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§ 0. Introduction

This paper is concerned with the characterization of certain real interpolation
spaces between the domain of an elliptic differential operator A4, with general
boundary conditions, and the Banach space E of continuous functions in which
the domain is imbedded.

The interpolation spaces considered here are the classes (D4, E), ,, intro-
duced by Lions (see Lions-Peetre [14]) and the “continuous interpolation
spaces” (D4, E), defined by Da Prato-Grisvard [9]; however, following Grisvard
[11], we denote such spaces respectively by D (6, co) and D ,(0) (where 6=1—a),
and introduce them by means of an abstract characterization (see Definition 2.1
below) which is valid under suitable hypotheses concerning the behaviour of
the resolvent operator (A— A)™ L.

Such assumptions are satisfied when, in particular, 4 is the infinitesimal
generator of an analytic semigroup. In this situation, the spaces D ,(6, oc) and
D () are of great importance in the theory of abstract evolution equations,
because of their “maximal regularity” property. Maximal regularity means the
following: if f is continuous with values in a Banach space Y, then the evolution
problem

u()—Au@®)=f(@), te[0,T]; u(0)=0

has a unique C'-solution u such that ' and Au are continuous with values
in Y. This property is not true in a general Banach space Y (see Baillon [8]),
but it holds when Y=D ,(6), where A is the infinitesimal generator of an analytic
semigroup in some other Banach space E. Note that we cannot replace D 4(6)
by D,(0, o) (see Da Prato-Grisvard [9]); however a similar property holds
for D (6, o) (with 4 as before), i.e. if f is continuous with values in E and
bounded with values in D,(f, ), then the same is true for v’ and Au. For
a proof of these facts see Sinestrari [18].

Thus when A generates an analytic semigroup the spaces D 4(6, o) and D ,(0)
have been estensively used in the theory of abstract parabolic equations, in
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order to obtain existence and sharp regularity results (see, among others [1,
2,4,9,11, 13, 16, 17, 18]. On the other hand in concrete situations the abstract
regularity results have to be interpreted, and this in turn requires the character-
ization of these spaces in such concrete cases. Now, when E=IF(Q) and 4
=A(", D) is an elliptic operator of order 2m, whose domain is determined by
a set of m general boundary differential operators {B;(-, D)};<;<, satisfying
the usual assumptions (Agmon [6]), the spaces D 4(0, o) and D ,(6) are known
to be the functions f belonging to the Besov-Nikolskii spaces B2™(Q2) and
h2m9(Q) which satisfy B(+, D) f=0 on 0Q whenever it makes sense ([11, 9]).
Here we treat instead the case E=C(Q), and we obtain as D (6, c0) and D 4(0)
the functions of the Holder and “little Holder” classes C2™%(Q) and h?*™%(Q)
which satisty, as before, the boundary conditions whenever they are meaningful.

Let us conclude with the description of the subject of the next sections.
Section 1 is devoted to preliminaries; in Sect. 2 we state our main result, which
is proved in Sects. 3 and 4; finally Sect. 5 contains some remarks and generaliza-
tions.

§ 1. Notations, Assumptions and Preliminary Results

If 8, yeIN" and zeC", n=1 we set as usual

n

Bl=Y B Bu=T1A (”):n (ﬁ) P ] 2b
i=1 i=1 /o= \Vi i=1
18l
oxhr ... Oxbn’
Let 2 be an open set of R*; we list now some Banach spaces which will
be used throughout. If keIN and a>0, x¢ N, we set:

whereas D stands for

CK(Q)={f: @ > C: D*f is uniformly continuous and bounded V fcN"
with || Sk}

C*(Q)={fe C"(Q): D*f is (x— [«])-Holder continuous and bounded Y feN"
with | B =[]},

where [o] is the greatest integer less than a. The spaces C*(€2), C*(Q) are endowed
with the norms

HfHCk(Q)‘: z HDﬁfHCO(Q)» Nf“ox(s‘z)‘:Hf”cmum‘*‘ Z [Dﬁf]ca—[ml(fz),

1Bl =k [8]=1a]

where |* |com and, for €10, 1[, [*Jcn@) are the usual sup-norm and Holder-
seminorm:

18()—50)]

leleo=supllg @l xe @), Lelonay—sup { £ 5D x yeld x ).

If k=0, we write simply C (&) instead of C°(Q).
The spaces C¥(8Q), ke, are defined similarly, clearly involving only tangen-
tial derivatives.
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If x,eQ, the open ball of center x, and radius r is denoted by B(x,, r).
We set

(1.1) Q(xq, :=0NB(xp,7), xo6Q, r>0.

If >0 and a¢ N we also set

1.2) W(Q)={ feC*(@Q): lim sup [D*fTcu-tagmry=0 ¥ BN
r—=0+ x0ef?
with |f|=[a]};
thus if «€]0, 1[ we have geh*(Q) if and only if
lim sup {!_g_(i):g_iy)_l x, yeQd, 0<|x~y]<r}=0.
ro0+ Ix—yl

The space h*(Q) is a closed subspace of C*(2), and hence it is a Banach space
with the norm of C*(Q). We also need the usual Sobolev spaces: if fe[1, co[,
keIN™, we set

Ir(Q):={f: Q- C: f is measurable and p-integrable},
WEP(Q):={ feI?(Q): Df fe I (Q) Ve N" with | 3| <k}
(here the derivatives are in the sense of distributions), with the obvious norms

1f lLo@={J 1S P dx}', || flwewen={ X [D’f Lo}

fa] <k

Let now @ be a bounded open set of R?, n=1, with boundary 62 of class
C?™ mz 1. We introduce the differential operators

(1.3) A@x, D)= Y ax)D% xeQ,
la] £ 2m
(1.4) Bj(x, D)= ) bj(x)DF, xedQ, j=1,...m
1Bl = m;

under the following assumptions:

(L5) a,eC(@Q), |a|<2m;  byeC?™ ™@Q), |fl<m; j=1,..,m

="Mjs
(uniform ellipticity). There exist n€[0, 2=[, v>0 such that

(1.6) v(EP"+2M<] Y ay(x) E—(—1)me 2™ Vxe@, VEeR”, VieR.

lal=2m

(root condition). If xed@, £eR", teR and (&, t)==(0, 0), (¢]v(x))=0 the
polynomial

(1.7) (- Y a)E+vx)—(—1menm

laj=2m
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has exactly m roots (; (x, &, t) with positive imaginary part (here v(x)
is the unit outward normal vector at x and (+|*) is the scalar product
in R").

(complementing condition). If xed®, £eR", teR and (¢, t)+(0,0),
(&}v(x))=0 the m polynomials

(1.8) {= 3 bpE+Lvx)f

181=m;
are linearly independent modulo the polynomial (see (1.7))
C_) H (C_C;— (xa éa t))
j=1
(normality) m;eN, j=1,...,m, 0=m;<m;£2m—11if j<i, and

(1.9) Y b v()f40  Vxed®, j=1,..,m.
1Bl=m;

Let A(:, D) and By(+, D) be defined by (1.3) and (1.4). Then we consider the
non-homogeneous problem

(1.10) Au—A(,D)u=f in Q,

B;(*,D)u=g; on dQ, j=1,...,m
with prescribed data f, g, ..., -
The following result is well known (Agmon [6]):
Theorem 1.1. Suppose that (1.5), ..., (1.9) hold. Then there exists 1,20 such that
if |A>Ay and argdl=n (n is defined in (1.6)) then for each feI?(Q) and

g=(gs, .-, gme [ W~ 1PP(8Q), pell, wof, problem (1.10) has a unique
j=1
solution ue W*™2(Q); moreover there exists M,>0 such that

2m

(L11) Y A=A |t | DEul gy

k=0

m  2m—m; 1_mﬁ—k
éM,,{Ilflin(g)+Z S Az 2 nD"gyuLP(m},
i=1 k=0

where g, is any function in W2m=mi2(Q) satisfying §;l,0=g;-

Proof. For the estimate sce e.g. Tanabe [21, Lemma 3.8.1]; a proof of existence
is in Triebel [22, Theorems 5.5.2-4.9.1). O

Theorem 1.1 is basic in order to get an estimate similar to (1.11) in C(Q).
Namely we have (Stewart [20]):

Theorem 1.2. Suppose that (1.5, ...,(1.9) hold. Then there exists A; =0 such that
if |A|> A, and arg A=n, then for each feC(Q) and g=(g,, ..., g€ || C*" ™ (09Q)

=1
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problem (1.10) has a unique solution ue ﬂ W2™P(Q); moreover for each p>n

there exists N, >0 such that pell, of
2m—1 * n

(1.12) Z |[A— 4, & *ﬁ”DkUHC(Q)"‘IHMP"’P sup ||D2m“HLp(Q(xD,M—AI|~1/2m))
k=0 x0ef2

m 2m—m; m.+k
J 1 TR -
=N, {“f”c@)‘l' Z Z [A=2,]" 2m ”DkngC(aQ)},
j=1 k=0
where §; is any function in C*™~"(Q) satisfying §;l,0=g;.
Proof. See the Appendix below. [J

We need two further basic results. The first is the well-known Sobolev’s

imbedding theorem, the second yields a method for extending functions defined
on subsets of R”.

Proposition 1.3. Suppose that Q is bounded and has Lipschitz boundary 0Q; let
g>n and a=1—n/q. Then W 4(Q)>h*(Q); moreover there exist K, K, >0 such
that for each x,€Q, r>0 and ue W*4(Q) we have:

@) “uHC(D(TO,_rT <K, r_n/q{||u”Lq(ﬂ(xo,r))+r “Du”L'J(Q(xo,r))}a
(ii) [VJCm(Q(xU,r))§K2 “Du“Lq(Q(xo,r))'
Proof. See e.g. Adams [5, Lemmata 5.15 and 5.17]. [

Proposition 1.4. (i) Let F be a closed set of R”, let keIN. There exists a mapping
E,: C(F)— C(R") such that

(@) E.(f)lr=f,

(0) 1E(M cxmmy =Ml f lcagry V f€C*(F), V[0, k],
where M, is independent of the closed set F and of «€[0, k].

(i) Let Q be a bounded open set with Lipschitz boundary 08. There exists
a mapping E: [} (Q) — L}*(R") such that

@) E(f)le=/

(b) ”E(f)”Wkuv(an)éMk,Q I £ Wk.p(0) Yfe Wk’p(Q), VkeN, Vpell, oof,
where M, g is independent of pe[1, ool.

Proof. Part (i) is due to Whitney; for a proof see Stein [19, Chap. VI, Sect. 2].
The result of (ii) goes back to Calderon, and is also proved in [19, Chap. VI,
Sect. 3]. O

We finish this section with the following

Definition 1.5. Let {B;(-, D)} be defined by (1.4). If pe[1, o[, k=0,1,...,2m
and a€]0, 2m] we set:

Wi P(Q):={ue W*?(Q): B;(-, D) u=0 on 0 for m;<k—1/p}
C3(Q):=={ue C*(Q): B;(*, D) u=0 on 0Q for m;<k}
5(2):=C*Q)n CI(Q),
h(Q):=h*(2) n CFI(Q).
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Remark 1.6. Let feC%(Q) and let m;<o. Then, if we extend, via Proposition 1.4,
the coefficients of Bj(+, D) to the whole @, we have B;(-, D) fe C*~™(£2). Hence
the condition B;(+, D) f=0 on 2 means in particular that

IB;(*, D) fleromy=0, r=0,1, ..., [a—m].

§ 2. The Main Result

Let E be a Banach space and let A: D,~<E—E be a closed linear operator
whose domain D, is possibly not dense in E. We assume that the resolvent
p(A) of A contains a fixed half-line R, ,:={zeC: arg z=n, |z| > w}; more precise-
ly, we suppose that there exist w =0, n€[0, 2z and M >0 such that:

M
2.1) p(A)2R, . IR, A)H_?(E)ém VzeR, ,;

here R(z, A):=(z— A)~!. By replacing possibly 4 with e'"(4 —w), it is not restric-
tive to assume, instead of (2.1), that:

M
22 p(A)2Ro,0=10, 0, [R(s, Dlym=— Vs>0.
Then in particular for se[1, co[ we have
[AR(s, A)x|g=Mlix|g  VxeE,
S|AR(s, A)x|g=M|xlp, VxeDy,

where ||+ |p, is the graph norm. Thus, following Grisvard [11], we are led to
define the intermediate spaces D 4(8, o) and D ,(9), 6€]0, 1[, by:

Definition 2.1. We set:

D ,(0, w):={xeE:sups’ |AR(s, A)x|p< o0},

sz1

D ,(6):={xeD (0, o0): lim s® | AR(s, 4)x||z=0}.

A norm in D (6, c0) is the following:
(2.3) Hx“DA(B,oo)::”xHE_‘-Sup s? NAR(s, A)yx||g.
s=1

Clearly D,~D ,(8)>D ,(8, ©)>D 4 (6)=>D, if 0<o<6O<1. Moreover D (o) is
a closed subspace of D ,(f, c0): indeed, it coincides with the closure of D, with
respect to the norm (2.3) (a proof is readily obtained by adapting that of [11,
Lemme 2.5]).

Proposition 2.2. D (0, «o) and D ,(0) are real interpolation spaces between D,
and E, namely:

DA(H’ OO)Z(DAbE)l——H,oo: DA(H):(DAaE)l—O'
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(For the precise definition and more properties of the spaces (D, E), ., see
Lions-Peetre [14] or Triebel [22]; for the spaces (D, E), see Da Prato-Grisvard

[%1)
Proof. See [11, Prop. 5.5] and [9, Théoréme 2.5]. [

After these preparations, we are ready to state our main result. Let Q be
a bounded open set of R*, n=1, with boundary 6Q of class C?™ m=1; let
A(+, D), {Bj(*, D)}, <j<m be the differential operators defined by (1.3), (1.4) and
suppose that (1.5), ..., (1.9) hold. If we set E=C({), by Theorem 1.2 the operator
A, defined by

D i={ue () W>™?(Q): A(-, D) ucC(Q), B;(-,D)u=00n 6Q, j=1, ..., m}

pz1

(24) Au=A(*, D)u

fulfills (2.1) for some w=0, ne[0, 2={ and M >0.
We will prove the following result:

Theorem 2.3. Let A be defined by (2.4) and suppose that (2.1) holds. If 0€]0, 1[
and 2m@ is not an integer, then

D 4(6, 0)=C5"(Q), D, (0)=hz"(Q),
with equivalence of norms.

(The spaces C3(f2) and h%(Q) were introduced in Definition 1.5.)
The proof of the first equality is contained in Sects. 3 and 4 below; the
proof of the second one is quite similar and will be sketched in Sect. 5.

§ 3. The First Inclasion

Let A be defined by (2.4) and suppose that (2.1) holds. Then, considering e'"(4
—w) in place of A, we can assume that (2.2) is true. Then we prove the following:

Theorem 3.1. If 610, 1[ and 2m8 is not an integer, then
CE"(Q)> D 4(6, o0).
Proof. 1t suffices to show that

CRY sup s° [ AR(s, A) fllc@ S C I f llcamoqy ¥ f€ CE™ ().

sz1

This will be done by constructing, for each fixed feC3™%(Q), a function w:
[1, co[-C(£) such that:

(3.2) Iw(s)—flc@=cs I flcimo V51
(3.3) IARGs, A w(S)lcay=c sl fllczmo  Vs21:

this will imply (3.1) since
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AR, A)f”c@)é | AR(s, A)H,Z’(C(Q))' “f_W(S)HC(Q)+ |AR(s, 4) W(S)HC(Q)
<es™? Hf”czme(f‘z)-
Let fe C3™(Q2), and consider an extension Fe C2™?(R") of f (Prop. 1.4(i)), satisfy-
ing
(3.4 HFHCZMG(]Rn)éC “fHC2"'9(]R")-
Define an auxiliary function vy: ]J0, 17— C(IR*) by
B9 t00=rolt 9= [ 9l Fe—12dz =17 | 6 (S2) Foan
where ¢eC*(R") is a real-valued function such that 0S¢ <1, ¢=0 outside
B(0,1), | ¢(z)dz=1, and ¢ is even in each variable.
Rn

We have the following lemma, whose proof is straightforward :

Lemma 3.2. (i) lim [|06(f)— F || c®m =0, i.c. v (0)=F,
t—=>0+
(i) voeC*(0, 1] xIR™ and

0" vy (t)
or*

sup
te]0,1]

éC HF”Ch(]Rn), h=0, 1, ceey [2m9] !

C(Rn)

Let us define now
2mo] h

"v
(3.6) () (X)=u(t, x):= Z (= 1F 5 %, x) AL te]0, 1], xelR™.

h=

Then clearly ve C*(J0, 1] x IR") and we have the following result:

Lemma 3.3. For each t€]0, 1] we have:
@ lv@)—=Flicen=<ct*™ | Fllczmogn
(i) [D? v()~D?Flicmn=c t*™* V| F|comomn VyEN" with |y]| < [2m6)]
(i) DY o(®)lic@n=<ct V172" F|| camoqem Yy EN" with [y|>2m6.
o .
Proof. (i) Let us compute a—:ho (t) for h<[2m0]: it is easily seen that

(3.7) %—;’T"(r X={ ¢ ¥ D F(x—tz)(—2) Z' z
B {fl=h
and consequently
B F(x—
o6, 9= [ ¢ Y DPF(x=t2) 4y,
R»n

181 <[2m8] p!
On the other hand for each zeRR" and €70, 1] we have by Taylor’s formula
DPF(x—t
Fo= Y DUF(x—t2) 4y Y

!
|81 <[2m8] ﬂ [B]1=[2m6]

D_F_(é_) zB {L2m8]
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where £=¢£(t, z, x) is a suitable point in the segment joining x and x —¢z; hence
we get

B F(x—
o(t, )~ F(x)= | (,‘b(z){ y D, t'ﬁ'—F(x)} dz
R=» 181 =[2m8] B
ZB 12ml
=[¢( ) I[D'F(x—tz)—D*F(d)] dz
Rn [Bl=[2m0] p!
and finally
||U(t)_FHC(]Rn)§C j 4)(2) |Z|2m9 t2m0 dZ Z [DﬂF:Iczme—[Zme](]Rn)

R» [B]=[2m6]

Sc 2™ |[F | camoggr) -

" 0o (2)
ot

0
(i) Fix yeIN" with |y|<[2m6] and compute D?
lv|+h=Z[2m0], by (3.7) we get:

for h=[2m8]. If

" vy(2, x) +y
g = fnd) )Imth” F(x—tz)(— z)”ﬁ'

if |y]+h<[2m0].

(3.8) D’

On the other hand if |y|+A>2m8 we choose y,, y,cIN" such that

pil=02mb]—h, |y2l=Iy|—[2m0]+h,  y +y,=7;
note that |y,|= 1. Hence using (3.8) we can write

v v
D 7{,13 (t, x)=D (D“ ,,0

. x))

~D72(j ¢z > D" F(x—tz)(— z)/’—dz)

n |81=h B!
L LA

D D““F(y)ﬁ—[D”(tﬁ(é)( O g—zz2 -t dy

Rn |gl=h

=¢ Il j Z D&tn F(x—tz)%D“@(z)(—z)ﬂ dz,

R |B|=h

and, since | D2(¢(z)(—2)") dz=0, we obtain
R~

ah
D' 7 > (1, x)=1" 11" “'""”"’RI IﬁIZh[D’”“F(x—tz) DF+ 1 F(x)]

1 DG E-2) dz:
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this implies

oMtv
(3.9) ‘ DY a—t;) (®)

C(R®)

éct—(lvl‘[2m0]+h) z [DﬂF]CZM‘%[ZmB](R") t2mo—12mé]
[B1=[2m6]

Sct”WHHR=2mO Bl oy, i [p]+h>2m0.

Now by (3.6) we have:

12mol -7l 0" v,

th
Y, (1D () = D'F

h=0

ID” v(t) —D"F |l cmm =

C(Rn)

[2m8] ah Vo h

Y -y SRoLn

h=[2m6]—|y|+1

+ :Il+12‘

C{R")

We estimate I, as in (i), by using (3.8) and Taylor’s formula for D F of order
[2mO]—|y|—1, centered at x —tz:

D'""EF(x—t

I = §¢(Z)[ Y ~—('x—zlzﬂt'ﬁ'—D?F(x)]dz

Rr 18] <12m01— |5 v Ry

7

= fé@ ¥ DFx—tz)-DPFE] 21 dz

Rn 18] =[2m0]1—{7]| v CR7
§C Z [DBF]C2m9—[2mG](Rn) t2m6—|y| éC t2m04|y[ HFHCZmB(Rn) .

181=12m86]

In order to estimate I, we just use (3.9):
0" vy
y___ ¥

D a ®)

[2m0]

Y

h=[2m0]—|y|+1

th
—=c t2m9~|y| HFHCZmQ(]Rn) .

I,
C(Rn) h'

A

This we obtain
DY v(t)— D7 Flleqn<Iy +1, £c t*™ " Fl| comoy »

and (i) follows.
(iii) Let yeIN" be such that |y|=2m#6. By using again (3.9) we have:

[2mo] " v, o
| D7 U(t)”cakn)§ Z D? h ® —'éc ¢~ 71=2mo) HF”CZ'"@(]R"):
h=0 5t cRnm) N

and the proof is complete. []

The desired function w: [1, co[—C(Q) satisfying (3.2) and (3.3) is now
(3.10) w(s)(x)=w(s, x)=0v(s"12™ x), 521, xeQ;

its main properties are summarized as follows:
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Corollary 3.4. We have:
(i) weC=([1, o[ x Q),

(@) [wE~Slea=cs I flcmoa
(iii) | D" w(s)—Dfllc@=cs™ T2l f | camogq) ¥y EN"
with |y| S [2m#],
(i) ID" w)lle@=c s fllcamo Yy EN" with || >2mé.

Proof. It is an immediate consequence of (3.4) and Lemma 3.3. [
By Corollary 3.4(ii) we have shown (3.2). Concerning (3.3) we set:

(3.11) u(s):==sR(s, A) w(s), s=1,

and observe that

(3.12) AR(s, Ay w(s)=u(s)—w(s), s=1.

Now u(s) satisfies:

u(s)e () W™r(Q)

pz1
su(s, x)+[Ao— A(x, D)] u(s, x)=sw(s, x) in Q,
Bj(x, D) u(s, x)=0, j=1,...,m, on 0Q.
Hence u(s)—w(s) is the unique solution of:

u(s)—w(s)e () Wm™r(Q),

sLu(s, x)—w(s, x)]+[Ao— A (x, D)][u(s, x)—w(s, x)]
=[A(x, D)—Ao] w(s, x) in Q
Bj(x, D)[u(s, x)—w(s, x)]= —B;(x, D) w(s, x), j=1,...,m, on 0Q.
Thus by Theorem 1.2 we obtain:

(3.13) lu(s)—ws)le@m=cs™HILA(:, D)= Aol w(9)lc@
m 2m—m;  m+k

+e)y X s 2m [ B;(-, D) w(s)l cxiom
=1 k=0

= Jl 'l“ JZ .
We estimate J, by using Corollary 3.4(iii}{(iv) and recalling that s>1:
(3.14) Jiges™ ) IDFw(s)le@

1Bl<2m

2Zm

gcs—l{u Y s“'/z'"*"} 1 comocay

h=[2mo]+1

=c 570 ”f”chB(fz) .
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To estimate J, we split it into three terms. Set

Jor=max{j<m:m;<2mb};
then

Jo [2mBl—m; 2m—my 2m—my
RS N I e
j=1 Jj=1 k=[2m8l—-m;+1 j=jo+t1 k=0
IB;(+, D) w(S)llcxomy=J21 +Ja2 + 235
now by Corollary 3.4(iii)(iv) we get

2m—m;

(3.16) Jy,= Z 2 s~ myr Ry 2m {w(s)llch+mjpayScs™ Hf”chnﬂ((z) )

J=1 k=[2m8]l-m;+1
and similarly

2m—m;  m+k

(3.17) Jrz=c z Z s m [w(s )|\ck+m1(aﬂ)<cs Hf”czme(fzy

i=jo+t1l k&

Finally, concerning J,; we use Remark 1.6 and Corollary 3.4(iii), obtaining
Jo [2mOi—m;

(3.18) o= Z Z I1B;(+, DY[w($)—f 1l cv o)
k=0

j=1

Jjo [2m@]—m;
§CZ Z HW(S)_chk'*mJ‘(m)éCS_o“f“cme(s‘z)-

Collecting (3.13), ..., (3.18) we get

llu(s)— W(S)HC(Q) <cs™? I f HCZmG(fz)

and recalling (3.12) we have proved (3.3).
As (3.1) follows by (3.2) and (3.3), the proof of Theorem 3.1 is complete. [

§ 4. The Second Inclusion
Again, let A be defined by (2.4) and, after the usual modifications, assume that
(2.2) holds. We have to prove:
Theorem 4.1. If 0]0, 1[ and 2m8 is not an integer, then
D 4(0, 00)> CE"(Q).

Proof. We will construct a function u: ]0, 17— D, such that u(t) - f in C¥™(Q)
as t— 07 this will imply that feC2™%(Q); next, we will show that feC*™(Q)
by using the approximating function u(z), evaluated at suitable points ¢.

We start with defining

(4.1) u®)(x)=ult, x)=t 1 [REL, A)f1x), te]0, 11, xed.
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Remark 4.2. Clearly ue C*(10, 1], C(9Q)), and it is readily seen that
4.2) W)=t 2Rt~ A) AR Y, A)f, t€]0,1].
Thus in particular u, u’'e C(]0, 1], D ), which implies

u(t), W' (e [\ WP ( Qo () C*"(Q)

rz1 «e]0, 1[

B;(, D) u(t)=B,(*, D) u'()=0 on 4Q

vtelo, 17.

As a consequence we have for |f|<2m—1

0 0 _
5 D* u(t, x)=D?* a u(t, x) in the sense of C(]0, 1] x Q),

and for |f|=2m

0 0
PP D? u(t, x)=D* a7 u(t, x) in the sense of (1) I7(J0, 1] x Q).
rz1

We have the following key lemma:

Lemma 4.3. For each p>n there exists C,>0 such that:
2m—1

O Y Y 1D ut) e

h=1 |B]=h

+e7mesup{ Y IDP u(®)] oo, ey} SCp t I f oy
xpef [fl=2m

2m—1

@ Y =Y 1D )]

h=1 [B]=h

+e7mwsup{ Y [1DP u' (D) Looxo,itemy}
xpef2 |B|=2m

<C, t=79 [f 1540, 00)-

Proof. (i) It follows readily by (4.1) and Theorem 1.2 with A=A, +¢" L.
(i) It follows by (4.2), Theorem 1.2 with A=A4,+¢ ! and the fact that

|AR(t™1, A fleemSc t0 1 fllpo,00y- O
The next Lemma is a consequence of Lemma 4.3.

Lemma 4.4. We have:
@) lir(g lu(®)—fllc@=0.
.. _18l
(@) 1D u(r)=D? u(s)lc@=clr—s°72m [ flip .0
Vr, s€]0, 11, VBeIN" with || < [2m0];

_(8! _
(i) 1D% u(®)leay=<ct ) flb. 0.0
Vtel0, 1]. VpeN" with 2mO < |B|<2m—1;

463
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(iv) for each p> there exists C,>0 such that

n
2m(1—0)

sup || D* u@)|| LP(2(x0,t1/2m))

x0ef?

<Cpt7 (0B £l p 40,y V€O, 11, VBEN with  [B]=2m;
(v} for each a€]0, 1] there exists ¢,>0 such that

sup [D* u(t)] cotmsrremy)

xoef?

<e, £ fll 6 VEEO, 11, VBEN"  with |B]=2m—1.
Proof. (i) We have
[u(t)—fleay= ARt A fleay=c | flpae. o -

(i) If|p|<[2m6] and 0<s<r=<1 we have by Lemma 4.3 (ii) (with any fixed
p>n):

HDﬂ “(")_Dﬁ ”(S)HC(Q)é § HDﬂ “’(O')HC(Q) do

r
<cfom 1T dg | £, 0
s

<c(r—s)° B2 £l 000 -

(i) If 2mO<|Bi<2m—1 and t€]0, 1] we write:
1
(4.3) ID? u(®)| e = § 1D v (@)l c@y do+ 1D u(l)lcqg -
t

Now by Lemma 4.3(j) (again with any fixed p>n)

(4.4) IDP u(D)lcan=c | fllews

whereas by Lemma 4.3(ii)

1 L iy m
(4.5) f | Df ”,(O')HC(Q) doécfcx 40 m do Hf”DA(e,oo)§Ct9 2m Hf”DA(B,oo)'
t t

Ast=1, by (4.3), (44) and (4.5) we get

_181
HDﬁu(t)Hc(Q)_S_ct" | f 1 pad, -

iv) If p> |Bl=2m and x,eQ, we write:

n
2m(1—6)’
1

(4.6) HDﬁ u(t)HLP(Q(xo,tl/Zm))é j ”Dﬂ u,(G)HLP(Q(xO,tl/Z'")) do
t

+||D? u(D)l Lo @iso,etrzmy
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now Lemma 4.3 (i) yields

4.7) sup ”Dﬂ u(1)||Lp(Q(xo,z1/2m))§Cp ||f”c<.f)) 5

x0ef2

whereas by Lemma 4.3 (ii)

1 1
(4.8) sup [ D% (0)ll Locaqrguervamy 40 S ¢, 67240 55 da || £ 40, o)

x0ef? t t

Ze¢, £ 1H0% Ty 1S p 46,000 -
As1—6— %13 >0, by (4.6), (4.7) and (4.8) we conclude that

sup |D* ”(t)”Lp(g(xo,tl/zm))é Cp ¢TI Ty ”fHDA(B,oo) .

x0ef2

(v) Let a€]0, 1[, | f|=2m—1, and set q::%. By Proposition 1.3(ii)

4.9) [Dﬁ ”(t)]c‘wmmmﬁ))§ C, Z | D* ”(t)HLq(Q(xo,:l/Zm)) .
[yI=2m

Now pick p>max {q, —n—}: by (4.9), Hélder’s inequality and part (iv) we
got: 2m(1—06)

(L1
[D* u(Y] caiamsmmy = C, Z ID” ()]l Lo @@(xo,et/2my) tz"‘(" »
|yl=2m

N g n (1 L
=C,, i 0~ 145 3) £ 11546, 00)

=Cat ™ Y fp sy O
By Lemma 4.4(i}ii)) we deduce that u(f)—f in CP™N(Q) as t—0*; as
B;(>, D) u(t)=0 on 9Q for j=1, ..., m, when t >0* we get B;(-, D) f=0 on 30
if m;<[2m0], i.e. fe CE™(Q). In addition we get
(4.10) ILf I cemor@y = | f—u(D) czmeray + (D)l crzmer
=c HfHDA(O,oo)'
Thus it remains to show that D? fe C*™0~12m%(() if | B| = [2m#]. We distinguish
two cases: (a) [2m6]<2m—1, (b) [2mO]=2m—1. In case (a), let
|Bl=[2m0] <2m—1, and choose t:=|x — y|*™ where x, yeQ and | x— y| < 1. Then
[D? f(x)—D* f ()]
<|D? f(x)—DF u(t, )|+ D’ u(t, x)— D* u(t, y)|+|D* u(t, y)— D* f (y)|
§2”Dﬁf—DI}“(t)”c@)+C Z ID* ulc@ | x—yl,

Iv]=[2m81+1

and by Lemma 4.4 (ii)-(iii)
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@.11) |D £ (x)—D* £ ()]
_I2mey _2mei+1
et | f sy T x— YU s,

<c [x—ylz""’_[z'"e] Hf”DA(O,oo)‘

In case (b), let |f|=[2m0]=2m—1 and choose, as before, t:=|x—y|*™ where
x, yeQ and |x—y|<1. Then

| D f (x)— D (y)|
=2 HDﬂf—Dﬂ u(t)”c@) +[D* “(f)]cme—ume](?)‘(mﬂmjj lx_y|2m8—[2m8]’

and by Lemma 4.4 (ii)—(v)
(4.12) |D? f(x)—D* f ()|

< tg_g%;_1
=C ”f“DA(H,oo)

1-2mé+[2mo]
+ct 2m T x — y [P iama /11 pae, )

Sclx—y[Pme R £l 6w -

By (4.11) and (4.12) we conclude that if | 3|=[2m#] then D’ fe C2m®-[2m%((3).
moreover recalling (4.10) we also obtain

Hf“cme(fz)éc “f”DA(G,OO)a

and the proof of Theorem 4.1 is complete. []

§ 5. Improvements and Remarks

By Theorems 3.1 and 4.1 the first equality of Theorem 2.3 is established. In
order to check the second one, just a few remarks are needed.

Concerning the first inclusion, we proceed as in Sect. 3. There is only a
difference in the basic Lemma 3.3: namely, it turns out that the right-hand
sides of the inequalities in (i}(ii}(iii) have to be multiplied by o(1) (as t ->07),
due to the fact that Feh®™®(R"). Consequently, the right-hand sides of the
inequalities of Corollary 3.4 should also be multiplied by o(1) (as s—o0). As
a result one obtains, instead of (3.2),

(5.1) sllrg s HW(S)_fHC(Q):O-
Continuing as in Sect. 3, one then arrives to
(5.2) lim s° [ AR (s, A) w(s)ll =0

which replaces (3.3). Finally, recalling (3.12), by (5.1) and (5.2) it follows that
slgg s? |AR(s, A)f“c@)=0,
i.e. feD,(0).
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The second inclusion is easier: we already know that D,(8)=D (6, )
=C3™(Q); hence if fe D 4(0) we have only to show that fe h2™°(Q). Now, recalling
that D ,(0) is the closure of D, in D 4(f, ), we take a sequence {u,} =D, such
that u,—f in D (6, ), i.e. in C*™*(Q), as n— 0. But D ,~h?™*(Q) by Prop. 1.3,
and consequently we get {u,} <h*™®(Q). Thus feh>™°(Q) since h*™°(Q) is a closed
subspace of C*™%(Q). The proof of Theorem 2.3 is now complete. []

Remark 5.1. Theorem 2.3 can be generalized in several directions. Following
Amann [7], one can consider elliptic systems of differential operators as in
[7, Sects. 12-13], in a possibly unbounded open set 2 which is supposed to
be uniformly regular of class C*™ ([7, Sect. 11]). The analogue of Theorem 1.1
is proved by Geymonat-Grisvard [10, Sect. 5] and Amann [7, Theorem 12.2],
whereas the analogue of Theorem 1.2 can be proved by the same method used
in the Appendix below; the arguments of Sects. 3 and 4 then still work.

Remark 5.2. The critical cases 2mfelN are not covered by our theorem: they
will be the object of a further paper. However in the case m=1 the “critical”
spaces D,(%, c0) and D,(4, cv) are known. The (single) boundary operator
B(+, D) has then one of the following forms:

(a) B(x, D)=1I (Dirichlet problem), or

(b) B(x, D)=a(x) I+ Y Bi(x) D; (oblique derivative problem), where

(B v(x))>0VxcdQ. !
Denote by C*!(Q) and h*'!(Q) the Zygmund spaces defined by:

u(x)+u(y)—2u (x—zi—y)’
C* Y (Q)={ueC(Q):sup Y] :x,y,x;yeg,x#:y <o
r* 1 (Q):={ueC(Q): lim sup
r—>07% xpeQ
u(x)+u(y)—2u (x;—y)‘
-sup =i :x,y,i-zi_—yem,x#y =0¢;

then in case (a) (Lunardi [15]) we have
D (3, 0)={ueC*'(Q):u=00n09Q}, D,(3)={ueh*'(Q):u=00ndQ},

whereas in case (b) (Acquistapace-Terreni {3]) we obtain

D43, oo)z{ueC*'l(Q): sup

.{Iu(x—aﬁix))_u(x),: x€dQ, 5>0, x_oﬂ(x)eg}<oo}’
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DA(%)={ueh*»1(Q); lim ”(x‘aﬂ((fx))—u(x)

o0+

=u(x)f(x) Vxe@Q} .

Remark 5.3. The method employed in the proof of Theorem 2.3 still works in
different situations. For instance if we choose E=1I7(Q), 1 <p < o0, then we find
again Grisvard’s characterizations of D (0, o) and D 4(f) in this case ([11, 9]),
needing on the other hand much less regularity on the coefficients of the differen-
tial operator. Even more, we can study by the same method the spaces D (6, g),
1£g <00, where

D,(9, q)={er: { IIs®AR(s, A)x||% %< oo};
0

also in this case we find again old results by Grisvard (see [12] or [22, Theorem
4.3.3(a)]) as well as new results. More details will be published elsewhere.

Appendix: Proof of Theorem 1.2

Let feC(Q), g=(g;, ...,gm)e]—m[ C*™~™i(0Q). As, clearly, fe () IP(Q) and, for
j=1,...,m g;e [ WZ"’""‘:“%*]P:(;Q), by Theorem 1.1 for each ;;]11, oof problem
(1.10) has a un?c;e solution u,e W?™?(Q); hence if g>p we have u,=u, and

consequently u,e () W?™4(Q) and is independent of p. Thus a unique solution
g>1

ue () W*™2(Q) of problem (1.10) does exist.

r>1

We have to prove (1.12). Fix p>n, choose 1;=4,+1 (4, is given in Theo-
rem 1.1) and fix leC with |A|>/; and arg A=7; fix also x,eQ and let u>2
to be chosen later. Select a function ¢ (x)= ¢ (x,, 4, i, x) with the following prop-
erties:

A1) ¢eC?(R", ¢=1 on B(xg,p), ¢=0 outside B(xy, up),

ID*$llomnScrp "w—17" k=1, ..,2m,
where we have set
(A2) pi=|A—Ao| 2™,
(Note that p < 1.) The function v(x):=u(x)- ¢ (x) solves

A3)  ivx)— Y a,®x)Dvx)=¢xf(X)+F(x), xef,

lal=2m
Y bi(x) DP u(x)=(x) g;(x)+G;(x), x€0Q, j=1,...,m,
1Bl sm;
where

o
= B =y
(Ad) F(x) ,aézma“(x):éa (y)D u(x) D*77 ¢ (x),
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A5  Gx= Y by Y (ﬁ) uE@ DI (x),  j=1,....m.
1Bl<m; a<p

By Theorem 1.1 we have (denoting again by g; any W?™ ™»?-extension of g;
to the whole Q):

2m

Z M—)~o|l_m”DkU”LP(g)
k=0
m 2m—m; m+k
{n¢f+F||Lp(g,+z pONEE N |sz¢g,+GJ)||Lp(g)}
j=1 k=0
and hence
2m
(A.6) Z |)~_/10|1_m“DkUHLp(Q)
k=0

=M, {||f“Lp(rz(xo,up»+ IF | Lo @(xo, 201

m 2m—m; _mtk

+Z ZIA /10 Tm

- LIDM &) o @mn o + 1D* G,;ilu(mx(,,,w»]} .

Now by (A.4) and (A.1) we get:
2m—1

(A7) “F”LP(Q(xo,up))éc Z ||Dk”HC(Q)'P_2m+k+"/p ,U"/p(#“l)_l’
k=0

moreover if k=0, 1, ..., 2Zm—m; it is easily seen that

kt+m;—1 k+m;—h
|ID*Gjl<c )., [Dtul- ), |D'ol,
h=0 r=1
and therefore (A.1) yields
(AS) ”Dk Gj”LP(Q(xD,Mp))
kt+m;—1
<c 3 IDuleqy ot g (u—1) Y,
h=0

k=0,1,....2m—m;

e

Finally, again by (A.1) it follows that

(A9) ID*( &)l Lo @0 upn

k
<c Z ”Dh gj”Lp(Q(xo,up))‘Ph—k(H_ l)h_k,
=0

k=0,1,...,2m—m,

i
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By (A.6), (A.7), (A.8) and (A.9), recalling {A.2) we easily get:

2m
(A.10) Y iAol T | D 0l oy

k=0
my+k

SCp{HIHLP@(xo,up))‘*‘ Z Z /1 '10 S HDkngLP(m:co,up»
j=1 k=0

2m—1
LY A Aot e (u— 1) 1|D"u||cm)}

k=0

On the other hand, by Proposition 1.3(i) and (A.2),

2m-1
(A.Il) z [A— /10|1_m||Dku||C(m)+M /10|2"“’HD2 HLP(.Q(xo,p))
k=0
n 2m k
Scl|d—4Aolme Z |)”—/10|1_mHDkU”LP(.Q)'
k=0

Now choose as X, a point of maximum for the (real) function 4eC(Q) defined
by
2m—1 _
A(x)= Z P |Dku(x)|+P2m i ||D2m HLP(Q(x o xefd;

k=0
then we have clearly

2m—1

(A12) A=l [l cen = Z 7= 2o 77 | D ullcy

+]A—4o |2-B sup | D? "l Lo
xef?

S@2m+1){A—4ol |4llc@ -
Choose now p so large that
WP (u—1)" S(@m+2)7Y

then by (A.10), (A.11) and (A.12) we conclude that

2m—1
CmA1) 1 { S Ve o]t | D ey + A — Ao 757 sup [ D2 unm(x,,»}

k=0 xeQ

<A— ol A(xQ)SC, | A= Ao 777 {nfnm(xg,up»

m 2m—my _m +k
+ z Z [A—Ao| 2m ”D gillLr@cxo, up))}

2m—-1
+Am+2)E Y |20l | DFulley

k=0

which clearly implies (1.12). The proof of Theorem 1.2 is complete. []
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