case

mj=q we split

Bj(x,n)w(s,x)=§j =,D)wis,x} + 5 (0,0 wis,x}-Flm)] + §j(X.D)f(x)s
J

but

IE.(X,D)[W(S.X)-f(x)][ < chws)-£l oy =€ (el s_1=o(1) as st
t e T

whereas, using the notaticns of (3.19} R

B
— -] il =]
la, GeDYwie )43, D20 | s rp + T+ [(Agjf) ()48, D £ (0 | <

< e 1/2m -1 5“1/2111

g s ofil) + ¢ ¢ o{l} + ofl} as St4e,
q q

where in estimating the last term we have used the boundary conditiocn
~-1/2m

satisfied by £. Taking o:= cos we finally get (5.2), which
together with (5.1) vields
, ]
lim s lars.mygl <o,
Stteo C{Q)

i.e., by (1.11}, fEDA(B).

The second inclusicn is easier: if fEDA(B),then, as DA(EI) is the

closure of DA in DA(S,-H) , we take a sequence {un}CDA such that un -+ f
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in DA(B,mJ: then

{u £ in A%
n

[a -f] + 0
q -
AT(Q)
B
: ition fmpli Y@ si S 2%@ ana %@ s a
The first condition implies fEA°(R) since DA {f) an

closed subspace of Aq(ﬁﬁ;‘the second one easily yields {since

B.(*/D)u =0 for j=1,...,m):
3 n
B,
: J e
lim (& “f}(x) = -B, (x,D)f(x)
T 3 !
ciD

provided xE230 and m =q. Thus fEAg(Eh and Theorem 2.4 is completely
Pl

proved, B

FEMARK 5.1. Theorem 2.4 still holds in the case of elliptic systems
in a possibly unbounded open set which is uniformly regular of class
sz [ 2manm, 1984; Geymonat—Grisvard, 1967 | (compare with [Acquista-

pace-Terreni, 1987, Remark 5.1]).

REMARK 5.2. Theorem 2.4 in the case m=1 was proved, with different
techniques, in [Acquistapace-Terrerni, 1584].

B,
J
REMARK 5.3. In the definition {2.13) of AU £ we may replace the

integral curve wu(o,x) of (2.10) by the segment x-gv(x}, GE[O,UOI.
Indeed, if fEﬂq(Eb we have (denoting by u(t,¢) the function satisfy-

ing (2.5) and such that wu(0,»)=f):

DBffu(U,x))—DSf(x) _ DBf(x - sv(x))—DBf(x) |=
I . p
17 B
= |- = I[Dﬂu (s,ulo,x})-Du {s,x~ovi{x))] ds +
o O s =

+
Q |

c
i }(VDsu(t,u(p,x)) in(u(p;x)])+(VDBU(tlx—pv{X))|\;(X}]}ﬂpi <
J -

2l

-11 ’ -
<cao 't " ur]u(c,x)—x+cv(x}ii ©
AT (82)
-1 172 o e
Feo v e [ ute - (0 | +Hute,x)-xldp <
22 o
1/2 - -1
< el gl _ 1t / g & afl) + ¢ /208 o{l)} = o (1) as ot
A% @)
provided we choose t = fillzg.
g
o]
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