QUASILINEAR PARAROLIC INTEGRODIFFERENTIAL SYSTEMS WITH PULLY NONLINEAR
BOUNDARY CONDITIONS

Paolo Acquistapace
Scucla Normale Superiore, T - 56100 PISA

Brunello Terreni
Dipartimento di Matematica, Universita di Pisa, I - 56100 PIsa

0. INTRODUCTION

This paper concerns the study of local existence of continucusly differentiable
solutions u; D,T]XE‘+ EN of gquasilinear paraholic integrodifferential systems
under fully nonlinear bovndary cenditions. We alsc Prove some results on continuity
of solutions with respect to the initial data. Although our method works in the
general case of systems of order 2m, we just consider here, for the sake of sim-
plicity, second ordexr systems of the following kind:
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= F (t,xul(t ), pult,x))+I" (t,x,u} in [0,7T]xf, h=1,...,NM,
(0.1
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where @ is a bounded open set of " with boundary 3 of class ¢ and
'

I(t,x,u),5(t,x,u) ara functionals of integral type: '
x 2
(0.2} I{t,x,u}:= ff H(t,s,x,y;u[t,y),Du(t,y);u(s,x),Du(s,x),D uls,=);
0 2
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(0.3} Jlt,x,u) = ff Kit,s,x,y:ult,y),Dult,y); uis,x}),duls,x); suls,y) Duls,v) }dyds

0 ag
We list qur assumptions.

(0.4} Reqularity. The NxN— matrlces A and the N—vectors B,F are sufficiently smcoth
1]

for instance, A | EC (4, o ) BEC (A, EN) FEC A, ¢ ) swhere A:={0, T]xgxc T N.Concerninq
ij



2 N 3 N
the MN-vectors H,K, we regquire that HEC (A',C ) ,KE CT{A",T }, where
—2 N nN_ N nN N 2 - N oN 3
MY et X (g e ert )T, ATi= AxQxaRx (€ x€ ) and A:={(tr5)€[0,T]2:t>s};
morecver, we need the following growth assumptions on the functions

Y Y
D H{t,s/x,¥; ; N sU_ LB, ,D R FIL 4D ; R .
{ 0 L T PELPLA qa) KUt S,%,¥it 0D, iU, 0P, u3'p3)

a-1
c, BN (E-5) * (£-5) [1+1q2]+iq3\] if there are no derivatives

in (t,qz,q3),

a-2
CO(M)n(t—s)-(t—s) [1+|q2|+|q3|1 if there are no derivatives
in (qZ'qB) and just one de-

rivative in t,

1DYHI = =1 X
CD(M)n(t—s)-(t—s) if there are no derivatives in € and just
one in (g, ),
a-2 .
cO(M)n(t—s)-(t—s) if there are just one derivative in t and
just one 1 .
i in {q,.q.}
no assumpticns otherwise,
3
provided J []ui|+!p_|] <M and vl < 2:
i=t >
a-1/2
CO(M)n(tws)'{tus) if there are no derivaltives in t,
¥ a-3/2
ED x| = CO(M)n(t~s)-(t—5) / if there is just one derivative in t,
no assumptions otherwise, o
3
provided z [lul[+|pil},5_ﬁ and  Jyj < 3.
I=1

Here o is a fixed number in 10,172 and n(t}, t>0 is a continucus, non-decreas—

ing function such that n{0)=0.
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s 3B
{0.5) Ellipticity. The pair ( | A (t e upiD D, ) Pl LA RS L R where
5o1 4 R )
ai-f{th} is elliptic i £ [4,6] i forml
aPi H g;g Wkel, ... N ; is elliptic In the sense o r , uniformly on
1

bounded subsets of A. More precisely, consider the matrices

e
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(t,x,w,plE .
3

N~

ig 2
a t,x,u,plE E. e p X, rle,x,u,p:E) = —_—
s3] Ts ] 1an

[ .

1
A(Bst0,piE,mdis L
s,.3=1

where 8¢ IR, £ £ IRn , p€ IR .Then we assums that for each M»0 the following is true,pro -

| < m:

videa t€10,71,x€Q,

(i) there exist SM eln/2,ml, CM>O such that

2 2N n
|det a(est.xompikop)| 2 CM(lEt +p ) VBEI-EM.GM], vEe m , ¥p€ IR:

2 2
{ii) for each 8€¢[-8 .8 1, £¢€ IRn, pf R with lg] "4+ >0 and E£-vix)=0 the polyno-
M M

+ .
mial T + det a{B:t,x,u,p;E+Tvixt.p) has precisely N roots Tj(S;t,x,u,p;E,p) with

positive imaginary part. Here v(x) is the unit outward normal vector at x (which is
supposed now to belong to 382 ;
n 2 2 - =0 11 in
(iii) for sach 8F [-8 ,8 1.L€ IR ,p€ R with 15! +0 >0 and  Eevix)= {nere, again.
M M

-1
%€ 3§} the rows of the matrix I‘(t,x,u,p;€+tu(x))'iA(S;t.x;u,pii*’!\’(!ﬂro)} are

@ +
T+ W (T—Tj(a:t.x,u,p:érp))-
j=1

linearly independent medulo the polynomial
1 - N
(0.6} Compatibility. The initial datum ¢ belongs te C (2,€ 1 and

-~ BIO,x%,9{x),Dylx))=0 gyx€ 28,

Here are a few examples where the above hypotheses (neglecting the integro-differen-

tial terms} are Eulfilled.

2
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EXAMPLE 0.1. Let A_jE c {a,T ) >0
E— 1

and suppose that for each M>0 there exists vM
.|
such that 1f Jult|pf <™

a 2 2 n N ¢ 5_
> v (617 ]n]7 wgem , va€ R, Wi [o, 21
- M

Re E (Aij(t,x,u,p)-mn} 5185
i, j=1 C
n h 1 - N
moreover take Blt,xu,pl:= { } hi(t,x,u)pi}h=l ; with b EC (o, elaxe ,®m)
i=1 g
satisfving

N
b (t,x,u)v, (x} # 0 Tit,x,u) € [0,TIx30xC .
i i
1

u’rvﬂ =]

1

This is the situwation of [2].



EXAMPLE 0.2. Fix N=1. For i=1 k 3
soe- 1 take aiE C (A,IR) such that for each M>0

n EEW

S
—% 2 n —
i,§=1 v, xup g e 2oy 8] viem, vt € (0,11,

, B =

1

provided |u|+|p| < M. Then, setting A &
il 9pj

n

E aiui , We gee that varia-
. =1

tional problems may be written in the form (0.1}

1. MaIN THEOREM

Let us fix any p€ln,=[ and let 2
. N
, jat e mo be a fixed element in W JP(Q,E ). For each

r0>0, N0>0 we set:
(1.1 Ble N,z ):=lecw Padh:
0" %' %0 ol (&,C ).ﬂm—moﬂ 20 < L B(O,+-,¢,D¢}=0 on 3R,
W
20,p N
QUO.e)E B "THR,C ) and  Bg(o,ell < N}
2a - !

o

2¢,p
whe. B i the Besov—Ni 7 =3 i
re is Bes Nikolskii space ([ 7, Définition 5 8], and
- - r
. n
(1.2} (O, p):= § A _{0,- Lgi- g "% .D0 =0 ;
1.2 QLo, : Q,-.9,Dg) =D D o+F{0 X
o 15 4.09), x€0;

we also recall that the number «f10,1/2{ was introduced in (0.4}

It is easy to ch ¥ i
v eck that B(ag,NO,rO) is a closed subset of WZ'P(Q EN)

Let us state our main result:

THEOREM I.1. ’
Assume (0.2),..,,(0.5) . There exists T1%]0,%] such that for each

9€ Ble N R +o
o 1D,ro), problem (0.1) has a unigue scolution u € C1 do,1] Lptﬂ CN)) n
o LT '

o 2,p N
cdotL,w T m.e n;
. 7 moreover the m ] i 1
ap @ uw is continuous, in the sense that

there exists i
c2>0, depending on p,u,wG,N

O,ro, such that

{1.3) Pu —u 1 -
o +ﬂum u l

i <
c B VW T

W 2a,p

=

S ey teee, gy Nz ) {e-gl o000 0w 8k ¥
B

P L 2~ N —
If, in addition, ¢& ¢ (R,C ) and 0{0,p)E cz'ufﬂ fN) then
— ang ),

n
5 — N
.4y 22, ¥ A _{-,r,u,Du)-p D uk Citorle@en  veeloal
By g 1B +d

The proof will be outlined in the next sections; here we want to make a few remarks.

REMARK 1.2. We are forced to take p%) n,=| in order to guarantee that alt,*),Dult,")
are continuous functions in Q : this allows us to avoid any growth assumption on

the nonlinearities Ai_,f,E.
J

pEwARK 1.3. The compatibility conditions B(0,+,¢,Dg)=0 on 30 and g(0,e) ¢ sju'P(n.mN)
are mecessary for the validity of the Ffirst assertion of Theorem 1.1, which is
optimal in this sense (and we might also weaken (0.4) somewhat) . On the other hand,
we cannot replace, in (1.4), & by o, because of the "bad" behaviour of the space
C(E}ENJ with respect to maximal time regularity in parabolic evolution problems:

compare with [1, Remark 6.47.

REMARK, 1.4. Theorem 1.1 is a local existence result; however, due to the fact that
the compmtibility conditions are preserved in time, it is clear that the local
solution may bea eontinued, by standard arguments, up to a maximal time interval

{0,z -

pEMam® 1.5. We beliewve that the extensicn of Thecvem 1.1 to the case of guasilinear
parabolic systems of arbitrary order, with the elliptic part satigfying the
assumptions of [4,6], is straiqhtforward.

*

our proof proceads escentially as in [2], i.e. it uses two main ingredients:
1inearization af the problem, and the contraction principle. Howsver, thare are some
differences with respsct to {21, due to the presence of the integrodifferential terms
and - which is more important - of the fully nonlinear poundary conditions; the
latter generalization reguires a slight refinement of the classical xesults of

[3,4] from the point of view of the smoothness of the boundary coefficients.

It is to be noted that in [ 2] we had very sharp assumptions from the point of view
of smootnmess, and consequently 1t was necessary there to apply a further requlari-
zation procedure of the solution, since the fixed point had been obtained in a space
strictly larger than the space of data. The same regularization technigue is not

applicable here, because of the full nenlinearity at the boundary: this forces us



. - =
to take strongex smoothness assumptions on the data, which allow us to get the fixed

point directly in the optimal class.

2. AUXTLIARY RESULTS

We collect here some propositions which shall be nsed later on.

consider the linear differential eperators

. n — w2
.= DD . a  €C{R,T },
(2.1} Afx D)= E %, 4%)B,D; i :
i, j=1
n 2
1, N
(2.2) Bi{x,D):= .El bi[x)Di . biE W p(Q,C ); p>n,
i=

and suppase that (0.5) is satisfied by the pair {af{-,D),Bl-,D)} uniformly in Q.

Then we hawve:

- s a—
THEOREM 2.1. Under the above assumphions, there exist k0>0, SOE R, c3>0 {depen
r
p

w L N
ing on p,R,B) such that for each £%€ Lptﬂ,m ). gf W {,c”) and

T f2f . - < § Y1 }, the problenm
AE SA 9 c {z @.larg(z XO}E =< O} { 0 D
(R -
hu-af+,Dlu = in R,

(2.3) B(*,Dju =g on %,

2, N
we w 'Tin,e)

has a unigque solution, satisfying in addiriom, for each A€ SA a

0°0
2
i-x/2
2.ay § dfaeagll T <
=0 I.P
1/2
< c_(p,a,B)ltel + . inf {I1+h—;\0|1 / Iyl p+%1mp1= p}],
-3 1P pewPraeh L L

=g on 28

Proaf., This result is proved in [ 6, Teorema 5.3] and [5, Theorems 12.2-13.11,
1= 2 R
under the stronger assumption biE-C ©,eN%) .,

such assumption was necessary in order to apply the elliptic estimates of [3,4]

Proof.

i

which hold for all p€ ]1,={. But if we restrict p to be greaterthan n, it is easily

1
seen that the argument of [ 3,41 still works when b, is just inw’p: indeed,
i

encugh to make suitable modifications in {3, page 7031

shown in the Appendix helow.

it is

(sec alsa [4, page 77]) as

With the generalized versjion of the elliptic estimates at our disposal, in order to

get (2.4) and, consequently, unigueness, we just need to repesat the argument of [5,

Theorem 12.2]. Concerning existence, we first approximate thecesefficlents of B{:,D)

1 2
in the W 'p(Q,EN }—norm by more regular ones, and newxt, we Fimd (by { 6, Teorema

5.3]) the corresponding solutions; finally, we note that, due to{2.4), such sclu-

2 N
tions converge in W 'p(Q,G ) to a solution of (2.3), as it is easily seen, R

Consider now the evolution problem

du
5;'~ A{+,DJu = £ in [0,T1x&,
(2.5) B{+,Dju = g in [o,TIxsg,
uf{0,+) = o in

with &,B defined by (2.1),(2.2) and satisfying (0.5) uniformlyhlﬁ; We have:

-~

N 1
THEOREN 2.2. Fix pem, 0€]0,1/2. 1£ g€ co,7],fa,c ), g€ <o, Tl W
Cot+1/2

o do.r1,iP @, d"y, ¢ w P,y

)

N
.o

and in addition the comptibility conditions

N
(2.6) B(+,Dlg=g{0,+) on 3&, B+ ,DIg+E{0,~) € Bia”?m,m )

u 2 N
are fulfilled, then problem {2.5) has a unigue solution w€ c (B, T],w ‘Fig,¢ )

a1 N
nec {[O,T],Lp(ﬂ,m }); morecver there exists c4>0, depending wm p,6,4,B, such that:

(2.7)  lal Hhuth < c4{p,c¢,A,B)[![qJ“

. . +£¢0, )0 +0al,Djg+E (00
P raa P w P P

L B

o

+[£] +{gl +ig]l 1.
P Py R

1.41. =

One can repeat the arguments of [B] using Theorem 2.1 imstead of [ 8, Theorem



Next, let us recall the following imbedding property:

(0.2), (0.3):
PROPOSITION 2.3. Let pon, af 10,172 [. Then we have the continucus imbeddings : !
EFROPUS LMD etk

| 2, M
Cu+1/2 €0, Wl'P(ﬂ IIN)) LEMMA 2.5. Bssume (0.4). Let v& cu([O,T].«w Pm_’c iBIa!
[ ’ . o+l N
. U & goanafe ) witn el e Ivb < M, and intvoduce the
N e = ' o . a P,
EhoratPadnd™ forh e | e rhe @e)) vos 10,120/l o & By k)
" — N notations:
S o,ml,c@,e0) veeio, 1-n/2n Dotesiers
. A 2
Proof. The first inclusien follows by interpelation. concerning the others, inter-— 2{t,s,x,v) =H{t, s, x,viv{t,y) ,Dvit,yyivis,x), Dvis,x),D vis,x)ivis,y),
' 2
.polation yields : pvis,y) D (s,v1},
W
2 N +1 N 2(1-y) N . ¥(t,s, 5,7} =Kt 5,%,v:viE,y) ,Dvit,y)rvis,x),Dvis, x)svis, ¥}, Dvis, vl .
Eqoonet P, d e (o1 P wa e T do,rLe Y Pe,e) e e ¥ RSy B

[=)

€ -, - .
vyelo, 1, y#i-o Then there exists o >0, devending on  M,0, such that:

and the results follow by Sobolev's Theorem. E
c6 (M,0)nlt—s)* (t—s)uul if there are no derivatives in t,
We conclude this section with an estimate of the growth of the nonlinearities . o [DYH(t,s,x,y)[ = ]
appearing in problem {0,1) in terms of the growth of the unknown fumction u. ‘ CS(M,ﬁ)n(t—s)- (t-S)u—2 if there is one derivative in t at mest.

o 2,9 N atl P N .
€ th
LEMMA 2.4. BAssume (0.4). Let vEC qo,7Lw P, e do, Tl LG, ) W provided ly| < 2, and

h + :
1wl N +Hwl a < M, and for any function f£:4 -+ € (where hE N and A is
Fw BT ST e -1/2

a
cslM,a)n(tvs)- {t-s) if there are no derivatives in t,

~

i i 4
defined in (0.4)) set !DYK(t,s,x,y)i <

o tmainte—s)e (s % LiE th i deri tive ia t at
L - A, —s) " (t- i ) a ‘most
Tie,x) := Ele,x,vwit,x),Dvic,x)} . tF fo,r1, x€ &. 5 # ere 1s one derivative in © 2E W8T

. : provided |y| < 2.
Then if ]J‘Jr is any derivative with respect to the variables {t,x,u,p} €A, there exists P 1 l =

c5>0, depending en M, such that Proof. Completely straightforward. L}

— n — ——
Y

3 I Elh — + Inp'a I — + ip ek —

| %<2 e 0,T1x) | %Q . 2_1 i3 ([ 0,7 e | z|<3 cio,TIx2)

] = vi<2z 1i,3= ¥ 3. PROOF OF THEOREM 1.1.
2
+ 7 ip'sl e 25 ™). 3.A. LOCAL EXISTENCE
byl<1 cfo,Ti,w ™}

N ¥ix p& in,«[. Consider the Banach space
Prool. Quite easy. = .

{3.1) E D‘T’==Cu([O,Tl,wz’Pm,mNnnc“ﬂ([D,Ti,LPm,an

- .

A similar result holds for the integrands H,K of the functionals I,J defined in
with its obviocus norm; we also introduce
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2
(3.2} [u]g () = [u'l +{pul «
[+4
o, cL C (LP)
For each g€ B(wO,NU,rO) {see (1.1)) and M>0 set:
3.3 1= <E Ty : vi0,-t=gp, lv-qf < M},
(3.3) BM,a,p,T,;p {v€ Cc,p( ) P k=g LA }
o,p
We linearize problem (0.1} by considering, fox fixed vE€ B , the problem:
M,0,p,T.0
au ¥ x h
- Y A (0.x00(0),De) DD u (Ex)=F. (£,%)
ot A . i 13 Vi@
i, j=1 k=1

in [0,T1xQ,h=1,...,N,
h h

(3.4} w {0, x}=p (x) in @, h=1,...,N,

I

N h
3B k
z E P (0,x%,¢[x},Dp{x))D u (1:,)C)=Gh
i=1 k=1 %P1 : * M

(t,x) in [0,71%3@, h=l,...,N,
]

r

where:

(3.8} F (£, x}r=F{t, x,v{t,x), Dvit,x))
Vel

n
- ) 2 ,0,x,00x},00(x))-A_  (t,x,v(t,x),Dv(t,x)}]1-D D vit,x)
i4=1 3 i3 i3

+ It x,v),

Ve

B
(3.6} G {t,x):= E fpﬁ(O,x,cn(x),Dqs(x))-Div(t,x)-B{t,x.vtt,x),DV(t,X)HJ(t.x,V).

i=t i

In order to -ap_ply Theorem 2.2, we nesd the foliowing lemmas, whose proofs will be

giwven in Section 4.

LEMMA 3.1. Assume (0.4), (0.5}, and let g€ B(@O,No,rg)_ There exists a continuous,

non-decreasing function By (t), 0, with By (0}=0, such that for each x>0 and

vE R with Hvl < K we have:
K,0,p,T,p =~ E _(T) — s

(s3]

(r 1 +[g 1] +{e 1 < e (Kws_ (T).
: R . + - -
V,Q cu(Lp) v, Cu(wl,p) v,.q Co: 1‘/2(139) 7 8]

LEMME 3.2. Assume (0.4), (0.5), and 1=t o,%% E(p ,r. ). There exists a continuous,

N
S (R ]
non—decreasing function wl (), \‘:iO, with ml(ﬂ):o, such that for each k>0 and

= i 1 %] < K we have
v= with lv E (m’ T E -

wE B
P pi Ty’ K00, 4 - o'
F - 1 +ie - ¢] o, 1 * [Gv q)“Gw,zls] oatlf/2, p. —
vep W et ) veg v o Lep) . c )
< cacm{llc;:—\pﬂ 2.p * w (T fv-wl, m}
w v

By Lemma 3.1, the data of problem (3.4) satisfy:

2 2
- N 38 1.p N
A (0,-,e, D ECERE Y, T (O.-,0DglEW S,c ),
13 3pi

a+l/2

i, N P N
r efqo,rnifee . s ecttorlw Pe.onnd do,rl,iF@.e ),

v, 0 e

2, N
sew Fa,co,

and the compatibility conditions
20,p N
(2.7 B(O,-,5.09) = 0 on 30, gio,p €8 TR,C)

hold. Hence, Theorem 2.2 implies the existence of 2 unique solution u=:S(v} of

problem” (3.4), beloging to the space Ecl {T).

D3

Conseguently i - y is the unigue solution of the problem

n
n
= 5 . . = + A (0,+,p,Pp)*D D ¢ in [C, T4,
- A, . (0,+,4,P9)*D D w =F } B (0,
i3 i vy o, n_, 4] 13
R Y J i,3=1
(3.8) wid,+}y =0 in &,

n n .
3B 3B . x
= . . = - +,0,Dg)D in [0,Tlx3G
{ {0, ,0,Dy) Diw Gv o g (Q,7,9.D9) ifD - r

o
. P
i=1 "1 i

1 Py
and by (2.7, (3.5), {3.6), (1.2} the following estimate holds:

3,97 Jwsly < e (ma iyl )

2,
, {T} w'P
Y.
{kg (0, 1 +f{Fr 1 H6 1 a1 12
® g29-F vie D) Vel By VR 8 /2.7,
Hence, if we set R:=¢_(p,a,lgl 1 lpio, et and choose K*R, we get by Lemma
’ 7 WZ,Q EZu,p

Y

3.1:
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{3.10) Is{v)-al < R +
g om = Cg tIug 1T),
EE,P
where ,wO{T)+0 as  T40.
N i 3 =
ext, if v,w BM,a,pf¢;T and h:=5(v)-S{w), then h solves the problem:
ah E A (o
. L. =;9DelD b h =F -F i 0
3t 5o 13 ! i3 V.0 weg O Lol ,
(3.11) hi{0,-) =0 in &,
n
¥ % o ®.D8)-D_D.h
fte@,BR)-D DR =G -G in 0,7ixq ,
i=1 Bpi i V¢ W, { !

and again (2.7}, (3.5), (3.6} vield:

(3.12)  Istwy-sqnl
E (T)

< Cg(p,u,ﬂ¢ﬂ ) )
&,p W

2%

{r -r ] +{G -g ] [

v vle -6 ] 1.
9w, » P i

¢ i Ve o top, Vem Weg @vl/2 o

thius by Lemma 3.2 we obtain:

{3.13) ks(wi-siwnl -
o - ) £~C10(K)w1(T) I wHE o)
e.p o, p

-~

vhers @ (T)40 as T40.

Hence if T=:1 is small enougii, the contraction principle is applicable and we get

a unigque solution s, of problem {0.1) in [0,1], belonging te the class E {1). This
. . a!p
Proves the first assertion of Theorenm 1.%1; note that T depends on ¢ _,N s, 0,0, bat
= MU R R
not on o€ B(y ,N_,
20y ro).

3.B CONTINUOUS DEPENDENCE ON THE INITIAL DATOM

Next, fix ¢,(€ B{qo,No,ro) and consider the Aifference wvi=u —u

n Redefine by F .G
] ‘ L
the functions (3.5), (3.8) (which depend in fact on u and g9)}: then v sglves:
) ' ’
n

3v

A . . @Y

= ;ﬁl A 10, .0,De} DDy =¥ in [0,71#0, v(©,)=p-¢ in 0,
(3.12) a =

I 22 0, a0y =t
) P $t.0,09) D, v =@ in [0,1ixm ,
i=1 by

..]_3_
where
q) n
o,
= - A _{0,-,9,D9)-A_  (0,",0,D$)-D D0 ,

(3.15) F = FE, E i o4 v/DO)-B, Nt 5%,

N i,3=1

P 3B

3.160 67Y i= g6 - T = (0,0,9,00- (0,+,4,D¢))-D

e ¢ .o ey 3p, i

it is emsy to warify that the compatibility conditiens (3.7} hold. Concerning the

F¢.¢' 9. d

regularity of G , we have:

LEMMA 3.3. assume (0.4), (0.5} and let g,0€ B(@B,No,rg). Then we have:

15 Y0, 00 - e o, . j,cll(pr,¢0,rO)“¢—¢E ap
LP W +B W B

7.0 @b o,

(771 +[6 "] + [
1 i/2
<k Cw QM2 Py
I gl - -4
< clgip,u,M,uO,rO){ i 2 5 + [urp u$]E (13 uz(T)} B

W a.p

where wztt), tiQ . is a nen-decreasing continuous function with mZ(O)zO.

proof. Easy cgpseguences of (3.15), {3.16), {3.5), (3.6) and Lemma 3.2. b

By (2.7} and lemma 3.3 we easily get:

lu -n b
¢ % E (T}
o,D

< Clz(p.urﬁf@G:IO)

* {lg-gh + k010, 9)-00,¢! +w (1) fu ~u ]
= 2 2 E ()
WP g2 P s ¢ o
so that, possibly taking a smaller T, we deduce (1.3), Thus we have shown continuous

dependence on 9 of the local solution um of problem {0.1).

3.C HIGHER REGULARITY
2 — N 2c — N . =
Suppose finally that of C (R,€¢ ] and Q(0.g¢} € C {Q,CT ), and Iix 5€30,c] . Then for

each p €] Ezzng—,m [ we ¢an apply the preceding theory, obtaining a local sclution

u:=u€E {7}, where T depends on p. Now we have by Proposition 2.3 {with
G

g =1/2 +6-a, 8 = 1+6-a):
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1= N - &+ — N
wer im0 dad e ol e@e .
ap

2 8 o it i ee that
Conseguently we have -— EC ({0, T},CciR,C )}; moreover it is easy to sse a

- & - N
tt,x) + Flt,x,ult,x),Duit,x)) + Tlexw€c (0, Tlcia &0,

n
so that, by difference, we get {t,x} > z Alj(t,x,u(t,x),Du(t,x))-DiDju(t,x)
]

$ - N
o,rl,ci,c ).

- The proof of Theorem 1.1 is complete. =

¢

4. PROCF OF LEMMAS 3.1-3.2.

proof of Lemma 3.1. Fix 0<t<t<T and set fox £€10,11:

PE 1= h'+g(t—-r),x,v(T,x}+£(v(t,x)~v(T,x)),Dv(r,XHE(Dv(t.X)-Dv(r,x))).
T r= (0,%,0(x),Dpx})
QE .= ('r-l-i(t—T),s,x,y;v('c,y)-!-E(v(t.y}—v('t,y)).DV(T,y)+€(DV(LY’*D’V(T:Y))?
2
'V{s,x),Dv(s,xJ.Dzv(s,x);U(s,y\,Dv[s,y),D vis,v)l.

-

The recalling {3.5) we can write:

1
a
a1 MF  te,)-F (.1t <} [ —F(P )aEl
(e-1 v, 9 v, 0 P~ Df at £ P
1 4 n '
- <. oY — (DD vit,«)+E(D,D vit,*)-D D vir, =} }) 14
IIJdE[_Z (Aij(P)Aij(PEH(ijVT FERALS iPs §
Q i.j=1
i
+ 1 [ g yayast
T @ L
T 1
- ] =1 + I+ L, -
+ lle Dj ¢ Ho, ) ctdyds » 14T, T, T,

Now recalling Proposition 2.3 and Lemmas 2.4-

1
BF 3F aF . i
= - - (- — - sy -viT, - (& )+ {Dvit, ") -Dvi{T, "} 1k
(4.2} 1 —Uoj' { (PE) (1) o) (vl el mule, o) s o0 2y v S

2
<m0

2.5, we have {provided G€10,1/2-n/200 3

n CES. an .

. ! - ‘_::,. - J .
4.3 1 ii§ T+ (B )= ({8, =) vt 1) — 2y

(DV{t, )} -DviT, =)} }+{D D v{T,*)+£(D D v(t,*)=D D v(r;=))}}del
i3 i3 i] -

1 L

n
£ 8 1V { qn (®)-m_ _{B )i:{D D v(t,r)-D_ RIS ,+))agl
3 i3 i3k i 3 P

1,3=t @ ]

| A

) [ -1 4 (e 6, (711,

t
-1 2
< et | [inte-s) (e-5)% [1+\02v(s,-){+|D__v(s_,-y)Hli ovds
T R Y L

fN
i
H
A

[a

c(K){t—r)u mO(T);

finally conecerning I4 we write

T 1 ’ ' '
te.5y 1, = [ {—(Q )(H}+S%~(Q€1-<v(t yi-viT, y))T T(QE]
0 Qo 1 s R
+ (Dv(t,y)-DviT,y)) FdEdydsl
L ‘ .

L s - . . . . wtl/2 -
and all integrzls but.the first are easily estimated by oK) {t-T) . The first
one needs some care: it does not exceed .

_ T 1 2 T t-T a2
(.8 pmdEy [ f (ressfle—viy C(e-vVafds=n () c(x} [ | (B+e) dpdo
o @ ' B I :
< niE etk (-
Hence recalling {4.1),...,(4.9) we aet the.estimate for [F i
‘ o PR v, CQ(LP]

The estimates £or GV can be obtained similarly: indeed, setting

(F+E(t-T) 5, x,y,v(r,y]+£(v(t ) - v(r y)) Dv(I,y)+E(Dv(t,y) Dv(T,y))‘

v(s,x) Dv(s x} v(s,y) Dv(s,y)J.

we fave:

(4.7 & (t,x}-G  (1,%) = (B} {D_v(t,x}-D vit,x})
Ve veq i i

r



EL: 83 (1m0 + 22 (@3- (Ovit,=)-Dv(T,x) ) 188
- Oj (;:'(P y{e-T) a‘ﬂ'(?g%(v(t,x)ﬂv T,X P £ . .

€ .
+ [ xtrpyayds
T 38

‘ jl (2 s TR - (v ) v iT,y) )+ SR, )+ (DY R, y)-Dv (T,y) ) FaLdyas
« [ ac g aa € ‘ 0k

0 300

=7 4+ T_ +T_+ 7T .
1 2 3 4

Now we need to rewrite T1+T2 as:

1
ey mor = [ G2 E- 22 (p )y (ovE,x-DviT,K)HaE
i 0 ip ap &

1
3
. Oj [:—ii ) (emt) + a—ﬁ R SR

and it is easy to see that

a+1/2
4.9y . ||T1+T2“ + RTSI! = ) w, (T (-1} :
P LP
the same haolds for the integrals appearing in T4

D
whose L7 -norm does not excesd

T 1
a-3/ +1/2
(4.10) mnimiey [ [ (r-s+git-th) .
0

8}

2 a
{t-T)dkds < n(T} ciK) (t-7}

Thus we gat the estimate for IGVIW]CG+1/2(LP)'

- . P t G .
Finally, in order to estimate { V-@]Cﬂ(wlop)

raspect to x} of {4.7), and treat each term as before: more precisely,

we evaluate rhe gradient (with

the fizrst

integral in T, generates some terams needing an estimate like (4.6}, whareas the

4

2 2 . . 3
two terms containing D wv{t,x)-D vit,x), which arise from T1 and from the last

integral in T2, have to be coupled together; the result is

- 2 2
T2 & - 22 e movie,m-p vin,x) &,
o % e &

,with the only exception of the first,

- 17 =

. P . ; o
whose L -norm can be easily estimated by e(X) UJG (T} (£-T) . The remaininag terms can
also be estimated, tediously but easily, by the same guantity.

This shows that the estimate for [Gv 1 is true. The proef of Lemma 3.1 is
g

now complete.
Proof of Lemma 3.2. Fix O0<t<t<T and set for £, n€l0,1}:

b2l
W) rmv (A v (e, v e, k) 1, W (x) smw (T, 33 4n w it xl v (T,x) ],

2 o) imw () 2 v el -w (o)
ng

Sg(s,x) s=wils, X+ bvls,x)~wis,x) ],
.:E:=(G,x,¢(x)+£(@(x)—¢(x) } e D 20} + (D () =D {x} 1) 4

r={tin{t-1},x,z _{(x),Dz _{x}]
ng n

P
ng £

2
i={t+n{t-t),s,x,y; -T).¥) . =T}V EFE B x);
nt n S,%, Y BE(ﬁ-n(t 1),y DBE(Hn(t T,y E‘g( x} DBE(S x},D BE(S.‘O‘

BE(s,y),DBE(S,y),D2B€(s,y)).

Then a very t2dious calculation shows that:

(4.11) F (t,*)=-F {t,=)-F  (t,*}+F {1,+M
i ] Wl

Vi@ Wt v, R B
o
N .
=0 fi—=F (t,*) -~ —— F . 1
J e Tt e et 0w a8 Fuag tmnpeg oy TS o
1
4 ;[ 8F n_n 3% n_n
< b — (B ) - = . — scdnl
= Df a Dj fon® ) =)+ (R (o D) Jagdn
L
i a H n aAij aA'j .
40— 7 1 - gt -~ 2w
o an 0 i,j=1 gu 3 3u ng
aAij 3a
= i3 n n
* (P_) = (Dy-Dy) - P <{Dv -Dw )}- dnl
ap T o-Di P # nf;) {Dv 1t DiDjan dgdn >
1 a ] n _
s 20T A - ® 110D v'-p b whatan!
L 1,4=1 ij & ij ng i3 13 .

I,



Zlo

1 a f T
+ 0 -
J’ an 4 ! é

H(g _ldydsaganl
. QHE ydsd&dn .

I

no particolax problems (except for lenght and bore!) arise in estimating each tezm;
we just nzed some care for the last one, since it generates, among others, several
terms containing second crder derivatives of H, with one derivative with xespect to

£: for instance, the first of such terms is

2

1 1 2%u
=

(@, )" (E=D) v ) dydsdEdy

0o 0 0 3t ul

all such terms can pe estimated as in (4.6} .

Thus we easily arrive to the estimate for [P -F

v wed o
9 A (LP)

. m_Gw o are similar in nature and we omit their proof for the
. »

sake of brevity. We only remark that, analogously to the proofs above, we nesd Lo

The estimates for &

couple together suitably the terms which contain derivatives of w,w "of maximal
order” {i.e. terms containing DV(t,x)—Dw(t,X)—DV(T,x)+DW(T,X) for the estimate in
thea v%‘P—norm,and terms containing Dzv(t,x)gD2w(t,x)~D2v(T.x)+D2w(t,x) foxr the
estimaté in the LP-norm); moreover some other tarms of integrodifferential type.
containing ones time derivative of the integrand K, have to be treated as I1n {4.8),
(4.10).

This concludes the proof of Lemma 3.2. =

APPENDIX

This short appendix is devoted to the proof of the slight refinement of [3]., which

E

= referred to in the proof of Thecrem 2.1.
We Follow the notations of [3, pages 702-703]. Let p>n and assume that the coef-
ficients of the boundary operators B, beleng to Wi_mj'P(E), with norms bounded

J

—a—1 =
371y, se

by k. Due to Sobolev's Theorem, the coefficients of B, alsc belong to Cl
3

that the oscillation in Zr of their (1—mj—1)—th order derivatives does not exceed

w(r), where w{R)+0 as R¥0. Cur goal is the proof of [ 3, Thecren 15.1]1 under the

above weaker assumptions.

It is sufficient to remark that

- 19 -

I (E{(O.—DJ—BE(x;D)—B'}(x;Dnu(x,t:H < olxful s (ryliul I
b 3 b - -1 3

f-my, -
W Ty P W P W B
hence we obtain that [ 3, formula (15,3)']7 still holds with =z replaced by wilr).

The remaining part of the proof does not need any change. n
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