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w 0. Introduction 

This paper is concerned with the characterization of certain real interpolation 
spaces between the domain of an elliptic differential operator A, with general 
boundary conditions, and the Banach space E of continuous functions in which 
the domain is imbedded. 

The interpolation spaces considered here are the classes (D A, E)~,oo intro- 
duced by Lions (see Lions-Peetre [,14]) and the "continuous interpolation 
spaces" (DA, E)~ defined by Da Prato-Grisvard [-9] ; however, following Grisvard 
[-11], we denote such spaces respectively by D A (0, oo) and DA (0) (where 0 = 1 - e ) ,  
and introduce them by means of an abstract characterization (see Definition 2.1 
below) which is valid under suitable hypotheses concerning the behaviour of 
the resolvent operator  ( 2 - A ) -  a. 

Such assumptions are satisfied when, in particular, A is the infinitesimal 
generator of an analytic semigroup. In this situation, the spaces DA(O, o0) and 
DA(O) are of great importance in the theory of abstract evolution equations, 
because of their "maximal regularity" property. Maximal regularity means the 
following: i f f  is continuous with values in a Banach space Y,, then the evolution 
problem 

u'(t)--Au(t)=f(t), t~[,0, T];  u(0)---0 

has a unique Cl-solution u such that u' and Au are continuous with values 
in Y. This property is not true in a general Banach space Y (see Baillon [-8]), 
but it holds when Y= DA(O), where A is the infinitesimal generator of an analytic 
semigroup in some other Banach space E. Note that we cannot replace DA(O) 
by DA(O, oo) (see Da Prato-Grisvard [9]); however a similar property holds 
for DA(O, oo) (with A as before), i.e. if f is continuous with values in E and 
bounded with values in DA(O, oo), then the same is true for u' and Au. For  
a proof  of these facts see Sinestrari [-18]. 

Thus when A generates an analytic semigroup the spaces DA(O, oo) and DA(O) 
have been estensively used in the theory of abstract parabolic equations, in 
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order to obtain existence and sharp regularity results (see, among others [1, 
2, 4, 9, 11, 13, 16, 17, 18]. On the other hand in concrete situations the abstract 
regularity results have to be interpreted, and this in turn requires the character- 
ization of these spaces in such concrete cases. Now, when E=LV(g2) and A 
= A(' ,  D) is an elliptic operator of order 2m, whose domain is determined by 
a set of m general boundary differential operators {B j(-, D)}~=<j_<m satisfying 
the usual assumptions (Agmon [6]), the spaces DA(O, oO) and Da(0) are known 
to be the functions f belonging to the Besov-Nikolskii spaces B2"~ and 
2m0 hp.~o(~2) which satisfy Bj(., D ) f = 0  on ~f2 whenever it makes sense ([11, 9]). 

Here we treat instead the case E=C(O) ,  and we obtain as Da(O, oo) and DA(O) 
the functions of the H61der and "little H61der" classes C2"~ and h2"~ 
which satisfy, as before, the boundary conditions whenever they are meaningful. 

Let us conclude with the description of the subject of the next sections. 
Section 1 is devoted to preliminaries; in Sect. 2 we state our main result, which 
is proved in Sects. 3 and 4; finally Sect. 5 contains some remarks and generaliza- 
tions. 

w 1. Notations, Assumptions and Preliminary Results 

Iffi, y e N "  and ze112", n > l  we set as usual 

Ir ' =  /~,, /~!=-- fl~!, ,-- , ? = - - p [ z f '  
i = 1  i = 1  i = 1  

whereas D e stands for axe, ,  . . .  ax.e~ 
Let s be an open set of N ' ;  we list now some Banach spaces which will 

be used throughout. If k e n  and e > 0 ,  eCN, we set: 

Ck(O)..={f: ~ -+  112: Def is uniformly continuous and bounded VfleN" 

with I fl] __< k} 

C~(O),={feCt~l(O): D~f is (e--l-e])-H61der continuous and bounded VfleN" 

with Ifll = [e]}, 

where [e] is the greatest integer less than e. The spaces ck(O), C=(O) are endowed 
with the norms 

I[fllo~<~> ;= ~ ILD~fllco(~), 
I/~l_<k 161 =[=1 

where II'[Ico~o) and, for qs]0, 1[, [']c~(o) are the usual sup-norm and H61der- 
seminorm: 

<fl g ( x ) -  g (Y) I } ]kgllco(ra):=sup{[g(x)i:x~O}, [ g ] c ~ ( r ~ ) . ' = s u p ( - ~ _ ~  :x,y~O,x:4=y 

If k = 0, we write simply C (O) instead of C o (~). 
The spaces Ck(0 f2), k e N ,  are defined similarly, clearly involving only tangen- 

tial derivatives. 
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If xo~O, the open ball of center Xo and radius r is denoted by B(xo, r). 
We set 

(1.1) f2(Xo, r):=g2c~B(xo, r), Xo~, r>0 .  

I r a > 0  and e 6 N  we also set 

(1.2) h~(O):={f~C~(~): lim sup [D~f]c~<~8;~)=O VfieN" 
r - ~ 0  + X 0  ~ ff'~ 

with I fll = [~]}; 

thus if a~]0, 1[ we have g~h ' (0)  if and only if 

r f l g ( x ) - g ( y ) l  } 
~-o§ I - Y I - ~  "x,y~O,O<[x-yl<r =0. 

The space h=(O) is a closed subspace of C~(O), and hence it is a Banach space 
with the norm of C'(O). We also need the usual Sobolev spaces: if f ie[ l ,  oo[, 
k e n  + , we set 

.LP (f2)..= { f :  s ~ C: f is measurable and p-integrable}, 

Wk'p(f2):={f6LP(f2): DIJf~LP((2) VfieN" with [ i l l <k} 

(here the derivatives are in the sense of distributions), with the obvious norms 

IlfllL~(a)"={ ~ If(x)l p dx} l/p, Ilfllw~.~,,,=={ ~ llOPf[Is ~/p. 
.q I~ l<k 

Let now (2 be a bounded open set of JR", n >  1, with boundary ~f2 of class 
C TM, m = 1. We introduce the differential operators 

A(x,D):= ~ a=(x)D ~, x~O, 
1~l<=2m 

x~SY2, j= l, ..., m 

(1.3) 

(1.4) Bj(x,D):= ~ bj,(x)D r 
]fl[ <mj 

under the following assumptions: 

(1.5) a, sC(O), [~[<2m; bjflEc2m-mj(o~), [fll<mj, j=l , . . . ,m 

(uniform ellipticity). There exist t/e [0, 2re[, v > 0 such that 

(1.6) V([~IZm+t2'n)<[ ~ a~(x)~--(--1)mei~t2m] VX~,  V~E~", V t ~ .  
l~[=2m 

(root condition). If x ~ s  ~ /R" ,  te]R and (~, t)+(0, 0), (~[v(x))=0 the 
polynomial 

(1.7) (--+ ~ a,(x)(~+(v(x))~--(--1)~eint T M  

1~l=2m 
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has exactly m roots ~+ (x, 4, t) with positive imaginary part (here v(x) 
is the unit outward normal vector at x and (.[ ') is the scalar product 
in IR"). 

(complementing condition). If xe0g2, CeN", tElR and (~, t) + (0, 0), 
(4 [ v (x)) = 0 the m polynomials 

(1.8) ~-~ y~ bje(x)(~+r 
IPl =mj 

are linearly independent modulo the polynomial (see (1.7)) 
m 

--' H (~-  ~+ (x, 4, t)). 
j = l  

(normality) turiN, j =  1, ..., m, O < mj < mi < 2 m - 1  i f j< i ,  and 

(1.9) ~ bjav(x)t~+O Vx~Sf2, j = l , . . . , m .  
I~1 =mj 

Let A(' ,  O) and Bj(., D) be defined by (1.3) and (1.4). Then we consider the 
non-homogeneous problem 

2 u - - A ( ' , D )  u = f  in f2, 
(1.10) 

B~(. ,D)u=gj on ~ ,  j = l  . . . .  ,m 

with prescribed data f, gl, ..., gin" 
The following result is well known (Agmon [6]): 

Theorem 1.1. Suppose that (1.5),..., (1.9) hold. Then there exists 2 o >=0 such that 
/f 121>2o and arg2=~/ (~ is defined in (1.6)) then for each f~LP(~) and 

g = ( g l , - - . , g , ~ ) ~ f l  wZm-mJ-1/P'P(~), p~]l ,  ~ [ ,  problem (1.10) has a unique 
j = l  

solution u~ WZm'P(O); moreover there exists Mp > 0 such that 

2m 
(1.11) ~ I;~-;~o 11-~ IlOkullLp(~) 

k=O 
I 2m-mj 1 mj+k "} 

<m~ IlfllL.r 
j = l  k = 0  3 

where ~,j is any function in w2m-mj'P(O) satisfying ~3[0~= gj. 

Proof For the estimate see e.g. Tanabe [21, Lemma 3.8.1]; a proof of existence 
is in Triebel[22, Theorems 5.5.2-4.9.1]. []  

Theorem 1.1 is basic in order to get an estimate similar to (1.11) in C(O). 
Namely we have (Stewart [20]): 

Theorem 1.2. Suppose that (1.5), ..., (1.9) hold. Then there exists 21 >_0 such that 
m 

/f [21 >21 and arg 2=q ,  then for each f~C(~)  and g = ( g l  . . . . .  gm)~ [ I  cZ"-mJ (~(2) 
j = l  
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problem (1.10) has a unique solution ue ~ W2m'p(O); moreover for each p>n  
there exists Np > 0 such that p~,  ~o[ 

(1.12) 
2m-1  

D 2m 
k = 0 X o ~  

j = l  

2 m - m j  . m ~ + k  "~ 

s IV~--~l [ 2 m  IID1'f, jllc(~r~) , 

k=O 

where ~,j is any function in C2"-"~(O) satisfying ~,jdon=gj. 

Proof See the Appendix below. [] 

We need two further basic results. The first is the well-known Sobolev's 
imbedding theorem, the second yields a method for extending functions defined 
on subsets of IR". 

Proposition 1.3. Suppose that f2 is bounded and has Lipschitz boundary Of 2; let 
q>n and c~= 1 -n /q .  Then Wl'q(f2)~h~(~); moreover there exist Ks, K z > 0  such 
that for each XoeO, r > 0  and ueWl'q(O) we have: 

(i) ]1 u r l c ( ~ )  < Ks  r -  "/q { [I u [Fco(a(xo,o) + r 1[ D u [IL,(e(.o,~))}, 
(ii) [U]c,(n(xo,O) <= K2 liD U][L,(m .... ))" 

Proof See e.g. Adams [5, Lemmata 5.15 and 5.17]. [] 

Proposition 1.4. (i) Let F be a closed set of ~", let keN.  There exists a mapping 
Ek: C(F) ~ C(~") such that 

(a) Ek (f)IF =--f 
(b) IlEk(f)llc=(~.)<Mk IIflIc.(F)VfeC~(F), Vae[O, k], 

where Mk is independent of the closed set F and of ~ e [0, k]. 
(ii) Let (2 be a bounded open set with Lipschitz boundary c~(2. There exists 

a mapping E: L 1 (f2)~ L a (IR") such that 

(a) E(f)la---f, 
(b) IIE(f)llw~.~(~,)<Mk.n]lfltw~.~(o)VfeWk'p(Q), YkeN,  Ype[1, ~ [ ,  

where Mk,a is independent of p e [1, oo [. 

Proof Part (i) is due to Whitney; for a proof see Stein [19, Chap. VI, Sect. 2]. 
The result of (ii) goes back to Calderon, and is also proved in [19, Chap. VI, 

Sect. 3]. [] 

We finish this section with the following 

Definition 1.5. Let {Bj(., D)} be defined by (1.4). I f  pE[1, ~ [ ,  k=0 ,  1, ..., 2m 
and eel0,  2m] we set: 

wBk'P(Y2),={ue Wk'v((2): Bj(', D) u=O on On for mj< k - 1 / p }  

CkB(O):={ueCk(O): S2(-, D) u=O on a n  for mj<_k} 

c~(n),= c~(o) n c~J(o), 

h~(O) =h'(O) ~ Cg'~(O). 
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Remark 1.6. Let f~  C](O) and let mi< e. Then, if we extend, via Proposition 1.4, 
the coefficients of B~(., D) to the whole O, we have Bj(., D)fec~-mJ(Q). Hence 
the condition Bi(., D ) f = 0  on Of 2 means in particular that 

LIBj(', D)fllc~(o~)=O, r=O, 1, ..., [ ~ - m j ] .  

w 2. The Main Result 

Let E be a Banach space and let A: D A ~ E ~ E  be a closed linear operator 
whose domain DA is possibly not dense in E. We assume that the resolvent 
p (A) of A contains a fixed half-line R,,,o.'= {z e 112: arg z = q, I zl> co}; more precise- 
ly, we suppose that there exist o)>0, qs[0,  2re[ and M > 0  such that: 

M 
( 2 . 1 )  p(A)~R,,o,, IIR(z, A)[I.~(~)~ Vz~R,,~o; 

Iz-col 

here R(z, A)..=(z-A)-1. By replacing possibly A with ei"(A-co), it is not restric- 
tive to assume, instead of (2.1), that: 

M 
( 2 . 2 )  p(A)~_Ro,o=]O, co[, q[R(s, A)H~(~)-<-- Vs>0. 

S 

Then in particular for s~[1, oo[ we have 

liAR(s, A)xIIE <=M IIxHE 

s lIAR(s, A)xH~<M IlXlIDA 

Vx~E, 

V x ~ D  A, 

where [I'Ho~ is the graph norm. Thus, following Grisvard [-11], we are led to 
define the intermediate spaces DA(O, oo) and DA(O ), 0~]0, 1[, by: 

Definition 2.1. We set: 

DA(O , O0):={XffE: sup s o lIAR(s, A)xI[~< oo}, 
s> l  

D A ( O ) : = { X E D A ( O  , 00): lim s o liAR(s, A)XllE=O}. 
8--* tlO 

A norm in DA(0, o0) is the following: 

(2.3) IIxlIDA~o,~o) ,= IiXIIE + sup s ~ LIAR(s, A) xll~. 
s > l  

Clearly DA~DA(O)'-~DA(O, oo)%DA(a)'~D A if 0 < a < 0 < l .  Moreover DA(a ) is 
a closed subspace of Da(O, oo): indeed, it coincides with the closure of D A with 
respect to the norm (2.3) (a proof is readily obtained by adapting that of [11, 
Lemme 2.5]). 

Proposition 2.2. DA(O, oo) and DA(O) are real interpolation spaces between Da 
and E, namely: 

DA(O, o0) = (DA, E)I-o,~,  DA(O)=(DA, E)I-o. 
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(For the precise definition and more properties of the spaces (DA, E)e,~o see 
Lions-Peetre [14] or Triebel [22]; for the spaces (DA, E)a see Da Prato-Grisvard 
[9].) 

Proof. See [11, Prop. 5.5] and [9, Th6or~me 2.5]. [] 

After these preparations, we are ready to state our main result. Let ~2 be 
a bounded open set of IR", n > l ,  with boundary 8s of class C 2~, m > l ;  let 
A(., O), {Bj(., D)}t<j<=m be the differential operators defined by (1.3), (1.4) and 
suppose that (1.5) . . . . .  (1.9) hold. If we set E = C(~), by Theorem 1.2 the operator 
A, defined by 

DA,={UE ~ W2~'P(Y2): A( ' ,  D) u~C(O), By(', D) u = 0  on aO, j=  l . . . . .  m} 
p=>l 

(2.4) Au,=A(' ,D) u 

fulfills (2.1) for some co>0, qe[0, 2re[ and M > 0 .  
We will prove the following result: 

Theorem 2.3. Let A be defined by (2.4) and suppose that (2.1) holds. I f  0e]0, 1[ 
and 2too is not an integer, then 

Da(O , oo)= cZmO(~), DA(O ) = hzm~ 

with equivalence of norms. 

(The spaces C~(~) and h~(~) were introduced in Definition 1.5.) 
The proof of the first equality is contained in Sects. 3 and 4 below; the 

proof of the second one is quite similar and will be sketched in Sect. 5. 

w 3. The First Inclusion 

Let A be defined by (2.4) and suppose that (2.1) holds. Then, considering ei~(A 
-co) in place of A, we can assume that (2.2) is true. Then we prove the following: 

Theorem 3.1. I f  0El0, 1[ and 2too is not an integer, then 

c2m~163 o0). 

Proof It suffices to show that 

(3.1) sup s o liAR(s, A) f ]lct~) <= C II f l]c2mo<~) V fsc2mO(o). 
s>l 

This will be done by constructing, for each fixed f~C2m~ a function w: 
[1, ~[-- ,C(O) such that: 

( 3 . 2 )  Ilw(s)-fllcr176 V s > l  

(3.3) liAR(s, A) w(s)llc{~)<c s -~ Vs>l" 

this will imply (3.1) since 
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lIAR(s, A) f llc(~)~ HAR(s, A)ll.~(c(~))" II f -w(s)l lc(~) + liAR(s, A) w(s)llc(r2) 

< c s-~ li f ll c~,,,o(~) . 

Let f e  C~ ~~ (~), and consider an extension F e C z m0 (IR') o f f  (Prop. 1.4(i)), satisfy- 
ing 

(3.4) IlFllc~o(R,) < c ]] f l[c~.,,,o(F.,) . 

Define an auxiliary function Vo : ]0, 1] ~ C(N") by 

(3.5) Vo(t)(x)=-Vo(t, x).'= ,(gb(z) F(x- - t z )  d z = t - "  S 0 ( ~ - ]  F(y) dy, 
R~ Rn 

where q ~ C ~ ( R  ") is a real-valued function such that 0 < q ~ < l ,  ~ - 0  outside 
B(0, 1), ~ 4~(z) dz= 1, and q~ is even in each variable. 

R n  

We have the following lemma, whose proof is straightforward: 

Lemma 3.2. (i) lira ][Vo(t)-F[[c(~,)=O , i.e. Vo(0)=f, 
t ~ O  + 

(ii) vo~C~(JO,  lJ x R  ~) and 

sup @ _<c[]F]lc~(R,), h=0 ,  1, ..., [2m0]. []  
t~lO, 1] ~ t c(R~) - -  

Let us define now 

(3.6) 
[2m0]  oh VO t h 

v(t)(x)~v(t,X):= ~ ( - - 1 ) h ~ u ( t , x ) ~ . ,  t~]O, 1], x E N  ". 
h = O  

Then clearly v~ C ~ (]0, 1] x IR") and we have the following result: 

Lemma 3.3. For each ts]0, 1] we have: 
(i) Ilv(t)- FHc~.) < c t 2m~ ]lVlle2mot~. ) 

(ii) ]]D ~ v(t)-D~F]lc(~.)<c t 2m~ []FI]c2..o(~. ~ Vy~N" with I~l < [2m0] 

(iii) ][D ~ v(t)llc(~,) <c t -(l~l- 2"~ Hgllc2~.o(~,) VyeN" with 17[ > 2mO. 

0 h V 0 
Proof. (i) Let us compute ~ h  (t) for h <  [2m0]:  it is easily seen that 

(3.7) 0 h Vo h T 
t~ (t, x)= I 4'(~) Z D I F ( x - t z ) ( - z )  i ~  dz 

R~ Jill =h p: 

and consequently 
D l F (x -- t z) 

v(t, x)= ~ ~(~) y~ ? tl/I d~. 
R -  Ifll <__[2m0] f l !  

On the other hand for each zeN"  and t~]0, 1] we have by Taylor's formula 

D p F(~) z~ tr2~ol D ~ F(x - - t z )  zp tl#l+ ~ fl! 
F(x)= E fl, 

Ifll _< [2 m0] " [ i [  = [2m0]  
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where ~ = ~(t, z, x) is a suitable point in the segment joining x and x - t z ;  hence 
we get 

{ <,~ DPF(x-tz)fl! } v(t, x)--F(x)= I O(z) Z z~ t l~l-F(x)  dz 
l tn [fl[ = [2m0] 

Zfl t[2mOl 
= ~ 49(z) Z [DPF(x-tz)--D~F(~)]~-.  dz 

~.n [fl[ = [2m0] 

and finally 

I lv( t ) -Fl lc~"> < c  S 4)(z) Izl 2m~ t 2~~ d z  ~, [Da F]c2..o t2~.oltr~.) 
~ "  If l l  = [Era0] 

< c t 2m~ Ilfltc~mo~.) . 

a" Vo (t) 
(ii) Fix 7~N n with ]7[=<[2m0] and compute D r 

~3 t n 
]y I+ h < [2m0], by (3.7) we get: 

~h vo(t, x ) h! 
(3.8) Dr at h -,,S O(z)ltq=h~ DP+~ F(x-tz)(-z)P-~. dz, 

if ]yJ+h<_[2mO]. 

On the other hand if ]7[ +h>2mO we choose 71, 72 ~Nn such that 

[71[=[2mO]-h, [72[=]?]-[2mO]+h, 71 -q-72 =7; 

note that 172 [ > 1. Hence using (3.8) we can write 

8 h Vo t (Dr~ ~h VO Dr ~ -  ( ,  x)=D,2, ~ ? -  (t, x,] 

=D '2 (o(z) ~" DP+" F(x--tz)(--z)P ~. dz 
It31 =h 

h! =t-" ~ E Oa+~l F(y) ~. [Or2(q~(~)(--0t~)]r -1'21 dy 
R~ Ifl[=h 

= t  -1~21 ~ ~ O/~+~1F(x--tz) hi R- lal=h ~ .  De2((o(z)(--z) p) dz, 

and, since ~ D~(c~(z)(--z) p) dz=O, we obtain 
Rn 

for hS[2mO]. If 

(~h VO 
D ~ ~ - ( t ,  x)= t -(lyl-E2mO]+h) f E [Dfl+Yl F(x--tz) -D~+~' f (x ) l  

R-  I# l=h  
h! 

. fl~. D'2(4(z)(-- z) p) dz; 
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D ~ ~h VO 

<=C t -(Irl-[2mO]+h) ~/~ [DP F]c2mo t2moj(R.) t 2mO-[2mO] 

I/~1 : [2m0] 

< c t  -(l~L+h 2m~ i f  171+h>2mO. 

Now by (3.6) we have: 

[ 2 m 0 l - l r l  ~hVo th--~'-DrF c(R.) IID~v(t)-DrFIIc(~,) ~ (--1)h D ~ 
h = o ~ 5  r (t) 

[2toO] ~h VO t h 

-~ h-[2m0]~-lTl+- l ( - - 1 ) h D ~  ~-(t) h!  C~")=I1+I2" 

We estimate 11 as in (i), by using (3.8) and Taylor's formula for D~F of order 
[2 m 0] - 171 - 1, centered at x - tz: 

~ [ D'+P F(x - tZ )  zP tlB'--D' F(x)]dz 
I 1 -~- ~)(Z) 2 l 

Ll/~l<[2m0]_l~ I 7. C(R ) 

zr dz c(~,) = ~, r Z [D'+PF(x--tz)--Dr+~F(~)] ~. t[2m~ 
I/q = [2m0] - [ r l  

<c ~ rnPFa e2mO-Ie['(C . __ k L" AC2mo-t2moJ(R.) ~ t 2 m 0 - l y [  HFllc~o(~.) 
I#l = [2m0] 

In order to estimate I 2 w e  just use (3.9): 

[2toO] Dr 0 hvo II t h 
12<= ~ ~ - ( t )  c(r~.) ~. <c t2"~ l]Fllc~o(R,). 

h=[2mO]-[Tl+ 1 

This we obtain 

lID ~ v(t)-DYFHct~,) < I1 +12 <c t 2"~ [[Fllc~o~,), 

and (ii) follows. 
(iii) Let 7 ~]N" be such that [71>__ 2 m 0. By using again (3.9) we have: 

[2toO] (~h Vo t h 
liD r v(t)llc(~.)< ~ D r ~t t~  (t) ciR,) h~.<=c t-tlrl-2m0)IIFIIc2.~o(R.), 

h=O 

and the proof is complete. [] 

The desired function w: [1, oo[.~C(~) satisfying (3.2) and (3.3) is now 

(3.10) w(s)(x)=w(s, x):~_~_/)( S- 112m X), S~ 1, X~O; 

its main properties are summarized as follows: 
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Corollary 3.4. We have: 
(i) weC~~ oeExO), 

(ii) H w ( s ) - f  II c(.)--< c s-0 II f ILc2mo(o), 
(iii) liD ~ w(s)-D~fllc(~) <c s -(~ Ilfllc2~o(~) V~eN" 

with I Y [ < [2 m 0], 

(iv) I/D ~ w(s)llc(r~) <c s 1~l/2m-~ IIfllc=~o(~) V~eN" with I~l >2toO. 

Proof It is an immediate consequence of (3.4) and Lemma 3.3. [] 

By Corollary 3.4(ii) we have shown (3.2). Concerning (3.3) we set: 

(3.11) u(s):=sR(s, A) w(s), s>= 1, 

and observe that 

(3.12) Ae(s ,  A) w(s)=u(s)--w(s), s>__ 1. 

Now u(s) satisfies: 

~(s)e (~ w~m'~(~) 
p>_l 

su(s, x )+[2o- -A(x ,  D)] u(s, x )=sw(s ,  x) in (~, 

Bj(x,D) u(s,x)=O, j = l , . . . , m ,  on 8(2. 

Hence u(s)--w(s) is the unique solution of: 

U(S)--W(S)e ('~ W2m'p(~'~), 
p>_l 

s [u(s, x)-- w(s, x)] + [20 -- A (x, D)] [u(s, x)-- w(s, x)] 

=[A(x ,D)- -2o]  w(s,x) in f2 

Bj(x, D)[u (s, x) - -w (s, x)] = --Bj(x, D) w (s, x), j = 1 . . . .  , m, 

Thus by Theorem 1.2 we obtain: 

(3.13) [I u ( s ) -  w (s) ll c<~> ~ c s -  a II [A  (-, D) - -  2 o ]  w (s) l[ cr 
~, 2m--mj _mj+k 

+ C  Z S 2m IIBj(', D) w(s)llck(o~) 
j = l  k=O 

= J 1  + ' ]2 .  

We estimate J1 by using Corollary 3.4(iii)-(iv) and recalling that s > 1: 

(3.14) Ja<=cs -1 ~ IIDPw(s)llc(~) 
I#l<2m 

< c s  -1 1+ ~ s(h/2m)-O [IfHc2~o(a) 
h = [2toO] + 1 

on 80. 

c s -~ Ilfllc2mo(~a). 

461 



462 P. Acquistapace and B. Terreni 

To estimate Jz we split it into three terms. Set 

jo:=max {j <m" ms <2mO} ; 
then 

(3.15) J 2 :  Z + 2 Y, + 
j 1 k=O j : l  k=[2mO]--mj+l j = j o + l  k / 

�9 I]Bj(', D) w(s)llck(e~)=Jzl§ 

now by Corollary 3.4(iii)-(iv) we get 

Jo 2 m - mj 

(3.16) J 2 2 ~ c  Z Z s-(mj+k)/2m [Iw(s)[[c~+~(o~) <=c s -~  Ilfllc~,.o(r~), 
j = l  k=[2mO]--mj+l 

and similarly 

m 2m-mj mj+k 

(3.17) J2a<c  ~ ~_, s 2,,, IIw(s)lLck+,.~t~><cs-Ol[fllc=.,,o<~). 
j = j o + l  k=O 

Finally, concerning J21 w e  use Remark 1.6 and Corollary 3.4(iii), obtaining 

Jo [2m0l--mj 

(3.18) J2~= ~ ~ ]IBj(', D)Uw(s)-f]llck(o~) 
j = l  k=0 

Jo [2mO]-mj 

<c ~ ~ liw(s)-fllck+,.~(~) <cs -~ 
j = l  k=0 

Collecting (3.13) . . . . .  (3.18) we get 

[lu(s)- w(s) ll c<~> <-_ c s -~  II f II c2~o(~> 

and recalling (3.12) we have proved (3.3). 
As (3.1) follows by (3.2) and (3.3), the proof of Theorem 3.1 is complete. [] 

w 4. The Second Inclusion 

Again, let A be defined by (2.4) and, after the usual modifications, assume that 
(2.2) holds. We have to prove: 

Theorem 4.1. I f  0~]0, 1[ and 2mO is not an integer, then 

Da(O, oo)%C2m~ 

Proof. We will construct a function u: ]0, 1] ~ O A such that u ( t ) ~ f  in CtB 2 toOl (~) 
as t ~ 0  +" this will imply that fectzm~ next, we will show that feczm~ 
by using the approximating function u (t), evaluated at suitable points t. 

We start with defining 

(4.1) u(t)(x)-u(t, x):---t -1 [R(t -1, A)f](x), tel0,  1], xE~. 
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Remark 4.2. Clearly ue C I (]0, 1], C(~)), and it is readily seen that 

(4.2) u'(t)=t 2 R(t-a,  A) AR(t  -1, A ) f  tE]0, 1]. 

Thus in particular u, u'E C(]0, 1], DA), which implies 

u(t), u'(t)E (~ W2~p(f2)~ ~ c2m~(0) 

p>_--i a~]O, 1[ V t el0, 1]. 
Bj( ' ,D)  u( t )=Bj( ' ,D)  u' ( t )=0 on ~ 2  

As a consequence we have for [fi] < 2 m - 1  

0 DB u(t, 0 t x) = D ~ ~ t  u(t, x) in the sense of C(]0, 1] x ~), 

and for I~l = 2 m  

~--~ D p u(t, x )=D p 0 u(t, x) in the sense of ~ LP(]O, 1] x 0). 
p > l  

We have the following key lemma: 

Lemma 4.3. For each p > n there exists Cp > 0 such that: 
2 m - - 1  

(i) ~ t -(1 2h) ~ IID~ u(t)llc(~) 
h - 1  I f l l=h  

+t-2-~;sup { ~ [I D~ u(t)[lLpt~(xo,t~/zm))} <C v t -1 Ilfllc~), 
Xoe.O [ f l l = 2 m  

2 m - - 1  

(ii) ~, t - (~ -~ )  ~ []DBu'(t)l]c(r~) 
h = l  [.OI = h  

+ t  2~psup{ ~ IlD~u'(t)llL~(~(~o,tl/~))} 

< Cp t -~2-~ f [[,~(0,~)- 

Proof. (i) It follows readily by (4.1) and Theorem 1.2 with 2 = 20 + t-1 

(ii) It follows by (4.2), Theorem 1.2 with 2 = 20 + t -  i and the fact that 

[]AN( t - I ,  A)f[[c(o) <= c to [[fl[oa(o, oo). [] 

The next Lemma is a consequence of Lemma 4.3. 

Lemma 4.4. We have: 
(i) lim [[u(t)-f[[c(~)=O. 

t ~ O  + 

(ii) ][D p u(r)--D ~ u(s)[[c{~) <c Jr--s] ~ I[f[IoA(O, oo) 
Vr, sE]0, 1], Vfi~N" with [fl[ __< [2m0];  

(iii) liD # u(t)Nc(~<c t - ~ - o J  Ilfll.~(o,~) 
Vte]O, 1]. Vfi~N" with 2mO<[fl[<=2m--1; 
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n 
(iv) for each p > 2m(1 - 0 )  there exists Cp > 0 such that 

sup HD ~ u(t)lLL,(O(~o,O/~,~)) 
Xo~g)  

<Cv t-(~-~174 VtE]0, i],  V ~ N  ~ with t/~I=2m; 

(v) for each c~s]0, 1[ there exists c~>0 such that 

sup [D r u ( t ) ] c , ~ )  
xo~ff2 

<c~ t ~-2+~ Ilfl[v~(o,~)Vt~]0, 1] ,VBeN" with I B l = 2 m - 1 .  

Proof. (i) We have 

t l u ( t ) - f  ltc(~)= IIAe(t t, A) f llc(~ < c t o Il f llo~(o,~) . 

(ii) If I/~1 < [2m0] and 0<s<r__< 1 we have by Lemma 4.3(ii) (with any fixed 
p>n) :  

I[ D ~ u ( r ) -  DP u (s) ll c(r~) < i II D ~ u' (o-)II c(~) d ~r 
S 

r 

< c ~ o--1 +o-(lel/2~) do- II f IlD~(o,~ 
S 

<=c(r--s) ~ Hflloa(o, oo). 

(iii) If 2m0<l/?l  < 2 m -  1 and re]0, 1] we write: 

1 

(4.3) liD a u(t)llc(~)- < ff liD a u'(o-)llc(~) do-+ liD p u(1){[c(o ) . 
t 

Now by Lemma 4.3(i) (again with any fixed p >  n) 

(4.4) L[ DB u (1)[I c(r~) < c II f II c(~), 

whereas by Lemma 4.3(ii) 

1 1 
1+0  1/31 tO ~1 

(4.5) ~ [IOau'(o-)[Ic(~)do-<cSa - -~do- l l f l lDa(o ,~ )<c  -~l[flIo~(o,~).  
t t 

As t_-< 1, by (4.3), (4.4) and (4.5) we get 
/31 

liD ~ u(t)[]c(~) < c t ~  [Lf[ o~(o, oo~ . 

n 
(iv) If p >  2 m ( 1 - 0 ) '  [ill = 2 m  and XoEO, we write: 

1 

(4.6) II D~ u(t)llLp(9(~o,tl/2,.)) < S l] Dp u'(o-)llLp(otxo,tl/2~)) do- 
t 
+ liD ~ u(1)Ilr,(e(xo,,1/~m)); 
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now Lemma 4.3 (i) yields 

(4.7) sup liD a U(1)llL,~a~xo,O/2m))<% Ilfllc(~), 
x o ~  

whereas by Lemma 4.3 (ii) 

1 1 

(4.8) sup ~ liD ~ u'(~r)llL~(~(xo,~l~zm)) da<% ~ a-2+~ do [IfllD~(O,~o) 
xoeg) t t 

<% t - ~ +~ ~-~" Il f llo~(o,~) . 

n 
As 1 -  0 - ~  > 0, by (4.6), (4.7) and (4.8) we conclude that 

+ n 
sup II Dp u(t)llL,(~(xo,,~z2m)) < Cp t -1 0 + ~  Il f llD~<o, oo) . 
XOE~ 

rt 
(v) Let ~ ] 0 ,  1[, I/~1 = 2 m - 1 ,  and set q : = ~ .  By Proposition 1.3(ii) 

(4.9) [D p u ( t ) l c ~ ~ ) ) ~  C~ ~ liD v u(t)l]L~(mxo,~/=~)). 
1~]=2m 

{ n} 
Now pick p > m a x  q, 2m(1-O : by (4.9), H61der's inequality and part (iv) we 
get: 

[D p u ( t ) ] c = ~ ) )  < Co ~, IrD' u(t)HL,(~(xo,tl/2m)) t~(~-~) 
1~l=2m 

< C~,p t~-~, +~ 1 +~(~-~)II f rlDA(0.~) 

=C~t~-~ o-~ II/llDAr oo). [] 

By Lemma4.4(i~(ii) we deduce that u ( t ) ~ f  in C[2"~ as t -~0+;  as 
Bj(., D )u ( t )=0  on ~f2 for j = l ,  ..., m, when t ~ 0  + we get Bj(., D ) f = 0  on #f2 
if mj< [2m0], i.e. f~Ct2"~ In addition we get 

(4.10) II f Ir cL2,.o~(o) <= II f -  u (1)II c~,.o~(~) + II u (1)IP c~2.. o,(~) 

< c  rlfllDA(o,~). 

Thus it remains to show that D p f e  C 2 ~0-[2,.0](0) if [ill = [2 m 0]. We distinguish 
two cases: (a) [2mO]<2m-1,  (b) [2mO]=2m-1.  In case (a), let 
I/~l = [2m0] < 2 m -  1, and choose t ' .=lx-yl  2" where x, y e ~  and I x -y[  < 1. Then 

I DPf (x ) -  Dr 

< [D~f(x)--D p u(t, x)l + [D ~' u(t, x)--D t3 u(t, Y)I + [ D'~ u(t, y)--DPf(y)] 

<=2 IID~f--D~u(t)llc(~)+C y" IlD~u(t)llc(~) [ x - y l ,  
h,I =[2"o1 + 1 

and by Lemma 4.4(ii)-{iii) 
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(4.11 ) IDa f (x) -- D a f (Y) I 
[ 2 r n O ]  [ 2 m O j  + 1 

< c  t~  lpflloA(o,~) + c  t ~  I x - y l  Ilfllo.(0,~) 
< c I x -  yl  zm~176 [I f l[ o~(o,| . 

In case (b), let 1 3 1 = [ 2 m O ] = 2 m - 1  and choose, as before, t . .=lx-Yl  TM where 
x, y ~ O and I x -  y I < 1. Then 

I D a f ( x ) -  D a(y)] 

< 2 II O P f  - O t~ u(t) ll c(~) + [ oa  u( t )]c  . . . .  t 2 ~ , o , ~  ix-- y 12"~ t2"01, 

and by Lemma 4.4(ii)-(v) 

(4.12) ID a f ( x ) -  D a f(Y) I 
2 v r l -  1 

<-< c t ~  II f II oa(0, ~) 

~-2mO+tZm03 , x yl 2m~176 
+ c t  ~ + v - l  l -- J[fJ]o,,(o,~) 

< c  l x - -  y l  zm~176 I l f l l ~ ( o , ~ ) .  

By (4.11) and (4.12) we conclude that if 1 3 1 = [ 2 m 0 ]  then D r 1 7 6 1 7 6  
moreover recalling (4.10) we also obtain 

[I f II c~mo(~) < c II f II Da(0, ~) ,  

and the proof of Theorem 4.1 is complete. []  

w 5. Improvements and Remarks 

By Theorems 3.1 and 4.1 the first equality of Theorem 2.3 is established. In 
order to check the second one, just a few remarks are needed. 

Concerning the first inclusion, we proceed as in Sect. 3. There is only a 
difference in the basic Lemma 3.3: namely, it turns out that the right-hand 
sides of the inequalities in (i)-(ii)-(iii) have to be multiplied by o(1) (as t ~ 0 + ) ,  
due to the fact that F~h2"~ Consequently, the right-hand sides of the 
inequalities of Corollary 3.4 should also be multiplied by o(1) (as s~oe) .  As 
a result one obtains, instead of (3.2), 

(5.1) lim s o I[ w(s)-f ]l c(a) = 0. 
S ---> ct3 

Continuing as in Sect. 3, one then arrives to 

(5.2) lim s o HAR(s, A) w(s)[Ic(o)=0 

which replaces (3.3). Finally, recalling (3.12), by (5.1) and (5.2) it follows that 

lim s o lIAR(s,  A)  f llc(c~)=0, 
S ~  oO 

i.e. fE DA (0). 
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The second inclusion is easier: we already know that DA(O)~Da(O, oo) 
= CBz"~ hence iffeDA(O) we have only to show thatfehZ"~ Now, recalling 
that DA(O ) is the closure of D A in DA(O, oo), we take a sequence {U,}=--OA such 
that u,-~fin DA(O , o0), i.e. in C2"~ as n~oo. But Da~h2m~ by Prop. 1.3, 
and consequently we get {u,} _ h2"~ Thus fehZ"~ since h2"~ is a closed 
subspace of C 2"~ The proof of Theorem 2.3 is now complete. [] 

Remark 5.1. Theorem 2.3 can be generalized in several directions. Following 
Amann [7], one can consider elliptic systems of differential operators as in 
E7, Sects. 12-13], in a possibly unbounded open set ~ which is supposed to 
be uniformly regular of class C z" ([7, Sect. 11]). The analogue of Theorem 1.1 
is proved by Geymonat-Grisvard [10, Sect. 5] and Amann [7, Theorem 12.2], 
whereas the analogue of Theorem 1.2 can be proved by the same method used 
in the Appendix below; the arguments of Sects. 3 and 4 then still work. 

Remark 5.2. The critical cases 2mOeN are not covered by our theorem: they 
will be the object of a further paper. However in the case m = 1 the "critical" 
spaces DA(�89 ~ )  and DA(�89 oo) are known. The (single) boundary operator 
B(-, D) has then one of the following forms: 

(a) B(x, D)= 1 (Dirichlet problem), or 

(b) B(x, O) = e(x) I + ~/3  i(x) D~ (oblique derivative problem), where 

(~(x)tv(x))>O Vxe(~. ~=i 
Denote by C*' ~(~) and h*'~ (~) the Zygmund spaces defined by: 

C*'1(~).'= ~eC(Q): sup{ , x - y ,  : x ' Y ' ~ 2 ' x 4 : y l < ~  I ! 

h*'l(O).'= u~C(~): lim sup 
r ~ O  + X o ~  

-sup Ix--y[ : x, y, ~ E ~ Z t X o ,  r), x4:y = 0  ; 

then in case (a) (Lunardi [15]) we have 

DA(�89 oo)={ueC*'l(~):u=OonOf2}, DA(�89 

whereas in case (b) (Acquistapace-Terreni [3]) we obtain 

DA(�89 ~ ) = { u e C * ' l ( ~ ) :  sup 

.{,u(x-a3~))-u(x)l: xe~,  a>O,x-o3(x)e~}<~}, 
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DA (1) = {u e h*'l (O): lim u (x - ~r fl (x)) - u (x) 
a~O+ O" 

- c~(x)f(x) VxeOg2}. 

Remark 5.3. The method employed in the proof of Theorem 2.3 still works in 
different situations. For instance if we choose E = LP(f2), 1 < p  < 0% then we find 
again Grisvard's characterizations of DA(O, oo) and DA(O ) in this case ([11, 9]), 
needing on the other hand much less regularity on the coefficients of the differen- 
tial operator. Even more, we can study by the same method the spaces D A(O, q), 
1 < q < 0% where 

DA(O , q)={xeE: S IIs~ A)xl[ q ds < oo}; 
0 S 

also in this case we find again old results by Grisvard (see [12] or [22, Theorem 
4.3.3 (a)]) as well as new results. More details will be published elsewhere. 

Appendix: Proof of Theorem 1.2 

Let fEC(O), g=(gx . . . . .  g,,)s f i  C2m-mJ(Sf2). AS, clearly, f e  ~ LP(~2) and, for 
l j = l  p > l  

j= 1 .... , m, gje ~ W2m-mf>v(Sf2), by Theorem 1.1 for each pc] l ,  ovl- problem 
p > l  

(1.10) has a unique solution uveW2m'P(f2); hence if q>p we have uv=uq and 
consequently Upe ~ W2m'q(f2) and is independent of p. Thus a unique solution 

q > l  

ue ~ W2m'P(f2) of problem (1.10) does exist. 
p > l  

We have to prove (1.12). Fix p>n, choose 2 1 = 2 o + 1  (2o is given in Theo- 
rem 1.1) and fix 2 e C  with 12[>21 and a r g 2 = ~ ;  fix also Xo~O and let # > 2  
to be chosen later. Select a function q5 (x) = ~b (Xo, 2, #, x) with the following prop- 
erties: 

(A.1) 
~beC~(R"), 4 ) -1  on B(xo, p), d?=O 

IIDhdpllc~,,)<=Ch p-h(t.t-- 1) -h, h =  1 . . . .  ,2m, 

where we have set 

(A.2) p ;=[ 2 - -  201-- 1/2m 

(Note that p < 1.) The function v(x)'.=u(x). (o(x) solves 

(A.3) 

where 

(A.4) 

outside B(xo, #p), 

2v(x)-- ~ a~(x)D~v(x)=~o(x)f(x)+F(x), xeO, 
1~l_-<2m 

b;p(x)D~v(x)=dp(x)gj(x)+Gj(x), x~Sg2, j = l  . . . .  , m, 
[#l<mj 

O~ 

F(x)=  ~ a~(x) ~ ( IDPu(x)D~-7~(x), 
[M=<2m ~<= \"~] 
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Gg(x)= ~ bj,(x) ~ (~6 D6u(x)Da-6 c~(x), j = l , . . . , m .  (A.5) 

By Theorem 1.1 we have (denoting again by gj any W2~-mJ'P-extension of g~ 
to the whole O): 

2m 

k=O 

t ~ 2m-mj I m]+k t < M p  Itcbf+fllLp<~)+ ~ I;~--2o1 2,,, IIDk(4, g~+G~)llLp<o) , 
j=l k=O 

and hence 
2m 

(A.6) ~ I)~-~o 11 - ~  IIDkvIIL,r 
k=0 

s {11 f ]lL-(~<~o,~.))+ IlfllL.(mxo.,,.~) 

2m-mj l_m]+k 

j=l k=O 

�9 [[IDk(cP gj)[lL~(~<xo,~,.,  + l[ Dk a j l l L . ( O C x o , ~ . , 3 }  �9 

Now by (A.4) and (A.1) we get: 

2 m - 1  
(A.7)  IlfllL.(o<~o,u.))__<c ~. IlDkUl[c<O).p-2m+k+"/P#"/t'(#--l)-l; 

k=O 

moreover if k = 0, 1, ..., 2 m - m j  it is easily seen that 

k+mj- 1 k+mj-h 
IDkGjI<=c ~ [Dnul �9 ~ [D~bl, 

h = 0  r = l  
and therefore (A.1) yields 

(A.8) lID k GjllLp<O<~o,~p)) 
k+mj-- 1 

<c ~ I[DhUl[cr § IP/P(I~--I) -1, 
h = O  

k=0 ,  1 . . . .  , 2 m - m j .  

Finally, again by (A.1) it follows that 

(A.9) [I Dk (~ g j)II L-<~xo,..>) 
k 

5~C 2 h h-k liD g/IL.<OCxo,~.))'P ( # -  1) h-k, 
h=O 

k =O, 1 .... ,2m-mj.  
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By (A.6), (A.7), (A.8) and (A.9), recalling (A.2) we easily get: 

2m 

(A.IO) ~ 12--2o[~-~llokvlhLp(~) 
k = 0  

~ 2m-mj mj+k 
<cp II/]lL~,(O(~o,~,,,))+ ~ [2- -2011-  2m IlOkgjltL,(o(xo,~,o)) 

j = l  k = 0  

2 m - 1  } 

+ ~ 12-2ol 1 =% ~.~#n/p(#_l) -lllDkullc(O) . 
k = 0  

On the other hand, by Proposition 1.3(i) and (A.2), 

2 m - 1  

(A.11) ~ 12-2o[1-~[IDkul[c(rrc~zT-pj)+12-2ol~-~llD2mu[lLp(m~o,p)) 
k = 0  

2m 

<c 12-2o1~-~-~ ~ 12--2oI1-~IID%IIL~(~). 
k=O 

Now choose as xo a point of maximum for the (real) function AeC(O) defined 
by 

2m--1 
A(x) ~ pk [Dku(x)l+p2~-,,/pllD2muHn,(a(:,,p)), xeO; 

k = 0  

then we have clearly 

(A.12) 12-2ol [M llc(a) <_- 
2m--1 

[ 2-- & la - ~ [IDkullc(~) 
k = 0  

+ 12 -- 20 [ :--~ sup 2 m lID Ullz~(o(~.,)) 
x ~  

<(2m+ 1)12-2ol II/llc(~). 

Choose now # so large that 

cp #"/P ( # -  1)- 1 < (4m + 2)- 1 ; 

then by (A.10), (A.11) and (A.12) we conclude that 

(2m+ 1)-1 --2o11-r~ I I D k u l l c ( f ? ) - ]  - [2--2012-~v sup lID ullL~(a(x,o)) 
k x~g2 

__< 12-- 20 ] A (Xo)_-< C, 12-- 20 [~--~ (]L f ]1Lp(a(Xo.UO)) 

m 2m--mj m.+k h 1 - - ~  
"t- 2 ~ [2__201 2m IlDkgjllL,(O(xo,~,o)) 

j = l  k = 0  
2 m - 1  

+(4m+2)  -1 ~ 1 2 - 2 o [ ~ - ~ l l O k u l l c ( o ) ,  
k = 0  

which clearly implies (1.12). The proof of Theorem 1.2 is complete. [] 
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